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Abstract

Patent categorization, which is to assign multiple Interna-
tional Patent Classification (IPC) codes to a patent document,
relies heavily on expert efforts, as it requires substantial do-
main knowledge. When formulated as a multi-label text clas-
sification (MTC) problem, it draws two challenges to exist-
ing models: one is to learn effective document representations
from text content; the other is to model the cross-section be-
havior of label set. In this work, we propose a label atten-
tion model based on graph convolutional network. It jointly
learns the document-word associations and word-word co-
occurrences to generate rich semantic embeddings of docu-
ments. It employs a non-local attention mechanism to learn
label representations in the same space of document represen-
tations for multi-label classification. On a large CIRCA patent
database, we evaluate the performance of our model and as
many as seven competitive baselines. We find that our model
outperforms all those prior state of the art by a large margin
and achieves high performance on P@k and nDCG@k.

Introduction

Patent databases are valuable information sources reflecting
universal inventive trends and evolution of real-world tech-
nologies. A large number of new patent applications arrive
at patent offices around the world every day. Professional
patent examiners are trained to assign proper category codes
to patents so as to facilitate patent search and management
(Gomez and Moens 2014). However, manually categorizing
large volume of patents requires expensive human labor and
examiners’ broad domain knowledge. Furthermore, com-
plex and hierarchical concepts of the patent category codes
impose significant challenges on the categorization task.

IPC code1 is the most commonly used taxonomy system
for categorizing patents. It includes thousands of categories
and is defined in a hierarchical way. IPC code is prefixed by a
capital letter from “A” to “H”, followed by a two-digit num-
ber and ends with a letter in uppercase. Take code “F01P” as
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Figure 1: An example of patent claim citation

a concrete example whose concept can be interpreted hier-
archically. “F” stands for general concepts “mechanical en-
gineering, lighting, heating, weapons and blasting”, “F01”
represents sub-concepts “machines or engines in general”,
and “F01P” indicates fine-grained concepts “cooling of ma-
chines or engines”. Eventually, “F01P” will be assigned to
relevant patents.

Most patents consist of multiple related aspects. Such
characteristic makes patents associated with multiple IPC
codes (labels). Also, labels are not exclusive, actually, the
number of related categories can range from a few to even
hundreds depending on the application concepts a patent
contains. This presents the compelling challenge for cate-
gorization of patents. There are many possible set of labels
that can be assigned to each patent, and thus the the task of
automated patent categorization becomes a multi-label text
classification (MTC) problem.

Unique characteristics of patent’s document and IPC
codes bring unique challenges to the patent MTC task. First,
from the perspective of a patent expert, words play the key
role in the patent categorization, so a model should learn pre-
dictive word representations from the word co-occurrence
and document-word associations. Second, patent document
is often consisted of multiple “claim” sections and there
are long-range dependencies between claims. For example,
Fig. 1 shows that claim 11 cites claim 1 across a number of
claims2. It requires a careful mechanism to model such long
dependencies. Third, the IPC code covers a vast and some-
times disparate areas, creating thereby ambiguous semantic
interpretations. For example, instead of defining one clear
and consistent concept, IPC codes prefixed by “G09” refers
to “Educating, Cryptography, Display, Advertising, Seals.”
The label representation is a mixture of topics that can only
be learned from document-label associations.

To address the above challenges, we propose a novel

2https://patents.google.com/patent/US9381707
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Graph Convolutional Network (GCN) based model with an
adaptive non-local label attention layer. We build a textual
graph based on word co-occurrence and document-word as-
sociations and then learn a GCN that generates word embed-
dings. Next, the proposed model has a non-local attention
layer that achieves two goals. The first is to learn the long-
range semantic dependencies in the patent content. The sec-
ond is to embed the semantic information as representation
for each individual label. We summarize our contributions
as follows:

• We propose a new deep learning model based on GCN
to capture rich semantic information for addressing the
challenges in the multi-label patent text classification.

• We design an adaptive non-local second-order attention
layer to model long-range semantic dependencies in text
content as label attention for patent categories.

• We conduct extensive experiments to evaluate our model.
We compare it with seven competitive baselines. Results
show that our model consistently wins on evaluation met-
rics such as Precision@K and nDCG@K.

Related Work

Traditional MTC Models

One-vs-all classifiers. For each label, a separate binary clas-
sifier is trained independently to make predictions, which in-
creases the computation complexity while dealing with huge
number of labels. (Yen et al. 2017; 2016) use L1 regulariza-
tion to fulfill a sparse solution so as to reduce the computa-
tional complexity. (Babbar and Schölkopf 2017) learns a lin-
ear classifier per label and uses double layer of paralleliza-
tion to control the model size. Another visible limitation of
this method is its ignorance of label dependencies during
training, which may weaken the model’s generalizability. To
address this limitation, (Zhang and Zhang 2010) adopts the
Bayesian network to encode the label dependencies by com-
puting the joint probability of label and feature sets.
Tree-based classifiers. Those models are inspired by the
ideas of decision tree and build decision trees based on ei-
ther labels or data instances by recursively splitting inter-
nal nodes. Predictions are made while a new data point is
passed down the tree until reaching the leaf nodes. FastXML
(Prabhu and Varma 2014) achieves significant accuracy by
optimizing a ranking loss function directly. PfastreXML
(Jain, Prabhu, and Varma 2016) is an extension of FastXML,
it prioritizes prediction of tail labels and handles miss-
ing labels by proposing the propensity scored loss. Para-
bel(Prabhu et al. 2018) generates an ensemble of balanced
trees over labels rather than data points, which could be
considered as a generalized method of hierarchical softmax
model to boost the performance.
Embedding based models. Embedding based methods em-
ploy compression functions to project label embedding to
a lower dimensional linear subspace. SLEEC (Bhatia et al.
2015) is proposed to solve the limitation that low-rank label
matrix assumption is usually violated in real world applica-
tions. AnnexML (Tagami 2017) presents a graph embedding
method to cope with several limitations of SLEEC.

Deep Learning MTC Models

(Liu et al. 2017) adapts (Kim 2014) to a MTC task by adding
a dynamic max pooling to catch more fine-grained informa-
tion and uses a bottleneck hidden layer to reduce parameters
size. (Nam et al. 2017) converts predicting a set of related
labels into predicting sequence of binary values and uses
Recurrent Neural Network (RNN) to make the prediction.
(Yeh et al. 2017) proposes to employ canonical correlated
autoencoder to jointly model textual features and label struc-
tures. (Zhang et al. 2018) builds a label graph that attempts
to explore the label space. (Wang et al. 2018) learns a joint
word-label embedding and uses the compatibility scores be-
tween each label and context words as attention coefficients
to combine context vectors into one final document vector.
Similarly, (You et al. 2018) uses multiple label attention vec-
tors to allow the network to attend on multiple semantics for
each label. It produces multiple label attention vectors, and
each label vector is mapped to a single output. (Tang, Qu,
and Mei 2015) builds a textual heterogeneous network to en-
code multi-level semantic information. Graph Convolutional
Network has gradually gained popularity in multi-class clas-
sification. (Rousseau, Kiagias, and Vazirgiannis 2015) and
(Yao, Mao, and Luo 2019) use GCN to jointly learn word
and document embeddings over a graph textual representa-
tion. (Chen, Lin, and Cho 2017) applies GCN over a label
graph to extract the label-wise information. However, GCN
for multi-label text classification tasks has rarely been stud-
ied yet.

Proposed Model

Figure 2 presents the architecture of our proposed model, A-
GCN+A-NLSOA, consisting of two components. Attention-
based GCN, which is equipped with sufficient expressive
power to allow the network to learn informative represen-
tation of words by capturing document-word associations
and word co-occurrence over a textual graph. The second
part is an adaptive non-local second-order attention layer,
which can be utilized to effectively capture non-local and
fine-grained semantic relations from the text representations
produced by GCN. The attended semantic information also
provides representations for labels. Therefore, the second
part can also be seen as a form of label attention.

Graph-based Text Representations

In our task, capturing document-word association and word
co-occurrence in the patent corpus is crucial. We build an
undirected patent textual graph denoted as Gpw = (Vp ∪
Vw, Epw ∪ Eww) to encode those information aforemen-
tioned. Gpw consists of patent nodes Vp, word nodes Vw and
patent-word edges Epw as well as word-word edges Eww.
Edges Epw are built between a patent and any word in it.
There are no weights attached on Epw. We leverage Point-
wise Mutual Information (PMI) to compute the scores in or-
der to build Eww edges. PMI score is widely used in compu-
tational linguistics to capture collocations and associations
between words (Yao, Mao, and Luo 2019). PMI between
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Figure 2: Overall Architecture of Non-local Attention-based Graph Convolutional Network

Figure 3: Node embedding generation process using GCN.
Patent’s (central) word nodes (k = K) are updated by re-
cursively aggregating neighboring word nodes from search
depth k = 1 to K − 1.

two words is defined as

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(1)

We keep positive PMI scores and replace negative PMI val-
ues with zero as negative values could be problematic. Thus
an Eww edge is built only when PMI score is positive. We
use a fixed size sliding window to collect the word co-
occurrence statistics across the entire corpus.

p(wi, wj) =
C(wi, wj)

N
(2)

p(w∗) =
C(w∗)
N

(3)

C(wi, wj) denotes the number of times words wi and wj

co-appear in a sliding window. N is the total number of slid-
ing windows in the corpus, C(w∗) represents the number of
sliding windows containing word w∗.

Attention-based Graph Convolutional Network

Spectral-based GCN models have only been used in the
transductive setting (Kipf and Welling 2016), we apply
GraphSAGE (Hamilton, Ying, and Leskovec 2017) to learn
the graph node embeddings. GraphSage is a non-spectral
GCN which provides support on batch-training without up-
dating states over the entire graph and has obtained empiri-
cal success compared to other graph representation learning
models. Figure 3 illustrates the general idea of the node em-
bedding generation process of GCN over graph Gpw. The
model recursively updates embedding for node v by (1) Ag-
gregating information from node v’s immediate neighbors
denoted as N(v), u ∈ N(v) : (u, v) ∈ E, via the aggregator
functions AGGk, ∀k ∈ 1, ...,K, k is defined as search depth
(hop). (2) Node v’s representation �hk

v is updated by con-
catenating the aggregated neighborhood vector �hk

N(v) and

its own node hidden state �hk−1
v . When k = 1, each word

node’s embedding from previous search depth, �hk−1
v , is ini-

tialized with pre-trained word embedding. The entire pro-
cess is demonstrated by Eq.(4) and Eq.(5).

�hk
N(v) ← AGGk(�h

k−1
u , ∀u ∈ N(v)) (4)

hk
v ← σ

(
W k · CONCAT(hk−1

v , hk
N(v))

)
(5)

The following highlights the details regarding the adaptation
of the GCN model to the patent MTC task.

It is worth noting that even though PMI can preserve word
co-occurrence information to some extent, such frequency-
based statistics is insufficient to capture various signifi-
cance of words. Inspired by (Veličković et al. 2017) we
design an attention-based BiLSTM layer as the aggrega-
tor corresponding to AGG1,...,K−1 in Figure 3 to aggre-
gate information from co-occurring words to update the
target word v, and allows neighboring words to receive
different emphasis. Figure 4 shows the basic architecture
of this aggregator. Given s neighboring word embeddings,
{�hk−1

1 ,�hk−1
2 , . . . ,�hk−1

s } of the word v, we take the advan-
tage of expressive ability of bidirectional long-short-term-
memory network (BiLSTM) and apply it to such word se-
quence in order to first obtain discriminative embeddings. In
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Figure 4: Aggregator to integrate information from co-
occurring words in the neighborhood of the target word

order to compute the attention coefficients to represent the
importance of each neighboring word node u for the target
word v, an attention mechanism can be implemented by one
linear layer parametrized by a weight vector Wa, and a non-
linear activation function such as LeakyReLU (with negative
slope α = 0.1) could be used. The fully expanded equation
shown in (6) expresses the normalized attention coefficients
αvu using the softmax function,

αvu =
exp(σ(Wa

T [CONCAT(�hk
v ,�h

k−1
u )]))

∑
i∈N(v) exp(σ(Wa

T [CONCAT(�hk
v ,�h

k−1
i )]))

(6)

Target node v’s representation vector can hence be derived
from the linear combination of the immediate word neigh-
bors by using the obtained attention coefficient αvu after ap-
plying a nonlinear function σ.

Multi-head attention allows the model to jointly attend to
information from different representation subspaces in par-
allel. We use multi-head self-attention to concatenate the re-
sults obtained from each single attention head. Eq.(7) details
the final representation for the target word node v after em-
ploying the multi-head attention mechanism. P denotes the
number of independent attention heads.

�hk
v =

P∣∣∣∣
∣∣∣∣

p=1

σ

( ∑
u∈N(v)

αp
vu
�hk−1
u

)
(7)

We derive a GraphSage variant by replacing Eq. (4) and (5)
with Eq.(6) and (7).

Since we need to establish connections between word rep-
resentations with individual labels, we keep the sequence of
word embedding vectors recursively updated from words in
its vicinity instead of aggregating them into a single vec-
tor for the patent. We use BiLSTM to replace aggregator
AGGK as shown in Figure 3. Furthermore, it is crucial to
maintain word order in our case. To this end, instead of uni-
formly sampling words appearing in a patent as its neigh-
boring nodes as suggested in (Hamilton, Ying, and Leskovec
2017), we select top n words out of each patent to be its local
neighbors without disturbing original word order.

Adaptive Non-local Second-order Attention Layer

The way to build immediate connections between words by
estimating PMI values also lacks the capability to capture
the long-range information due to the fact that the word pair
frequency is calculated only for the words appearing within
the same window (see Eq.(1)). However, the phenomenon
that some semantic correlations can only be captured across
multiple sentences or even paragraphs is particularly evi-
dent in the patent corpus, because there are strong reference
relationships across different patent claims as illustrated in
Figure 1. Moreover, the fact that IPC labels specify cross-
domain concepts requires the model to capture more thor-
ough information in order to establish the correlations be-
tween subtle document semantics and individual label.

Recent effort takes advantage of Non-Local Neural Net-
works and second-order information to achieve promising
results in computer vision applications (Xia et al. 2019).
However, it only provides an attention mechanism to model
feature spatial correlations, and it fails to incorporate la-
bel supervision directly. We observe that the attention maps
offer natural separation for salient regions, the attended
feature vectors produced using these attention maps can
be helpful for individual label supervision. We hence pro-
pose an adaptive non-local second-order attention (NLSOA)
module, which not only enhances our model’s capability
of capturing long-range semantic dependencies and fine-
grained information, but also establishes the direct connec-
tion between the separated information and individual la-
bels. Therefore, it can also be seen as a form of label atten-
tion. We leverage the covariance matrix, instead of the com-
monly used inner-product operations, as a pairwise affinity
function because covariance matrix can better capture the
position-wise correlations among words and thus generate
discriminative representations, which is designed as Eq.(8),

Σ = θ(X)Īθ(X)T (8)
where the input tensor X ∈ R

s×c consists of word sequence
embeddings for patent generated from GCN. s is sequence
length, and c is the feature dimension. We use a linear layer
followed by a batch normalization layer and a LeakyReLU
layer to form a function called θ, which reduces X’s fea-
ture dimension from c to c/r. Ī = 1

c/r (I − 1
c/r1), I and

1 are identity matrix and all-one matrix respectively, and
Σ ∈ R

s×s. We then design a self-attention utilizing Σ
to compute the response at a position in Σ to model fine-
grained associations among words. We use another linear
layer g as a transformation function to squeeze X’s feature
dimension from c to c/r , and the resulting g(X) has shape
of s× (c/r). We adopt 1√

c/r
as the normalization factor for

the covariance matrix before applying softmax, which yields
(9):

Z = softmax(
Σ√
c/r

)g(X) (9)

We use a trainable transformation p to excite the reduced
dimension c/r to t and add a skip transformation φ to map
input feature dimension to t. Finally, the Adaptive NLSOA
module can be formulated as Eq.(10):

X′ = φ(X) + p(Z) (10)
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Figure 5: Adaptive Non-local Second-order Attention Layer

The Adaptive NLSOA has three appealing properties.
Firstly, it uses only one branch of convolution layer’s output
to compute the covariance matrix. Moreover, it is capable
of obtaining long-distance as well as fine-grained informa-
tion from the covariance matrix. If we view the output of
Adaptive NLSOA layer as a stack of t column vectors, as
illustrated in Figure 5, each of these column vectors encodes
the non-local semantic information, and can be mapped to a
specific label. Thus Adaptive NLSOA can be interpreted as
a form of label attention.

As aforementioned, IPC label embodies cross-domain
concepts and thus is ambiguous. Namely, patents corre-
sponding to various application domains can be associated
with the same IPC label. In order to address this issue, for
each patent document, we directly model the relationship
between words and each individual label using the Adap-
tive NLSOA, which provides each label with particular se-
mantic information inside the patent. We use two consecu-
tive fully connected (FC) hidden layers W1 ∈ R

s×f and
W2 ∈ R

f×1 following the Adaptive NLSOA layer. We use
ReLU and softmax as two nonlinear activation functions σ1

and σ2 applied on the last two layers to make the final pre-
dictions. In order to avoid using more parameters, similar to
(You et al. 2018), the parameters in W1 and W2 are shared
across all labels. The resulting j-th label probability ŷj could
be obtained by

ŷj = σ2(W2
Tσ1(W1

TLj)) (11)

where Lj is the j-th output column vector of the Adaptive
NLSOA layer. Finally, we utilize a binary cross-entropy loss
function which is a frequently used objective function tai-
lored to the MTC task and formulated as in Eq.(12). Unlike
(Liu et al. 2017), which uses the sigmoid function to pro-
duce the class probability, we find that softmax yields better
results than sigmoid. It is also observed in work (Mahajan et
al. 2018).

J = − 1

N

N∑
i=1

t∑
j=1

[yij log(ŷij)+(1−yij)log(1− ŷij)] (12)

N is the number of training examples and t is the number of
labels, yij is the binary ground truth label value, and ŷij is
the predicted probability value demonstrating how likely the
j-th label should be assigned to the i-th patent.

Table 1: Basic Statistics of Patent CIRCA 45k Dataset
Dataset N D L L̄ L̂

Train 36,420 81,613 550 2.428 159.330
Test 9,106 38,344 443 2.430 39.868

Experiments

Datasets

We query 45,526 patents with 555 IPC codes from an in-
ternal patent database named “CIRCA”. A patent document
is primarily constituted by a patent number, bibliographic
information, title, abstract, description and the claim sec-
tions and other metadata. Each patent includes one or more
IPC codes to classify the patent contents in a uniform man-
ner. We only use title, abstract and the claim which are
viewed as the most informative textual sections to describe
a patent and entire IPC labels assigned to each patent. We
use NLTK to preprocess the data. We eliminate words con-
taining special tokens and remove words appearing less than
5 times. Therefore there are totally 89,784 distinct words
remain after the data cleaning. We use Gensim Word2vec li-
brary3 to train the 100-dimensional patent word embedding
model. For notational convenience, we name the dataset as
“Patent CIRCA 45k”, and Table 1 provides the basic statis-
tics of it. We split the data into training and testing in a 80/20
ratio, in actual experiments, we hold 10% training data as
the validation set (unlisted in Table 1) that is used to choose
the optimal parameters. In Table 1, N represents the num-
ber of data instances in the training and testing sets. D is the
feature size which is equivalent to the number of words. L
indicates the label count, L̄ stands for the average number
of IPC labels for each data sample. L̂ represents the average
number of documents per IPC label.

Baseline Methods

We compare our model to seven competitive state-of-the-art
methods. FastXML (Prabhu and Varma 2014), PfastreXML
(Jain, Prabhu, and Varma 2016) and Parabel (Prabhu et al.
2018) are frequently used strong tree-based algorithms in
extreme MTC domain. We exclude embedding-based and
one-vs-all methods because tree-based methods outperform
them on CIRCA dataset. For those three algorithms, we use
the code provided by the online extreme classification repos-
itory4. Besides using bag-of-words as the features suggested
by those algorithms in the paper, we enrich the features by
integrating with phrases extracted by (Shang et al. 2018)
to boost their performance. We include representative deep
learning based MTC models, such as XML-CNN (Liu et al.
2017), and the classic BiLSTM. Specifically, we use 512
hidden neurons for BiLSTM which takes word embedding
as input, and utilize softmax and binary cross entropy loss
to make the prediction. In order to evaluate the effective-
ness of capturing the document-label relation, we compare
our model with AttentionXML (You et al. 2018). Since we
use the graph neural network as the building block for our

3https://radimrehurek.com/gensim/models/word2vec.html
4http://manikvarma.org/downloads/XC/XMLRepository.html
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model, we compare our model against GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017) as well. We implement all
deep learning models using the PyTorch framework (Paszke
et al. 2017). Furthermore, we design experiments to inves-
tigate impacts on the final performance due to the hyperpa-
rameters variation, such as size of the sampled neighboring
nodes, different number of attention heads.

Experimental Setup and Evaluation Metrics

For all experiments, we use 256 hidden units in BiLSTM for
GCN aggregators. We choose maximal search depth k as 2,
a recommended setting in (Hamilton, Ying, and Leskovec
2017), which provides a consistent performance boost. We
reduce the internal feature dimension to half of the input
feature dimension in the Adaptive NLSOA module to com-
pute the covariance matrix as attention maps, and the at-
tended tensor is mapped back to the original input feature
dimension. We only use the covariance matrix rather than
the power normalized covariance matrix in (Li et al. 2017).
In our model, we observe a better performance without the
power normalization. Also, we use the same two FC layers
(512 hidden units and 256 hidden units, respectively) for all
label vectors. We use ReLU and Dropout (0.5 rate) between
these FC layers. We train our model with 128 batch size and
Adam optimizer5 with weight-decay of 1.0e-6 to accelerate
the training process for fast convergence. We also apply a
warming up strategy with an initial learning rate 2.4e-5 and
increase by 2.4e-5 every 2 epochs until it reaches 2.4e-4 at
epoch 20.We then reduce the learning rate to 2.4e-5 for the
remaining 10 epochs. It takes about 2 minutes per epoch for
the entire 30 epochs to obtain our best model, which has
20 attention heads, 100 word nodes for each patent and 10
neighboring words for each word. We use two Nvidia Ti-
tan Xp GPUs and keep the settings suggested by all those
competing methods. To calculate PMI scores, we choose 20
as the sliding window size as it leads to the optimal result
compared to size of 5, 10, 20 and 25.

We employ the ranking-based metrics, which are widely
used in the multi-label classification task (Prabhu and Varma
2014; Jain, Prabhu, and Varma 2016; Prabhu et al. 2018;
Bhatia et al. 2015). Precision@k (P@k) counts the fraction
of correct label predictions in the top k scoring labels from
the predicted labels list. Another evaluation metric is nor-
malized Discounted Cumulative Gain at k (nDCG@k), a
measure of ranking quality. We will present results when k
= 1, 3, 5 following prior MTC works.

Experimental Results and Ablation Studies

Table 2 summarizes the performance of relevant methods
together with our proposed model in terms of P@k and
nDCG@k. Bold numbers represent the best results and un-
derlined numbers are the results second to the best ones.
Our model Attentive-GCN + Adaptive-NLSOA (A-GCN +
A-NLSOA in Table 2) consistently outperforms baselines
by a substantial margin, obtaining average 4.5%, 2.6% and
1.7% for P@1, 3, 5 respectively, and average 4.5%, 4.1%
and 3.9% for nDCG@1, 3, 5 separately over the prior state

5https://www.fast.ai/2018/07/02/adam-weight-decay/

Figure 6: Precision@k performance

Figure 7: nDCG@k performance

of the art. We observe that rich features (BOW+Phrase) in-
deed attain benefits for tree-based approaches relying fea-
ture engineering. Parabel keeps its leading role among tree-
based methods for almost entire metrics. It builds a label
tree by incorporating text information, hence it performs bet-
ter than other methods which fail to leverage label informa-
tion during the training process. BiLSTM and XML-CNN
present similar results, but BiLSTM shows subtle winning
margin over XML-CNN because BiLSTM extracts useful
semantic features in a bi-directional fashion. Compared to
XML-CNN and BiLSTM, our model derives benefits from
taking relations between documents and words and words
co-occurrence information as well as document and label
correlation into account, which harvests 6%, 4% and 3% im-
provements in P@1, 3, 5 and 6%, 5% and 6% with respect to
nDCG@1, 3, 5 over those two methods. We develop Graph-
Sage aggregators using 512 hidden units BiLSTM. Table
shows our method obtains 5%, 5% and 3% improvements in
precision and 5%, 6%, and 6% in nDCG over GraphSAGE.
Our method also outperforms the competitive method At-
tentionXML with 2%. We pick the representative baseline
methods from Table 2 and visualize the performance com-
parison results in Figure 6 and 7.

We conduct ablation studies to evaluate the effectiveness
of each component in our A-GCN + A-NLSOA model and
present the results in Table 3. Specifically, we first compare
GraphSAGE with Attentive-GCN (A-GCN) to show the lack
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Table 2: Results of Multi-Label Classification on Patents
Model P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5

FastXML(BOW) 73.10 47.84 34.74 73.10 71.66 74.02
FastXML(BOW+Phrase) 73.92 48.50 35.21 73.92 72.54 74.90

PfastreXML(BOW) 73.74 48.35 35.18 73.74 72.58 75.10
PfastreXML(BOW+Phrase) 74.42 48.93 35.52 74.42 73.31 75.76

Parabel(BOW) 75.10 48.23 35.01 75.10 72.92 75.37
Parabel(BOW+Phrase) 75.79 48.92 35.43 75.79 73.38 76.13

XML-CNN 72.06 46.48 33.94 72.06 69.68 72.63
BiLSTM 72.77 46.71 34.02 72.77 70.35 72.96

AttentionXML 76.09 48.71 35.47 76.09 73.65 76.26
GraphSAGE 72.95 45.88 33.40 72.95 69.67 72.19

A-GCN+A-NLSOA 78.30 50.33 36.41 78.30 75.88 78.28

Table 3: Ablation Study
Model P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5

A-GCN 75.74 48.29 34.92 75.74 73.01 75.42
A-GCN+LA 76.72 49.68 35.96 76.72 74.79 77.20

A-GCN+A-NLSOA 78.30 50.33 36.41 78.30 75.88 78.28

of differentiating word significance and inadequacy of ex-
tracting more complex textual features have big impacts on
GraphSAGE’s final performance. In patent MTC task, in-
dividual IPC label can be associated with diverse concepts
at the same time. This property requires the model to cap-
ture the most relevant semantic parts of text for each IPC
label. AttentionXML captures correlations between docu-
ments and labels in a direct manner using attention, and
hence obtains superiority to competitor deep learning mod-
els. Our model follows the same direction, which directly
explores the text and label relations using attention mecha-
nism to advance predictive power. However, prediction abil-
ity of AttentionXML is bounded by its relatively weak tex-
tual representation and simple label attention. It adopts BiL-
STM to learn text representation yet ignores more intricate
textual features such as word co-occurrences and non-local
words relationships. Thus we secondly show that our A-
GCN module with AttentionXML’s label attention (“A-GCN
+ LA”) outperforms AttentionXML, which demonstrates the
effectiveness of our GCN textual representation learning.
Finally, we show our A-GCN + A-NLSOA presents 2%
improvement than AttentionXML and 1.58% improvement
than A-GCN + LA. It explains the effectiveness of model-
ing non-local and subtle semantics for patent classification,
such design not only effectively captures information from
semantically related words located non-locally in the docu-
ment, but provides attended feature vectors as isolated label
representations for each individual label. We claim that even
though our work focuses on solving the patent text multi-
label classification problem, the model we designed can be
generalized to solve the generic multi-label text classifica-
tion problems.

Sensitivity Analysis on Hyper-parameters

In this section, we evaluate the performance changing by
varying the model hyper-parameters. Results are illustrated
in Figure 8. For each attention head setting, we make 12
combinations by changing the number of sampled neighbors
in the A-GCN module for search depth k = 1, 2. X-axis re-

Figure 8: Parameter Sensitivity for P@1

flects the number of neighbors for k = 1. Number of heads
and number of neighbors for k = 2 are separated by comma
in the legend. It is observable that 20 attention heads ob-
tains the best and stable performance for various neighbor
combinations. Such observation is consistent with what is
observed in (Vaswani et al. 2017). We only report parameter
sensitivity for P@1. Results for P@3, 5 and nDCG@1, 3, 5
are omitted due to space limitation. Experiments show the
optimal performance for entire metrics is achieved at 20 at-
tention heads, 10 and 100 neighbors for k = 1, 2 respec-
tively.

Conclusions

In this paper, we present an attention-based GCN model
which is characterized by Adaptive NLSOA layer. We ap-
ply it over a textual graph to solve a patent MTC problem.
Model is designed to increase the representation power of
the learned node embeddings in the context of long patent
documents. Based on unique properties presented in the
patent data, the Adaptive NLSOA not only manages to cap-
ture non-local and fine-grained semantic information, but
also directly models the relationship between different se-
mantic components in the document and individual label in
order to alleviate the multi-meaning issue of IPC code. We
conduct extensive experiments to evaluate the effectiveness
of our model. Results demonstrate that our proposed model
achieves very competitive performance, providing signifi-
cant improvements over the current state-of-the-art.
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