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Abstract

Prior work has commonly defined argument retrieval from
heterogeneous document collections as a sentence-level clas-
sification task. Consequently, argument retrieval suffers both
from low recall and from sentence segmentation errors mak-
ing it difficult for humans and machines to consume the ar-
guments. In this work, we argue that the task should be per-
formed on a more fine-grained level of sequence labeling. For
this, we define the task as Argument Unit Recognition and
Classification (AURC). We present a dataset of arguments
from heterogeneous sources annotated as spans of tokens
within a sentence, as well as with a corresponding stance. We
show that and how such difficult argument annotations can be
effectively collected through crowdsourcing with high inter-
annotator agreement. The new benchmark, AURC-8, contains
up to 15% more arguments per topic as compared to annota-
tions on the sentence level. We identify a number of methods
targeted at AURC sequence labeling, achieving close to hu-
man performance on known domains. Further analysis also
reveals that, contrary to previous approaches, our methods are
more robust against sentence segmentation errors. We pub-
licly release our code and the AURC-8 dataset.1

1 Introduction

Argumentation and reasoning are fundamental human skills.
They play a major role in education, daily conversations,
as well as in many professional contexts including journal-
ism, politics and the law. Argumentative skills are trained,
for example, in the context of (public) debates, which are
an essential part of democratic societies. Argument min-
ing (AM), i.e., the processing of argumentative structures
in natural language using automatic methods (Peldszus and
Stede 2013), has recently gained considerable attention in
the AI community (Cabrio and Villata 2018; Lippi and Tor-
roni 2016; Nguyen and Litman 2018). AM requires sophis-
ticated reasoning about controversial subject matters well
beyond mere syntactic or semantic understanding. In re-
cent research on AM, two radically different paradigms have
evolved: closed-domain discourse-level AM seeks to iden-
tify the argumentative structure of a debate or an argumen-
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It does not deter crime and�
 
 

it is extremely expensive to administer .

Yes , guns can be used for protection
 
 

but laws are meant to protect us , too .

Figure 1: Annotation of argumentative spans and stance.
Each of the two sentences contains two arguments.

tative text (e.g., a student essay). In contrast, information-
seeking AM aims to identify self-contained argumentative
statements relevant to the given topic from any source. The
goal of this kind of AM is to identify a broad and diverse set
of arguments, ideally reflecting different viewpoints and as-
pects of the topic of interest. Most approaches to automatic
discourse-level AM (Wyner et al. 2010; Stab and Gurevych
2014) rely on the claim-premise model, which refers to
the basic units of an argument as a controversial proposi-
tion (claim) and connected evidence (premise). The claim-
premise model is the basis for the analysis of complex argu-
mentative texts, which can be solved by AI-based automatic
methods with success (Kuribayashi et al. 2019).

The claim-premise model is, however, hardly applicable
to text that does not contain an explicit argumentative struc-
ture (i.e., the majority of textual data) and, thus, has not
been applied with much success to heterogeneous document
collections (Habernal and Gurevych 2017). Information-
seeking AM, which allows to detect arguments in sources
that are not inherently argumentative, has been suggested as
a remedy to this problem. It solves the following task: given
a controversial claim (“topic”), detect supporting or oppos-
ing statements from (potentially) relevant sources. In this
context, an argument is usually defined as a short text – or
span – providing evidence or reasoning about the topic, sup-
porting or opposing it (Stab et al. 2018b). This can be seen
as a flat version of the claim-premise model, where the topic
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# topic #sentences #candidates #final #arg-sent #arg-unit increase in % #non-arg

T1 abortion 39,083 3,282 1,000 424 458 +8.02 576
T2 cloning 30,504 2,594 1,000 353 380 +7.65 647
T3 marijuana legalization 45,644 6,351 1,000 630 689 +9.37 370
T4 minimum wage 43,128 8,290 1,000 630 703 +11.59 370
T5 nuclear energy 43,576 5,056 1,000 623 684 +9.79 377
T6 death penalty 32,253 6,079 1,000 598 651 +8.86 402
T7 gun control 38,443 4,576 1,000 529 587 +10.96 471
T8 school uniforms 40,937 3,526 1,000 713 821 +15.15 287

total 314,568 39,754 8,000 4,500 4,973 +10.51 3,500

Table 1: Sentences in the selection process and final corpus size. #arg-sent: argumentative sentences. #arg-unit: argumentative
units. increase in %: increase of #arg-unit compared to #arg-sent.

is an implicit claim and the argument is a premise that sup-
ports or attacks the claim. Previous studies on information-
seeking AM working with heterogeneous document collec-
tions have restricted arguments to be sentences. This as-
sumption has been partly justified by the difficulty of “uni-
tizing”, i.e., of segmenting a sentence into meaningful units
for argumentation tasks (Stab et al. 2018b). A few studies
also allowed free text fragments as arguments (Aharoni et
al. 2014), however, their arguments are extracted from very
restricted domains (Wikipedia articles) with clear relevance
to the topic. Consequently, it remains unclear whether such
argument spans can be extracted from large and heteroge-
neous document collections with sufficient accuracy.

Information-seeking AM as defined above has thus not
been applied to both highly heterogeneous document col-
lections and on the token level. By identifying subsentence
token spans as arguments for given topics in a large web
crawl, we show that this task is feasible. Furthermore, ad-
dressing the unitizing problem, we show how the required
training data can be created in a scalable manner and with
high agreement using crowdsourcing. We call this task Ar-
gument Unit Recognition and Classification (AURC).2 La-
beling arguments on the token level has several advantages.
First and foremost, it prevents merging otherwise separate
arguments into a single argument (e.g., for the topic death
penalty in Figure 1), enabling us to retrieve a larger num-
ber of arguments (up to 15% more in our data). Second, it
can handle two-sided argumentation in a single sentence ad-
equately (e.g., for the topic gun control in Figure 1). It is
also more robust against errors in sentence segmentation. Fi-
nally, downstream applications like fact checking that need
to reason over a set of evidences require decomposing com-
plex sentences into simpler argument units. Walton and Gor-
don (2017) argue that any kind of argument mining in which
parts of a given text are re-used to form new arguments is
closely related to argument invention (Levy et al. 2014).

2A reviewer pointed out that neither argument unit recognition
nor argument unit classification are novel subtasks and so the need
for introducing a new abbreviation for their combination may be
questioned. However, we are interested in the specific scenario of
information-seeking AM for highly heterogeneous collections and
for arguments segmented on the token level (i.e., fine-grained seg-
mentation). This (in our view) novel scenario justifies a new abbre-
viation and a new name.

This view points towards further applications of our ap-
proach in the field of rhetoric.

We make the following contributions in this paper. First,
we propose a slot-filling approach to argument annotation
and show that it effectively collects token-level annotations
through crowdsourcing with high inter-annotator agreement.
Based on this approach, we construct AURC-8 by applying
a sampling strategy to a large web crawl. Second, we present
a number of methods for solving the AURC task and eval-
uate them on the AURC benchmark. Finally, we show that
our token-level model does not depend on correct sentence
boundary identification.

2 Related Work

Previous work on AM in AI and Natural Language Process-
ing divides into discourse-level AM (Palau and Moens 2009;
Stab and Gurevych 2014) and information-seeking AM
(Shnarch et al. 2018; Wachsmuth et al. 2017; Hua and
Wang 2017; Stab et al. 2018b), as explained in Section 1.
Our work is in line with the latter: we model arguments
as self-contained pieces of information that can be veri-
fied as relevant arguments for a given topic with no or
minimal surrounding context. As opposed to previous work
on information-seeking AM that extracted token-level argu-
ments from Wikipedia articles (Levy et al. 2014), we apply
our annotation schema and experiments to a much broader
and noisier collection of web documents.

Ajjour et al. (2017) compare argumentative unit segmen-
tation approaches on the token level across three corpora.
They use a feature-based approach and various architectures
for segmentation and find that BiLSTMs work best on aver-
age. In contrast to our work, they study argumentation from
the discourse-level perspective, i.e., they do not consider
topic-dependency and do not account for argument stance.
Peldszus and Stede (2015) use elementary discourse units
as starting point to classify argumentative discourse units
(ADUs). As opposed to their work, our approach does not
rely on discourse parsing to identify ADUs. Furthermore,
Peldszus and Stede (2015) do not consider topic-dependency
of arguments.

Multiple previous studies have shown that annotating ar-
guments from the discourse-level perspective is very chal-
lenging for heterogeneous document collections. Habernal
and Gurevych (2017) used Toulmin’s schema of argumenta-
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tion on several text genres including web data, resulting in
rather low inter-annotator agreement scores (Krippendorff’s
αu = 0.48). Miller, Sukhareva, and Gurevych (2019) ap-
ply the claim-premise model to customer reviews with sim-
ilarly low agreement (αu roughly between 0.4 and 0.5). Us-
ing the information-seeking perspective, Stab et al. (2018b)
prove that arguments can be annotated with sufficient agree-
ment in heterogeneous sources on the sentence level (Fleiss’
κ=0.72). In our work, we propose a slot filling approach to
transfer their findings to token-level arguments. Previously,
Reisert et al. (2018) achieved good agreement determining
complex reasoning structures with a set of highly specialized
slots referred to as argument templates. Compared to their
work, our slot filling approach is simpler, but it is applica-
ble to heterogeneous sources and topics in a crowdsourcing
environment.

3 Corpus Creation

Collecting annotations on the token level is challenging.
First, the unit of annotation needs to be clearly defined. This
is straightforward for tasks with short spans (sequences of
words) such as named entities, but much harder for longer
spans – as in the case of argument units. Second, labels from
multiple annotators need to be merged into a single gold
standard.3 This is also more difficult for longer sequences
because simple majority voting over individual words will
likely create invalid (e.g., discontinuous or grammatically
incorrect) spans. In the following, we propose solutions to
these problems and describe the selection of sources, sam-
pling and annotation for our novel argument unit dataset,
AURC-8.

3.1 Data Source

We used the February 2016 Common Crawl archive,4
which was indexed with Elasticsearch5 following Stab et al.
(2018a). Since we want to know, whether knowledge trans-
fer to unknown topics is possible with few annotated topics,
we limited the selection to Stab et al. (2018b)’s eight topics
(cf. Table 1). This also increases comparability with related
work. The topics are general enough to have good coverage
in Common Crawl. They are also controversial and hence a
good choice for argument mining with an expected diverse
set of supporting and opposing arguments.

3.2 Retrieval Pipeline

For document retrieval, we queried the indexed data for Stab
et al. (2018b)’s topics and collected the first 500 results
per topic ordered by their document score (doc score) from
Elasticsearch; a higher doc score indicates higher relevance

3One could also learn from “soft” labels, i.e., a distribution cre-
ated from the votes of multiple annotators. However, this does not
solve the problem that some annotators deliver low quality work
and their votes should be outscored by a (hopefully) higher-quality
majority of annotators.

4http://commoncrawl.org/2016/02/february-2016-crawl-
archive-now-available/

5https://www.elastic.co/products/elasticsearch

for the topic. For each document, we retrieved the corre-
sponding WARC file at the Common Crawl Index.6 From
there, we downloaded and parsed the original HTML doc-
ument for the next steps of our pipeline; this ensures repro-
ducibility. Following this, we used justext7 to remove HTML
boilerplate. We used spacy8 to segment the resulting doc-
ument into sentences and sentences into tokens. We only
consider sentences with the number of tokens in the range
[3, 45].

3.3 Sentence Sampling

We pre-classified the selected sentences with a sentence-
level argument mining model following Stab et al. (2018a)
and available via the ArgumenText Classify API.9 The
API returns for each sentence (i) an argument confidence
score arg score in [0.0, 1.0) (we discard sentences with
arg score< 0.5), (ii) the stance on the sentence level (PRO
or CON) and (iii) the stance confidence score stance score.
This information was used together with the doc score to
rank sentences for a selection in the following crowd anno-
tation process. See Table 1 for a detailed overview of the
number of extracted sentences, as well as the number of
candidates for the following ranking approach. We convert
scores for documents, arguments and stance into ranks di,
ai and si. We then sum the three ranks to get an aggregated
score for each sentence: aggi = di + ai + si. Sentences
are divided by topic and pre-classified stance and ranked ac-
cording to aggi, for each combination separately. We then go
down the ranked list selecting each sentence with probabil-
ity 0.5 until the target size of n = 500 per stance and topic is
reached; otherwise we do additional passes through the list.
We adopted this probabilistic selection to ensure diversity –
otherwise a long document with high relevance score at the
top of the list might dominate the dataset with its sentences.
Table 1 gives the final dataset creation statistics.

3.4 Crowd Annotations

Our goal is to develop a scalable approach to annotate ar-
gument units on the token level. Given that arguments need
to be annotated with regard to a specific topic, training data
for different topics needs to be created. As has been shown
by previous work on information-seeking AM (Shnarch et
al. 2018; Stab et al. 2018b), crowdsourcing (on the sentence
level) can be used to obtain reliable annotations for argu-
ment mining datasets. However, as outlined above, token-
level annotation significantly increases the difficulty of the
annotation task. We distinguish between PRO (supporting)
and CON (opposing) arguments and we use NON for non-
argumentative text spans. Thus, we have a sequence label-
ing task with three classes: PRO, CON and NON. Our main
question was: can we achieve sufficiently high agreement
among untrained crowd workers for this task?

We use the αu agreement measure (Krippendorff et al.
2016) in this work. It is designed for annotation tasks that

6http://index.commoncrawl.org/CC-MAIN-2016-07
7http://corpus.tools/wiki/Justext
8https://spacy.io/
9https://api.argumentsearch.com
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involve unitizing textual continua – i.e., segmenting continu-
ous text into meaningful sub-units – and measuring chance-
corrected agreement in those tasks. It is also a good fit for
argument spans within a sentence: typically these spans are
long and the context is a single sentence that may contain
any type of argument and any number of arguments. Krip-
pendorff et al. (2016) define a family of α-reliability coef-
ficients that improve upon several weaknesses of previous
α measures. From these, we chose the αunom

coefficient,
which also takes into account agreement on “blanks” (non-
arguments in our case) – since agreement on non-argument
spans (including sentences without any arguments) is impor-
tant as well and should not be ignored by the measure.

To determine agreement, we initially carried out an in-
house expert study with three graduate employees (who
were trained on the task beforehand) and randomly sam-
pled 160 sentences (10 per topic and stance) from the overall
data. In the first round, we did not impose any restrictions
on the span of words to be selected, other than that the se-
lected spans should be the shortest self-contained spans that
form an argument. This resulted in unsatisfactory agreement
(αunom

= 0.51, average over topics), one reason being in-
consistency in selecting argument spans (median length of
arguments ranged from nine to 16 words among the three
experts).

In a second round, we therefore decided to restrict the
spans that could be selected by applying a slot filling ap-
proach enforcing valid argument spans that match a tem-
plate. We use the template: “<TOPIC> should be sup-
ported/opposed, because <argument span>”. The guide-
lines specify that the resulting sentence must be grammati-
cally correct.10 Although this new setup increased the length
of spans and reduced the total number of arguments selected,
it increased consistency of spans substantially (min and max
median lengths were now 15 and 17). Furthermore, the
agreement between the three experts rose to αunom = 0.61
(average over topics). Compared to other studies on token-
level argument mining (Eckle-Kohler, Kluge, and Gurevych
2015; Li et al. 2017; Stab and Gurevych 2014), this score is
in an acceptable range and we deem it sufficient to proceed
with crowdsourcing. The averaged macro-F1 over all pairs
of expert annotations is 0.76 (referred to as human perfor-
mance in Table 2).

In our crowdsourcing setup, workers could select one
or multiple spans, where each span’s permissible length is
between one token and the entire sentence. Workers had to
select at least one argument span and its stance (support-
ing/opposing); alternatively, if they could not find an argu-
ment span, they had to solve a simple math problem. We

10Strict adherence to grammatical correctness would require that
all spans are clauses. A reviewer asked if there are examples of non-
clauses in our data. Although these cases are rare in our gold stan-
dard, they do occur. Examples include noun phrases like “risky ani-
mal experiments” (against the topic “cloning”) and clauses that are
missing the subject, which is usually to be equated with the topic,
e.g., “have no real impact on improving student achievement” (for
the topic “school uniforms”). These argument units are easily com-
prehended by humans even though they are not complete clauses
in the strict grammatical sense.

employed two quality control measures: a qualification test
and periodic attention checks.11 On an initial batch of 160
sentences, we collected votes from nine workers. To deter-
mine the optimal number of workers for the final study, we
did majority voting on the token level (ties broken as non-
arguments) for both the expert study and workers from the
initial crowd study. We artificially reduced the number of
workers (1-9) and calculated percentage overlap averaged
across all worker combinations (for worker numbers ≤ 9).
Whereas the overlap was highest with 80.2% at nine votes,
it only dropped to 79.5% for five votes (and decreased more
significantly for fewer votes). We deemed five votes to be
an acceptable tradeoff between quality and cost. The agree-
ment between experts and crowd in the five-worker setup is
αunom

= 0.71, which is substantial (Landis and Koch 1977).
The final gold standard labels on the 8000 sampled sen-

tences were determined using a variant of Bayesian Classi-
fier Combination (Kim and Ghahramani 2012), referred to
as IBCC in Simpson and Gurevych (2019)’s modular frame-
work for Bayesian aggregation of sequence labels. This
method has been shown to yield results superior to majority
voting or MACE (Hovy et al. 2013). After manual inspec-
tion of the resulting gold standard, we merged all consec-
utive segments of the same stance, to form a gold standard
with coherent segments separated by at least one other token
label (most of the time NON).

3.5 Dataset Splits

We create two different dataset splits. (i) An in-domain split.
This lets us evaluate how models perform on known vocab-
ulary and data distributions. (ii) A cross-domain split. This
lets us evaluate how well a model generalizes for unseen
topics and distributions different from the training set.12 In
the cross-domain setup, we defined topics T1-T5 to be in
the train set, topic T6 in the dev set and topics T7 and T8 in
the test set. For the in-domain setup, we excluded topics T7
and T8 (cross-domain test set), and used the first 70% of the
topics T1-T6 for train, the next 10% for dev and the remain-
ing 20% for test. The samples from the in-domain test set
were also excluded in the cross-domain train and dev sets.
As a result, there are 4000 samples in train, 800 in dev and
2000 in test for the cross-domain split; and 4200 samples in
train, 600 in dev and 1200 in test for the in-domain split. Our
definition of the two splits guarantees that train/dev sets (in-
domain or cross-domain) do not overlap with test sets. The
assignment of sentences to the two splits is released as part
of AURC-8.

3.6 Dataset Statistics

The resulting dataset, AURC-8, consists of 8000 annotated
sentences; 3500 (43.8%) of which are non-argumentative.
The 4500 argumentative sentences are divided into 1951

11Workers had to be located in the US, CA, AU, NZ or UK, with
an acceptance rate of 95% or higher. Payment was $0.42 per HIT,
corresponding to US federal minimum wage ($7.25/hour).

12We use cross-domain rather than cross-topic (Stab et al.
2018b) here, as the former is the more common term.
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(43.4%) single PRO argument sentences, 1799 (40.0%) sin-
gle CON argument sentences and 750 (16.7%) sentences
that are many possible combinations of PRO and CON ar-
guments with up to five single argument units in a sentence.
The total number of argumentative segments is 4973. Thus,
due to the token-level annotation the number of arguments
is higher by 10.5% compared to what it would be with a
sentence-level approach (4500). If we propagate the label
of a sentence to all its tokens, then 100% of tokens of an
argumentative sentence are argumentative. This ratio drops
to 69.9% in our token-level setup, reducing the amount of
non-argumentative tokens otherwise incorrectly labeled as
argumentative in a sentence.

4 Experimental Setup

We train and evaluate in two different setups: token-level and
sentence-level. In the token-level setup, models are trained
and evaluated on the gold standard as is. For the sentence-
level setup, we use a sentence-level gold standard that is
modified by converting token-level gold standard or predic-
tions to a prediction for the sentence as follows. If only NON
occurs, the sentence is labeled NON. If NON and only PRO
(resp. only CON) occurs, PRO (resp. CON) is chosen. If
both PRO and CON occur, the more frequent label of the
two is assigned. In the few exceptional cases where PRO and
CON are equally frequent, one of them is chosen by chance.

4.1 Evaluation Measures

We compute three different evaluation measures of AURC:
token F1, segment F1 and sentence F1.

Token F1 is defined as the average of the three class F1’s
for PRO, CON and NON, each computed for all tokens in
the evaluation set. This is the core evaluation measure of
our work since our goal is argument retrieval at a more fine-
grained level than prior work.13

To compute segment F1 for a sentence, we look at all
pairs <gold segment g, predicted segment p> and compute:

r =
|g ∩ p|

max(|g|, |p|)
If r > 0.5, then we count p as a true positive if the labels are
the same. We do this only for PRO and CON segments, so
the correct recognition of NON segments (which is of less
benefit in an argument retrieval scenario) is not rewarded.
However, if the sentence contains no PRO or CON span and
no PRO or CON span is predicted, then we set F1 for this
sentence to 1.0. Thus, an AURC model is rewarded for rec-
ognizing a sentence that is entirely NON. Macro-averaged
segment F1 is then the average of segment F1’s for all sen-
tences in the evaluation set.

Segment F1 is a measure of evaluating fine-grained argu-
ment mining that is complementary to token F1. It is more
forgiving than token F1 since segment boundaries do not
have to be recognized exactly. At the same time, it punishes
cases where tokens are mostly recognized correctly, but the

13To illustrate this point, we use the term “argument retrieval”
rather than “information-seeking AM” in the following.

segments that a downstream application may need (e.g., a
user interface displaying arguments) are not. For example, a
gold segment may be split in half by a single NON token,
resulting in two incomplete predicted segments.

For sentence F1, a single label is predicted for each sen-
tence. The three class F1’s for PRO, CON and NON are
computed for the sentences in the evaluation set and aver-
aged to yield the overall sentence F1. Gold standard labels
for sentences are produced as described above (sentence-
level setup).

4.2 Methods

We test and extend models that have recently well performed
on AM and sequence labeling (Reimers et al. 2019).

Baseline. The majority baseline labels each token of the
input sentence with NON, the most frequent class.

FLAIR. We use FLAIR (Akbik, Blythe, and Vollgraf
2018), a recent neural sequence labeling library with state-
of-the-art performance on many sequence labeling tasks. For
the token-level setup, we use the FLAIR SequenceTagger
with a CRF and with stacked character embeddings (Lam-
ple et al. 2016). For the sentence-level setup, we use the
FLAIR TextClassifier. In both cases, the selected model is
a BiLSTM (Hochreiter and Schmidhuber 1997) and we use
GloVe word embeddings (Pennington, Socher, and Manning
2014) and FlairEmbeddings (provided by the library).

BERT. We include two pretrained models of BERT14

(Devlin et al. 2019) as a recent state-of-the-art model that
achieves impressive results on many tasks including se-
quence labeling: BERTBASE (cased, base) and BERTLARGE
(cased, large, with whole-word-masking). A third model
adds a CRF (Lafferty, McCallum, and Pereira 2001) as
a task specific sequence labeling layer: BERTLARGE+CRF.
We finetune BERT’s parameters (including the CRF) for
the AURC task. Since we work in the information-seeking
paradigm of AM, the topic (i.e., the search query) is of key
importance. A span of words that is a supporting argument
(PRO) for “nuclear energy” will generally be NON for the
topic “gun control”. Thus we provide BERT with an ad-
ditional input, the topic, separated by a [SEP] token from
the input sequence. We found that this additional topic in-
formation was consistently helpful for AURC. Token- and
sentence-level setups for the BERT models only differ with
regard to gold standard data.

5 Results

Table 2 shows AURC results for our five methods (Section
4.2) for in-domain (lines 4–8) and cross-domain (9–13). The
human upper bound (i.e., the performance on AURC by the
three graduate employees) is given on line 14. We report
the mean of three runs with different random seeds for non-
deterministic methods (Reimers and Gurevych 2017). Infor-
mation about the hyperparameters, precision and recall, as
well as separat evaluation for unit recognition (2 classes)
and classification (3 classes) can be found in Section A and
Section B of the appendix.

14https://github.com/huggingface/pytorch-pretrained-bert
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model
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ai

n 4 majority baseline
5 FLAIR
6 BERTBASE

7 BERTLARGE

8 BERTLARGE+CRF

cr
os

s-
do

m
ai

n 9 majority baseline
10 FLAIR
11 BERTBASE

12 BERTLARGE

13 BERTLARGE+CRF

14 human performance

token F1

token-level sentence-level
setup setup

dev test dev test

.258 .254 .258 .254

.642 .613 .442 .473

.702 .654 .591 .581

.732 .683 .671 .627

.743 .696 .637 .622

.245 .240 .245 .240

.419 .433 .388 .401

.554 .563 .431 .474

.604 .596 .550 .544

.615 .620 .505 .519

.763

segment F1

token-level sentence-level
setup setup

dev test dev test

.478 .463 .478 .463

.661 .623 .473 .492

.666 .628 .615 .601

.749 .709 .599 .567

.750 .724 .552 .547

.394 .379 .394 .379

.457 .458 .402 .401

.504 .508 .445 .473

.653 .626 .487 .473

.681 .649 .456 .464

.709

sentence F1

token-level sentence-level
setup setup

dev test dev test

.216 .211 .216 .211

.651 .620 .495 .523

.717 .673 .680 .665

.738 .709 .759 .715

.744 .711 .731 .725

.188 .183 .188 .183

.386 .402 .428 .418

.550 .556 .473 .510

.606 .598 .628 .602

.627 .610 .569 .573

.799

Table 2: Token F1, segment F1 and sentence F1 on AURC-8 dev and test. Bold: best performance per column and split (in-
domain, cross-domain).

5.1 Model Comparison

The BERT models always perform better than the majority
baseline and FLAIR (6–8 vs. 4–5 and 11–13 vs. 9–10). For
sentence-level setup and segment F1, the majority baseline
is close or even better than FLAIR (lines 4 vs. 5 and 9 vs.
10). The reason for the high performance of the majority
baseline for segment F1 (lines 4 & 9) is that about 40% of
segments are NON segments – so a method that labels ev-
erything as NON will get a high score for segment identifi-
cation. BERTBASE mostly performs worse than BERTLARGE
(lines 6 vs. 7–8 and 11 vs. 12–13), but still at an acceptable
level. Hence, BERTBASE, which requires only one GPU for
training, is a good option if computational resources are lim-
ited.

5.2 Token- vs. Sentence-Level Setup

BERTLARGE+CRF is consistently the best model for
token-level setup (bolded numbers in Table 2), whereas
BERTLARGE is the best model for sentence-level setup (with
one exception: for segment F1 in-domain, BERTBASE is bet-
ter: line 6). Thus, for the token-level setup, the CRF layer
(lines 8 & 13) always performs better than imposing no se-
quence constraints (lines 7 & 12) – whereas the sequence
constraint is not beneficial for the sentence-level setup.

The difference between the two setups is noticeable for
token and segment F1, but smaller for sentence F1. As one
would expect, the token-level setup is not a good match for
sentence-level evaluation (for both in- and cross-domain ex-
periments).

5.3 In-Domain vs. Cross-Domain

The best in-domain BERT numbers are pretty high, with seg-
ment F1 (line 8) even above human performance (line 14),
while for token and sentence F1 the gap to human perfor-
mance is between 7 and 9 percentage points. Cross-domain
is clearly more challenging since models are evaluated on
unseen topics. Here, F1 scores drop to between 0.61 and
0.65 for the token-level models. Training on only 5 topics

(see Section 3.5) gives insufficient information for the trans-
fer to unseen topics. These numbers are, however, in line
with the current state-of-the-art for sentence-level AM; see
Reimers et al. (2019) who report an F1 score of 0.63 for a
similar architecture but slightly different experimental setup
with 7 training topics (cf. Stab et al. (2018b)). Given that the
segment F1 score (line 13) is only 6 percentage points be-
low human agreement, we expect that in cases where exact
argument segment boundaries are not of high importance,
cross-domain transfer will still work fine.

6 Analysis

We now discuss the main errors our models make (Sec-
tion 6.1) and investigate robustness against incorrectly rec-
ognized sentence boundaries (Section 6.2).

6.1 Recognition and Classification Errors

The main types of errors we observed were: (i) the span of
an argumentative segment is not correctly recognized and
(ii) the stance is not correctly classified.

Span. The first major type of error related to spans is that
the beginning and/or end of a segment is incorrectly recog-
nized. We analyzed the predictions by the best token-level
model (line 8 & 13 in Table 2) on dev. The average segment
length (in tokens) is 17.5 for gold and 16.4 for predicted
(in-domain) and 17.3 for gold and 15.1 for predicted (cross-
domain); thus, predicted segments are on average shorter
than gold segments. However, this will often be benign in
an application since annotators tended to include boundary
words that are not strictly necessary.

The second major type of error related to spans is that
a segment is broken into several segments or several seg-
ments are merged into one segment. Our models predict
7.6% more segments in-domain and 13.1% more segments
cross-domain than there are in the gold standard. Shorter
spans in the predictions (which result in more spans) are
mostly due to segment splits on function words like “and”,
“that” and “yet”. Figure 2 gives examples of span errors for
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Figure 2: Gold standard segments and segments predicted by BERTLARGE and BERTLARGE+CRF for three example sentences.
Green: PRO. Red: CON.

the model without CRF (lines 2, 5 & 8). The model with
CRF (lines 3, 6 & 8) correctly recognizes beginning and end
of the span more often, while the one without CRF tends
to split segments (line 5) and sometimes even creates one-
word or two-word segments (line 8). So the addition of a
CRF layer improves segmentation – no overly short seg-
ments, fewer segments incorrectly broken up – and therefore
results in the best overall performance in our experiments.

Stance. The classification of stance is as important for
argument retrieval as span detection. The model with CRF
sometimes assigns the same stance for all segments within
a sequence – see the examples shown in Figure 2 (lines 3
& 9). This may be due to only a few mixed segments (both
PRO and CON stance) appearing in the training set (43 for
in-domain and 48 for cross-domain). We plan to incorporate
additional stance focused information – such as sentiment –
in future work to improve stance classification. Another pos-
sible improvement could be achieved with multi-task train-
ing. There are additional sentence-level datasets for stance
detection (Mohammad et al. 2016) available. In a multi-task
setup, we can exploit these to improve stance detection for
our task.

More detailed analysis of the subtask of recognition
and classification (see Table 4 in Section B of the ap-
pendix) showed that when combining PRO and CON la-
bels into one ARG label for the best token-level system
(BERTLARGE+CRF) yields a smaller drop in performance
between in- and cross-domain. Consequently, our best
token-level model manages cross-domain transfer very well
for argument unit recognition, whereas argument (stance)
classification remains challenging in a cross-domain setup.

6.2 Sentence Boundaries

One of the main benefits of a token-level argument mining
approach is that it is robust against errors in sentence bound-
ary detection. We now analyze how our token-level models
perform when they are not given any sentence boundary in-

token-level sentence-level
setup setup

dev test dev test
in

-
do

m
ai

n 3 token F1 .671 .642 .507 .510
4 segment F1 .634 .592 .254 .235
5 sentence F1 .514 .504 .510 .509

cr
os

s-
do

m
ai

n 6 token F1 .573 .562 .442 .452
7 segment F1 .554 .538 .175 .154
8 sentence F1 .433 .449 .448 .473

Table 3: Token-level vs. sentence-level setup for input se-
quences that cross sentence boundaries (i.e., no sentence
segmentation). Bold: best performance per line and dev/test

formation. We perform this experiment with our best models
(BERTLARGE+CRF for token-level setup and BERTLARGE
for sentence-level setup).

We create a new dataset by concatenating, for each topic,
all sentences of that topic. The resulting document is then
processed by moving the model over it using a sliding win-
dow of size 45 and a stepsize of 1. In this regime, most input
sequences do not correspond to sentences, but instead con-
tain pieces of several sentences. Table 3 shows results.

We see that the token-level setup performs much better on
input without sentence boundaries than the sentence-level
setup – both for token F1 and for segment F1, both in-
domain and cross-domain (lines 3-4, 6-7). While the perfor-
mance is clearly lower than in Table 2, it declines gracefully
for the token-level setup whereas the drop in performance
for the sentence-level setup is large, especially for segment
F1; e.g., on the test set: .154 (line 7, Table 3) vs. .473 (line
12, Table 2). This clearly indicates the robustness of our ap-
proach against errors in sentence boundary detection.
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7 Conclusion

We define the task of fine-grained argument unit recogni-
tion and classification (AURC), and release the benchmark
AURC-8 for this task. Our work is the first to show that
information-seeking AM can be applied on very heteroge-
neous data (a web crawl in our case) on the level of to-
kens. We demonstrated that AURC-8 has good quality in
terms of annotator agreement: the required annotations can
be crowdsourced using specific data selection and filtering
methods combined with a slot filling approach. We test and
adapt several sequence tagging methods for AURC, achiev-
ing very good performance on known domains. As in previ-
ous work on sentence-level argument retrieval, the methods
suffer a drop in performance on unknown domains. Perfor-
mance on unknown domains is, however, quite good when
segment boundaries do not need to be determined exactly.

We have also shown that our approach, as opposed to
sentence-level argument retrieval, does not depend on cor-
rect sentence boundaries. By making the analysis more fine-
grained, we increase the recall of arguments and make their
representation more accurate for the user as well as for
downstream tasks. If required by downstream applications,
the template defined in Section 3.4 can be used to recon-
struct complete arguments for most of AURC-8. For the ex-
ample in Figure 2 line 7, we would get the following to state-
ments: “School uniforms should be supported because they
may create a sense of positive unity” and “School uniforms
should be opposed because they can also imply the sacrifice
of individuality to a group mentally.”

This work makes possible a range of potential follow-
up investigations. Since our approach does not depend on
correct sentence boundaries, it is well-suited for noisy data
from social media or (continuous) speech data, e.g., political
debates. Furthermore, the benefit of our fine-grained argu-
ment annotations should be explored in downstream appli-
cations like claim validation and fact checking, which rely
on decomposed evidence. Finally, our retrieval and anno-
tation pipeline can be used to annotate argument units for
additional topics, thus enabling improved domain transfer.
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A Hyperparameters

This section lists the hyperparameters used for the experi-
mental systems described in the main part of the paper.

For FLAIR in the token-level model, we used a learning
rate of 1e-1 with gradual decreasing, hiddensize=256 and for
the sentence-level model the same setting for the learning
rate, but with hiddensize=512.

For BERTLARGE and BERTLARGE+CRF, we used the large
cased pretrained model with whole word masking and in the

domain set precision recall F1

cl
as

si
fic

.
(3

cl
as

se
s) 2 in-domain dev .742 .745 .743

3 cross-domain dev .632 .638 .615
4 in-domain test .717 .681 .696
5 cross-domain test .637 .609 .620

re
co

gn
.

(2
cl

as
se

s) 6 in-domain dev .812 .814 .813
7 cross-domain dev .805 .792 .797
8 in-domain test .793 .776 .782
9 cross-domain test .782 .767 .770

Table 4: Token-level precision, recall and macro F1 results
for argument classification (PRO, CON, NON) and recogni-
tion (ARG, NON) for the prediction of the best token-level
model.

token-level setup a learning rate of 1e-5 for in- and cross-
domain. For the CRF we used the [CLS] token as the START
and [SEP] as the END token, so we considered only the se-
quence input (without the topic) for this setup. For the eval-
uation we considered only the predicted tag sequence be-
tween the START and END token.

We kept the learning rate at 4e-5 for the sentence-level
BERTLARGE model and at 1e-5 for the BERTLARGE+CRF
and used the AdamW optimizer. The max. length of the tok-
enized BERT input was set to 64 tokens and we always had
a dropout rate of 0.1.

All experiments were run three times with different seeds,
a trainings batch size of 32 and for a max. of 100 epochs,
with earlier stopping if the performance/loss did not im-
prove/decreased significantly (after ten epochs).

B Additional Information

Table 4 provides detailed information about token-level pre-
cision, recall and macro F1 scores and the separate evalu-
ation on three classes (PRO vs. CON. vs. NON) and two
classes (ARG vs. NON), where PRO and CON labels were
converted into a single ARG label.
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