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Abstract

We study neural data-to-text generation. Specifically, we con-
sider a target entity that is associated with a set of attributes.
We aim to generate a sentence to describe the target en-
tity. Previous studies use encoder-decoder frameworks where
the encoder treats the input as a linear sequence and uses
LSTM to encode the sequence. However, linearizing a set of
attributes may not yield the proper order of the attributes,
and hence leads the encoder to produce an improper con-
text to generate a description. To handle disordered input, re-
cent studies propose two-stage neural models that use pointer
networks to generate a content-plan (i.e., content-planner)
and use the content-plan as input for an encoder-decoder
model (i.e., text generator). However, in two-stage models,
the content-planner may yield an incomplete content-plan,
due to missing one or more salient attributes in the generated
content-plan. This will in turn cause the text generator to gen-
erate an incomplete description. To address these problems,
we propose a novel attention model that exploits content-
plan to highlight salient attributes in a proper order. The chal-
lenge of integrating a content-plan in the attention model of
an encoder-decoder framework is to align the content-plan
and the generated description. We handle this problem by de-
vising a coverage mechanism to track the extent to which the
content-plan is exposed in the previous decoding time-step,
and hence it helps our proposed attention model select the at-
tributes to be mentioned in the description in a proper order.
Experimental results show that our model outperforms state-
of-the-art baselines by up to 3% and 5% in terms of BLEU
score on two real-world datasets, respectively.

1 Introduction

Generating natural language description of an entity from
structured data is important for various applications such as
question answering (Bordes, Chopra, and Weston 2014) and
profile summarizing (Lebret, Grangier, and Auli 2016). In
this paper, we study how to generate an entity description
from its attributes. Specifically, we aim to generate a de-
scription from a set of attributes of a target entity A; the
attributes are in the form of pairs of key and value, i.e.,
A = {〈k1; v1〉, 〈k2; v2〉, ...〈kn; vn〉}, where kn is the key
of the attribute and vn is the value of the attribute. Table 1

∗Rui Zhang is the corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Input

〈name; Keanu Reeves〉
〈birth place; Beirut, Lebanon〉
〈occupation; actor〉
〈occupation; musician〉
〈birth date; September 2, 1964〉
〈residence; California, U.S.〉
〈birth name; Keanu Charles Reeves〉
〈citizenship; Canada〉
〈citizenship; United States〉

Output

Keanu Charles Reeves (born
September 2, 1964 in Beirut,
Lebanon) is a American actor
who lives in California,
U.S.

Table 1: Data-to-text generation.

illustrates the input and output of the task; in this example,
the attributes are name, birth place, etc and their val-
ues are "Keanu Reeves", "Beirut, Lebanon", etc.
Here, the attributes may have been extracted from a table,
which makes the task table-to-text generation, or a knowl-
edge graph (KG), which makes the task rdf-to-text genera-
tion. In table-to-text generation, the attributes are extracted
from a two-column table (e.g., Wikipedia infobox) where
the first column indicates the key and the second column in-
dicates the value of the attributes. In rdf-to-text generation,
the attributes are extracted by querying a KG for RDF triples
(i.e., 〈subject,predicate,object〉) that contain the
target entity as the subject. In both cases, the input will form
a star-shaped graph with the target entity as the center of the
star-shaped graph, the attribute values as the points of the
star, and the attribute keys as the edges (cf. Fig. 1).

Recent studies proposed end-to-end models by adapting
the encoder-decoder framework. The encoder-decoder
framework is a sequence-to-sequence model that has
been successfully used in many tasks including machine
translation (Cho et al. 2014), data-to-text generation (Liu et
al. 2018), and relation extraction (Trisedya et al. 2019). The
adaption of the sequence-to-sequence model for data-to-text
generation includes representing the input as a sequence,
and hence the order of attributes is important to guide the
decoder to generate a good description (Vinyals, Bengio,
and Kudlur 2016). Here, our definition of a proper order
of attributes is the reasonable order of attributes in a
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Figure 1: Star-shaped graph

well-organized sentence (i.e., a content-plan). For exam-
ple, 〈birth name, birth date, birth place,
occupation, residence〉 is a content-plan for the
output sentence in Table 1.

Previous studies (Bao et al. 2018; Liu et al. 2018; 2019;
Sha et al. 2018) do not explicitly handle the order of input
(i.e., the attributes). In fact, most data sources do not pro-
vide sets of attributes with a proper order. For example, the
extracted attributes as a result of a query from a KG are typ-
ically disordered. Meanwhile, the extracted attributes from
a web table are practically ordered, i.e., the salient attributes
are relatively ordered but may have noises (non-salient at-
tributes) between them, which disrupt the encoding. More-
over, Liu et al. (2018) reported a decrease in the perfor-
mance of their model when experimenting on disordered in-
put. Trisedya et al. (2018) proposed a graph-based encoder
to exploit the input structure for generating sentences from a
knowledge base (Geographic Knowledge Base ). However,
they require a graph that has a reasonable order of nodes
(i.e., attributes) when traversed using topological sort and
breadth-first traversal, which usually are expensive to obtain
and unavailable in practice (Gardent et al. 2017).

Puduppully, Dong, and Lapata (2019) proposed Neu-
ral Content Planning (NCP) which is a two-stage model
that includes content-planning to handle disordered input.
First, NCP uses pointer networks (i.e., content-planner)
(Vinyals, Fortunato, and Jaitly 2015) to generate a content-
plan. Then, the generated content-plan is used as the input of
the encoder-decoder model (i.e., text generator) (Bahdanau,
Cho, and Bengio 2015) to generate a description. However,
this two-stage model suffers from error propagation between
the content-planner and the text generator. The generated
content-plan may contain errors (e.g., missing one or more
attributes that should be mentioned in the description) that
lead the text generator to produce an incomplete description.

In this paper, we address the issues above by proposing an
end-to-end model that jointly learns the content-planner and
the text generator by integrating the content-plan in the at-
tention model of an encoder-decoder model. The challenge
of the integration is to align the learned content-plan and
the generated description. To address this problem, we pro-
pose the content-plan-based bag of tokens attention model
by adapting the coverage mechanism (Tu et al. 2016) to track
the order of attributes in a content-plan for computing the
attention of the attributes. This mechanism helps the atten-

tion module of the encoder-decoder model captures the most
salient attribute at each time-step of the description genera-
tion phase in a proper order. Unlike the existing data-to-text
generation models which treat the input as a sequence of
attributes, our model treats the input as a bag of tokens and
uses pointer networks to learn a content plan to handle disor-
dered attributes. Our model maintains the original data (i.e.,
the original set of attributes) as the input of the text gener-
ator while exploiting the learned content-plan to highlight
the attributes to be mentioned and hence reducing the error
propagation between the content-planner and the text gener-
ator. To collect training data for the content-planner, we use
string matching for extracting the order of attributes that are
mentioned in the description as the target content-plan.

Our contributions are summarized as follows:

• We propose an end-to-end model that employs joint learn-
ing of content-planning and text generation to handle dis-
ordered input for generating a description of an entity
from its attributes. The model reduces error propagation
between the content-planner and the text generator, which
two-stage models are prone to.

• We propose a content-plan-based bag of tokens attention
model to effectively capture salient attributes in a proper
order based on a content-plan.

• We evaluate the proposed model over two real-world
datasets. The experimental results show that our model
consistently outperforms state-of-the-art baselines for
data-to-text generation (Liu et al. 2018; Puduppully,
Dong, and Lapata 2019; Trisedya et al. 2018).

2 Related Work

Traditional approaches for text generation (McKeown 1992)
consist of three components: (1) a content-planner that
selects the data to be expressed, (2) a sentence planner
that decides the structure of sentences or paragraphs based
on the content-plan, and (3) a surface realizer that gen-
erates the final output based on the sentence plan. Ear-
lier studies on content-planning employed handcrafted rules
(Duboue and McKeown 2003) or a machine learning model
as a content classifier (Barzilay and Lapata 2005; Duboue
and Mckeown 2002). For sentence planning and surface
realization, earlier studies proposed template-based mod-
els (McKeown et al. 1997; van Deemter, Krahmer, and
Theune 2005), machine learning models using various lin-
guistic features (Reiter and Dale 2000; Lu and Ng 2011;
Belz 2008; Angeli, Liang, and Klein 2010), ordering con-
strained models (Mellish et al. 1998; Duboue and Mcke-
own 2001), and tree-based models (Kim and Mooney 2010;
Lu, Ng, and Lee 2009). Typically, these approaches use
handcrafted rules or shallow statistical models which mostly
cannot deal with unseen and complex cases.

Recent studies proposed end-to-end models based on the
encoder-decoder framework (Bahdanau, Cho, and Bengio
2015) for data-to-text generation. Serban et al. (2016) ap-
plied the encoder-decoder to generate questions from facts
in a KG. Wiseman, Shieber, and Rush (2017) employed
the encoder-decoder to generate NBA game summaries.
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Mei, Bansal, and Walter (2016) proposed an aligner model
that integrates the content selection mechanism into the
encoder-decoder for generating weather forecast from a set
of database records. Lebret, Grangier, and Auli (2016) pro-
posed a conditional language model for biography summa-
rization. The follow-up studies on biography summarization
employed the encoder-decoder framework. Sha et al. (2018)
proposed link-based attention model to capture the relation-
ships between attributes. Liu et al. (2018) proposed field-
gating LSTM and dual attention mechanism to encode the
attributes and inter-attribute relevance, respectively. These
end-to-end models produce fluent text on an ordered input
but had decreased performance on disordered input.

To address the above problem, previous studies proposed
graph-based encoder to exploit the input structure. Marcheg-
giani and Perez-Beltrachini (2018) applied the graph convo-
lutional networks (Kipf and Welling 2017) as the encoder
to capture the input structure. Trisedya et al. (2018) pro-
posed a graph LSTM that captures the order of the input
by using topological sort and breadth-first traversal over the
input graph. However, these models fail to capture the rela-
tionship between entities of a star-shaped graph since there
is no edges between nodes that shows the reasonable order
of nodes (i.e., attributes). Recently, Puduppully, Dong, and
Lapata (2019) proposed a two-stage neural text generation
architecture. First, they employ pointer networks (Vinyals,
Fortunato, and Jaitly 2015) to select salient attributes and
learn its order as a content-plan, then use the content-plan to
generate a summary using the encoder-decoder framework.
However, two-stage models are prone to propagate errors.

3 Preliminary

We start with the problem definition. Let A be a set of at-
tributes of an entity in the form of pairs of key and value in
any order, i.e., A = {〈k1; v1〉, 〈k2; v2〉, ...〈kn; vn〉}, where
kn is the key of the attribute and vn is the value of the at-
tribute. We consider A as the input and aim to generate a
sentence S = 〈t1, t2, ..., tl〉 as the description of an en-
tity, where tl is a token at position l in the sentence. Table 1
illustrates the input and output of the task.

Most data-to-text generation models are built on top of an
encoder-decoder framework (Wiseman, Shieber, and Rush
2017; Mei, Bansal, and Walter 2016; Sha et al. 2018; Liu et
al. 2018). We first discuss the encoder-decoder framework
(Bahdanau, Cho, and Bengio 2015) and its limitation when
generating text from disordered input.

3.1 Encoder-Decoder Framework

The encoder-decoder framework is a sequence-to-sequence
learning model that takes a variable-length input T and gen-
erates a variable-length output T ′ where the length of T and
T ′ may differ. The encoder reads each token of the input se-
quentially and computes a hidden state of each token. The
hidden state of the last token represents a summary of the
input sequence in the form of a fixed-length vector repre-
sentation (i.e., context vector c). The decoder is trained to
generate a sequence by predicting the next token given the
previous hidden state of the decoder and the context vector

c. This framework has been successfully applied in machine
translation (Cho et al. 2014) to translate a sequence of words
from one language to another.

In data-to-text generation, encoder-decoder is used to gen-
erate text (e.g., entity description) from structured data (e.g.,
a set of attributes of an entity). Here, the encoder learns to
encode the attributes into a fixed-length vector representa-
tion, which is used as a context vector by the decoder to gen-
erate a description. Different from machine translation, in
data-to-text generation, the input (i.e., attributes) may be dis-
ordered, and linearizing the input may not yield the proper
order of the attributes. Hence, reading the disordered input
sequentially may produce an improper context vector.

Bahdanau, Cho, and Bengio (2015) propose an atten-
tion model that improves the performance of sequence-to-
sequence models. The attention model allows the encoder to
dynamically compute the context vector for each decoding
time-step by computing the weighted sum of each hidden
state of the encoder. The weight represents the importance
score of each token of the attributes and helps the encoder
computes a specific context vector for each decoding time-
step. However, the computations of the context vector are
based on the hidden states of the encoder, which may not be
appropriate for disordered input because a hidden state rep-
resents a summary of the previous tokens that do not hold
the proper order. Besides, if we use the embeddings of the
input (i.e., embeddings of the attribute token) instead of the
hidden states to compute the attention, the model may not
capture the relationships between attributes.

Next, we detail our model to address these limitations.

4 Proposed Model

4.1 Solution Framework

Figure 2 illustrates the overall solution framework. Our
framework consists of three components: a data collection
module, a content-plan generation module, and a descrip-
tion generation module.

In the data collection module (cf. Section 4.2), we collect
a dataset in the form of triples of attributes, content-plan,
and entity description. The attributes are extracted by query-
ing Wikidata for RDF triples that contain the target entity as
the subject. The description is obtained from Wikipedia by
extracting the first sentence of the Wikipedia page of the tar-
get entity. The content-plan is extracted by finding the order
of attributes in the description using string matching.

In the content-plan generation module (content-planner,
cf. Section 4.3), we train pointer networks (Vinyals, Fortu-
nato, and Jaitly 2015) to learn a content-plan that helps the
attention model of the description generation module high-
lights the attributes in a proper order. This module consists
of four components: (1) an attribute encoder that encodes a
set of attributes into a vector by computing the average of
the linear transformation of each token embeddings of the
attributes; (2) a pointer generator that generates a sequence
of indexes (pointers) that represents the order of attributes
in the description; (3) a content-plan generator that gener-
ates the content-plan based on the learned pointers; and (4) a
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Figure 2: Overview of our proposed solution

content-plan encoder that encodes the learned content-plan
to be used in the description generation module.

In the description generation module (text generator,
cf. Section 4.4), we integrate the content-plan into the atten-
tion mechanism of the encoder-decoder model (Bahdanau,
Cho, and Bengio 2015). We use the same encoder as in the
content-plan generation module that treats the input (i.e., at-
tributes) as a bag of tokens to ensure that the same set of at-
tributes with different orders have the same representation.
We do not use the recurrent model (e.g., LSTM (Hochre-
iter and Schmidhuber 1997), GRU (Cho et al. 2014)) to
encode the attributes because they may compute improper
context from disordered input (cf. Section 3.1). However,
we use LSTM (i.e., content-plan encoder) to encode the
learned content-plan that holds the proper order of attributes
to capture the relationships between attributes. To integrate
the learned content-plan into the attention mechanism of the
encoder-decoder model, we propose the content-plan-based
bag of tokens attention model by adapting the coverage
mechanism (Tu et al. 2016) to track the order of attributes in
a content-plan for computing the attention of the attributes.
This way, our proposed attention model selects the salient at-
tributes conditioned by the content-plan and hence provides
a better context (i.e., attention of the attributes in an ordered
fashion) for each decoding time-step.

4.2 Dataset Collection

We aim to generate a description of an entity from its at-
tributes where the attributes may be disordered. To handle
disordered input, we propose a model that performs joint
learning of content-planning and text generation. To train
such a model, we need labeled training data in the form of
triples of attributes, content-plan, and entity description.

Following Lebret, Grangier, and Auli (2016), we extract
the first sentence of a Wikipedia page of a target entity
as the description. Different from Lebret, Grangier, and
Auli (2016) who collected a specific type of entities (e.g.,
Person), we do not restrict the type of entities to be col-
lected. We extract the attributes of a target entity by querying
Wikidata for RDF triples that contain the target entity as the
subject. In other words, we extract the direct relationships
(i.e., attributes) of an entity which form a star-shaped graph.
We querying the attributes from Wikidata instead of extract-
ing from Wikipedia infobox to avoid additional processing
(e.g., HTML tag removal, normalization, etc.).

We use string matching to find the order of attributes that
are mentioned in the description as the content-plan. First,
for each matched attribute, we store their position (index of
the first character of the mentioned attribute value) in the
description. Then, we sort the matched attributes based on
their position ascendingly. For the example in Table 1, the
extracted content plan is 〈birth name, birth date,
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birth place, occupation, residence〉.
Our proposed model is trained to generate a description

from a set of attributes of a target entity, which includes se-
lecting salient attributes to be described. Since we automat-
ically extract the description from Wikipedia, the extracted
description may contain information (i.e., entities) that are
not listed in the related extracted attributes, which creates
noises in the dataset. This problem may be caused by the
delayed synchronization of a KG (i.e., the Wikipedia page
has been updated, but the Wikidata records have not been
updated yet), which often occurs on frequently updated in-
formation such as the current club of a football player, the
latest movie of an actor, etc. Hence, to obtain high-quality
data, we filter descriptions that contain noises. First, we use
a Named Entity Recognizer1 to detect all entities in a de-
scription. Then, we remove descriptions that contain any en-
tity that is not listed in the related extracted attributes.

The collected dataset contains 152, 231 triples of at-
tributes, content-plan, and description (we call it the
WIKIALL dataset). The dataset contains 53 entity types
with an average of 15 attributes per entity, and an average
of 20 tokens per description. For benchmarking, we also use
the WIKIBIO dataset (Lebret, Grangier, and Auli 2016)
which contains 728,321 biographies from Wikipedia. The
average number of attributes per entity of WIKIBIO dataset
is 19, and the average number of tokens per description is
26. We split each dataset into train set (80%), dev set (10%)
and test set (10%).

4.3 Content-plan Generation

We adapt pointer networks (Vinyals, Fortunato, and Jaitly
2015) to learn a content-plan given a set of attributes (i.e., we
use the pairs of attributes and content-plan from the dataset
to train the networks). The pointer networks model uses an
attention mechanism to generate a sequence of pointers that
refer to the input so that it is suitable to rearrange the at-
tributes as a content-plan. This module consists of four com-
ponents, including the attribute encoder, the pointer genera-
tor, the content-plan generator, and the content-plan encoder.

Attribute Encoder. The attribute encoder takes a set
of attributes A = {〈k1; v1〉, 〈k2; v2〉, ...〈kn; vn〉} as the
input. Here, the value of an attribute may consist of
multiple tokens (i.e., vn = 〈v1n, v2n, ...vjn〉). We trans-
form the multiple tokens into a single token representa-
tion and add positional encoding to maintain its internal
order. Thus, the attributes can be represented as A =
[〈k11, v11 , f1

1 , r
1
1〉, 〈k21, v21 , f2

1 , r
2
1〉, ..., 〈kjn, vjn, f j

n, r
j
n〉] where

f j
n and rjn are the forward and reverse positions respectively

(cf. Table 2). We call the quadruple of key, value, forward
position, and reverse position as attribute-token. The repre-
sentation of each attribute-token xa is computed as follows.

zk
j
n = tanh(Wk[k

j
n;f

j
n; r

j
n] + bk) (1)

zv
j
n = tanh(Wv[v

j
n;f

j
n; r

j
n] + bv) (2)

xa
j
n = tanh(zk

j
n + zv

j
n) (3)

where [; ] indicates vector concatenation, b indicates bias
vector, and Wk and Wv are learned parameters. zk and

1https://spacy.io

Key Value Forward
position

Reverse
position

name (k11) Keanu (v11) 1 (f1
1 ) 2 (r11)

name (k21) Reeves (v21) 2 (f2
1 ) 1 (r21)

birth name (k12) Keanu (v12) 1 (f1
2 ) 3 (r12)

birth name (k22) Charles (v22) 2 (f2
2 ) 2 (r22)

birth name (k32) Reeves (v32) 3 (f3
2 ) 1 (r32)

... ... ... ...
residence (k1n) California (v1n) 1 (f1

n) 2 (r1n)
residence (k2n) U.S. (v2v) 2 (f2

n) 1 (r2n)

Table 2: Input representation.

zv are the vector representations of the attributes’ key
and value, respectively. To ensure that the same set of at-
tributes with different orders have the same representation,
we use the element-wise average of attribute-token vectors
as the vector representation of a set of attributes. This vec-
tor is used as the initial hidden state of the decoder of
the pointer networks (i.e., the pointer generator) and the
encoder-decoder model since the attribute encoder is shared
with the description generation module (cf. Section 4.4).

Pointer Generator. Given a sequence of attribute-token
vectors that are computed by the attribute encoder
X = 〈xa1, ...,xam〉 (m is the number of attribute-tokens
in the input), the pointer generator aims to generate a se-
quence of pointer-indexes I = 〈i1, ..., ig〉 (g is the number
of attribute-tokens in the target content-plan). Here, ig indi-
cates an index that points to an attribute-token. The pointer
generator uses LSTM to encode the attribute-token that are
selected as part of the content-plan in the previous time-step
xig−1 as a context vector (cf. Eq. 4) to compute the atten-
tion of the attributes. The pointer generator predicts the next
index by selecting attribute-token with the highest attention
(cf. Eq. 6) that are computed as follows.

cptrg = flstm(xig−1) (4)

uptrg = tanh(Wp1xa +Wp2cptrg) (5)

îg = softmax(uptrg) (6)

Here, îg is the pointer-index output probability distribu-
tion over the vocabulary (in this case, the vocabulary is the
attribute-token input), flstm is a single LSTM unit, and Wp1
and Wp2 are learned parameters. The pointer generator is
trained to maximize the conditional log-likelihood:

p(Id | Ad) =
∑

g

j=m∑

j=1

i′g,j × log îg,j (7)

Jptr =
1

D

D∑

d=1

− log p(Id | Ad) (8)

where (Ad, Id) is a pair of attributes and target pointer-index
(generated by finding the position of the attribute-token of
the target content-plan in the original input) given for train-
ing, i′ is the matrix of the target pointer-index over the vo-
cabulary, D is the number of records in the dataset and Jptr
is the objective function of the pointer generator.
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Content-plan Generator and Encoder. The pointer-
index I is a sequence of indexes that refers to the attribute-
token X in a proper order that represents a content-plan.
Hence, the content-plan generator uses the pointer-index to
rearrange the sequence of attribute-token into a content-plan
X ′. In the content-plan encoder, we use LSTM to encode
the learned content-plan X ′ to capture the relationships be-
tween attributes. The hidden states of the content-plan en-
coder 〈xcp1, ...,xcpg〉 are forwarded to the text generator
to help its attention model select attributes in a proper order.

4.4 Description Generation

We adapt the encoder-decoder model (Bahdanau, Cho, and
Bengio 2015) to generate entity description by integrating a
content-plan to help the attention mechanism of the encoder-
decoder computes the attributes to be mentioned and their
order. For this adaptation, we propose the content-plan-
based bag of tokens attention model.

Content-plan-based Bag of Tokens Attention. We use
the same encoder as in the content-plan generation module
(cf. Section 4.3). This encoder treats the attributes as a bag
of tokens to allow our model handles disordered input. How-
ever, this representation does not capture the relationships
between attributes. To capture the relationships between at-
tributes, we use LSTM to encode the content-plan (cf. Sec-
tion 4.3). We integrate the learned (encoded) content-plan
into the encoder-decoder model to help the attention mech-
anism of the model selects the attributes in a proper order.
This way, our proposed model has two advantages. First,
our model yields the same vector representation for the same
set of attributes regardless of their order while capturing the
relationships between attributes via the content-plan. Sec-
ond, our model computes a context vector based on the orig-
inal input (i.e., attributes) and the content-plan, and hence
reduces the error propagation (e.g., missing attribute errors).

The integration of the learned content-plan in the encoder-
decoder model is done by adapting the coverage mechanism
(Tu et al. 2016; See, Liu, and Manning 2017) as follows.
First, we use a coverage vector dcov to keep track of the
content-plan history. We use the sum of a content-plan at-
tention distribution acpl′ from the previous decoding (i.e.,
description generator) time-step to maintain the information
about which attributes in the content-plan have been exposed
(cf. Eq. 9). Second, we use the coverage vector dcov to com-
pute the attention (weight) of the content-plan acp (cf. Eq.
10 and 11). Then, the content-plan attention is used as an ad-
ditional input to compute the attention of the attribute-token
ad (cf. Eq. 12). Finally, the attribute-token attention is used
to compute a context vector cd for the decoder (cf. Eq. 13).

dcov l =

l−1∑

l′=0

acpl′ (9)

ucpl = tanh(Wc1xcp +Wc2hdl−1 +wc3dcov l) (10)

acpl =
∑

g

softmax(ucpl)xcpg (11)

adl = tanh(Wd1xa +Wd2hdl−1 +Wd3acpl) (12)

cdl =
∑

m

softmax(adl)xam (13)

Here, hdl is the decoder hidden state at time-step l, and W
and w are learned parameters.

Description Generator. We use LSTM for the description
generator (i.e., the decoder). The decoder predicts the next
token of the description conditioned by the previous hid-
den state of the decoder hdl−1, the previous generated token
tl−1, and the context vector cdl.

hdl = flstm([hdl−1; tl−1; cdl]) (14)

t̂l = softmax(V hdl) (15)

Here, t̂l is the output probability distribution over the vocab-
ulary, and V is the hidden-to-output weight matrix. The de-
coder is trained to maximize the conditional log-likelihood:

p(Sd | Ad) =
∑

l

j=|V |∑

j=1

t′l,j × log t̂l,j (16)

Jdec =
1

D

D∑

d=1

− log p(Sd | Ad) (17)

J = Jptr + Jdec (18)

where (Ad, Sd) is a pair of attributes and entity description
given for training, t′ is the matrix of the target token descrip-
tion over the vocabulary V , Jdec is the objective function of
the description generator, and J is the overall objective func-
tion of our proposed model.

5 Experiments

We evaluate our model on two real-world datasets, includ-
ing WIKIALL and WIKIBIO datasets. The attributes in
WIKIALL are disordered since they are the result of a
query to Wikidata. Meanwhile, the attributes in WIKIBIO
are practically ordered, i.e., the salient attributes are rela-
tively ordered but may have noises (non-salient attributes)
between them. To test on disordered attributes of WIKIBIO
dataset, we randomly shuffle the attributes.

5.1 Models

We compare our proposed model2 with four existing models
including: (1) the Field Gating with Dual Attention model
(FGDA), which is the state-of-the-art table-to-text gener-
ation model (Liu et al. 2018); (2) the Graph-based Triple
LSTM encoder model (GTRLSTM), which is the state-of-
the-art rdf-to-text generation model (Trisedya et al. 2018);
(3) the Neural Content-Planning model (NCP), which is a
data-to-text generation model that uses content-plan as one
of its features (Puduppully, Dong, and Lapata 2019); and
(4) the modified encoder-decoder model (MED), which is
a modification of the standard encoder-decoder model that
uses the embeddings of its input instead of the hidden state
of the encoder to compute the attention.

5.2 Results

Table 3 shows that our proposed model achieves a consis-
tent improvement over the baselines, and the improvement is
statistically significant, with p < 0.01 based on the t-test of

2Code and dataset: http://www.ruizhang.info/GKB/gkb.htm
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Model WIKIALL WIKIBIO (disordered) WIKIBIO (ordered)
BLEU↑ ROUGE↑ METEOR↑ TER↓ BLEU↑ ROUGE↑ METEOR↑ TER↓ BLEU↑ ROUGE↑ METEOR↑ TER↓

MED 58.54 54.01 42.80 34.40 38.21 33.32 30.20 55.20 40.25 35.63 30.90 56.40
GTRLSTM 62.71 57.02 44.30 29.50 42.64 38.35 32.60 54.40 42.06 37.90 32.20 54.80
NCP 63.21 57.28 44.30 28.50 43.07 38.76 33.90 53.20 43.12 38.82 33.90 53.30
FGDA 62.61 57.11 44.10 30.20 42.31 38.93 32.20 55.00 44.59 40.20 34.10 52.10
Proposed 65.12 58.07 45.90 27.50 45.32 40.80 34.40 51.50 45.46 40.31 34.70 51.30

Table 3: Experimental results.

Model Correctness Grammaticality Fluency

MED 2.25 2.32 2.26
GTRLSTM 2.31 2.40 2.36
NCP 2.54 2.68 2.51
FGDA 2.51 2.58 2.54
Proposed 2.68 2.76 2.57

Table 4: Human evaluation results.

the BLEU scores. We use MultEval to compute the p value
based on an approximate randomization (Clark et al. 2011).
Our model achieves higher BLEU and ROUGE scores than
the baselines, which indicate that our model generates de-
scriptions with a better order of attribute mention. Moreover,
the better (lower) TER scores indicate that our model gener-
ates a concise description (i.e., following the content-plan).

On disordered input experiments, the content-plan based
models (i.e., our proposed model and NCP) achieve stable
performance with our model getting the highest score on all
metrics. These results show that content-planning helps neu-
ral data-to-text generation models select and arrange the data
(i.e., attributes) to be mentioned in the text.

The content-planner (the pointer networks) achieves
83.41 and 87.12 BLEU scores on the WIKIBIO and
WIKIALL datasets, respectively. We further conduct ex-
periments to show that our model reduces error propa-
gation between the content-planner and the text genera-
tor. We use the content-plan gold standard (i.e., the tar-
get content-plan extracted from the description, cf. Sec-
tion 4.2) as the input of the text generator. On this setup,
our model achieves comparable performance with NCP.
Our model achieves 46.5 and 66.97 BLUE scores on the
WIKIBIO and WIKIALL datasets, respectively. Meanwhile,
NCP achieves 46.3 and 66.69 BLUE scores on the WIK-
IBIO and WIKIALL datasets, respectively. These results are
expected because both models take the same content-plan.

Human Evaluations. Following Trisedya et al. (2018),
we conduct manual evaluations on the generated descrip-
tions using three metrics including correctness, grammati-
cality, and fluency. Correctness is used to measure the se-
mantics of the generated description (i.e., contains wrong
order of attribute mention or not, e.g., "born in USA,
New York"); grammaticality is used to rate the grammat-
ical and spelling errors; and fluency is used to measure the
fluency of the output (e.g., contain repetition or not). For
each metric, a score of 3 is given to output that contains no

errors; a score of 2 is given to output that contains one error;
and a score of 1 is given to output that contains more than
one error. We randomly choose 300 records of WIKIALL
dataset along with the output of each model. We manage to
get six annotators who have studied English for at least ten
years and completed education in an English environment
for at least two years. The total time spent for these evalu-
ations is around 250 hours. Table 4 shows the results of the
human evaluations. The results confirm the automatic evalu-
ations in which our proposed model achieves the best scores.

6 Conclusions and Future Work

We proposed an end-to-end data-to-text generation model on
top of an encoder-decoder framework that includes content-
planning to address the problem of disordered input. Our
model employs joint learning of content-planning and text
generation to reduce error propagation between them for
generating a description of an entity from its attributes. To
integrate a content-plan into the encoder-decoder frame-
work, we propose the content-plan-based bag of tokens
attention model. Our attention model effectively captures
salient attributes in a proper order. Experimental results
show that our proposed model outperforms the baselines and
achieves the highest score in all metrics on the WIKIALL
and WIKIBIO test datasets. Moreover, our model obtains
stable performance on disordered input and achieves a con-
sistent improvement over the baselines by up to 5%.

The proposed model requires training data in the form
of triples of attributes, content-plan, and description. How-
ever, extracting a content-plan from a description is a non-
trivial task. We use string matching to find the order of
attributes in the description as a content-plan. However,
the string matching does not capture the semantic similar-
ity between attributes and text. From the example in Ta-
ble 1, the extracted content-plan does not include attribute
citizenship since the string matching cannot capture
the similarity between United States and American.
We consider using semantic similarity search as future work.
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