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Abstract

Common grounding is the process of creating, repairing and
updating mutual understandings, which is a fundamental as-
pect of natural language conversation. However, interpreting
the process of common grounding is a challenging task, es-
pecially under continuous and partially-observable context
where complex ambiguity, uncertainty, partial understand-
ings and misunderstandings are introduced. Interpretation be-
comes even more challenging when we deal with dialogue
systems which still have limited capability of natural lan-
guage understanding and generation. To address this prob-
lem, we consider reference resolution as the central subtask
of common grounding and propose a new resource to study
its intermediate process. Based on a simple and general an-
notation schema, we collected a total of 40,172 referring ex-
pressions in 5,191 dialogues curated from an existing corpus,
along with multiple judgements of referent interpretations.
We show that our annotation is highly reliable, captures the
complexity of common grounding through a natural degree
of reasonable disagreements, and allows for more detailed
and quantitative analyses of common grounding strategies.
Finally, we demonstrate the advantages of our annotation for
interpreting, analyzing and improving common grounding in
baseline dialogue systems.

1 Introduction

Common grounding is the process of creating, repairing and
updating mutual understandings, which is a critical aspect
of sophisticated human communication (Clark 1996) as well
as a longstanding goal in dialogue modeling (Traum 1994).
Recently, there have been several new proposals of dialogue
tasks which require advanced skills of common grounding
under continuous and partially-observable context (Uda-
gawa and Aizawa 2019; Haber et al. 2019). Their main con-
tributions include proposal of clear evaluation metrics based
on task success rate, collection of large-scale datasets (thou-
sands of dialogues) and introduction of complex ambigu-
ity, uncertainty, partial understandings and misunderstand-
ings which are minimally observed under traditional settings
based on either categorical or fully-observable context.

However, interpretation of the process of common
grounding remains largely an open problem. Although a for-
mal theory such as Poesio and Rieser (2010) can account
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for some of the important details in common grounding,
constructing such precise semantic representation is a dif-
ficult and costly process, especially under continuous and
partially-observable context with high ambiguity and uncer-
tainty. Interpretation becomes even more challenging when
we deal with dialogue systems represented by end-to-end
neural models (Vinyals and Le 2015; Bordes and Weston
2016), which can converse fluently but still lack true compe-
tency of natural language understanding and generation.

In this work, we approach this problem by decomposing
the common grounding task based on its intermediate sub-
tasks. Specifically, we consider reference resolution as the
central subtask of common grounding (in the sense that mu-
tual understanding can only be created through successful
references to the entities in the task domain), define this
subtask formally based on a simple and general annotation
schema, and create a large-scale resource to study this sub-
task along with the original task of common grounding.

Our annotated corpus consists of a total of 40,172 refer-
ring expressions in 5,191 dialogues curated from the existing
corpus (Udagawa and Aizawa 2019), along with multiple (a
minimum of 3) judgements for referent interpretations. A
visualization of our annotation is shown in Figure 1.

Through our corpus analysis, we show that our annota-
tion has high agreement in general but also includes a natu-
ral degree of reasonable disagreements, which verified that
our annotation can be conducted reliably while capturing the
ambiguity and uncertainty under continuous and partially-
observable context. In addition, we give a more quantitative
analysis of pragmatic expressions as an illustrative example
of analyses that can be conducted based on our annotation.

Finally, through our experiments we show that our an-
notation is critical for interpreting and analyzing common
grounding in baseline dialogue systems, as well as improv-
ing their performance on difficult end tasks.

Overall, we propose a fundamental method and resource
for interpreting the process of common grounding through
its subtask of reference resolution. All materials related to
this work will be publicly available at https://github.com/
Alab-NII/onecommon.

2 Related Work

One of the most influential models of common grounding to
date is the contribution model (Clark 1996), which distin-
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Raw Dialogue Annotated Dialogue

Figure 1: A visualized example of the raw dialogue (left) and our annotated dialogue (right). In our annotation, referring
expressions are detected and their intended referents are annotated based on the speaker’s view (only one judgement shown in
this example). Background task is described in detail in Section 3 and our annotation procedure in Section 4.

guishes information in a dialogue into two phases: the pre-
sentation phase where a piece of information is introduced
by a speaker, and the acceptance phase where it gets ac-
cepted by a listener. However, applying such theory for anal-
ysis in realistic settings can be difficult or even problematic
(Koschmann and LeBaron 2003), especially when contribu-
tions are implicit, indirect, unstructured, uncertain or partial.
In contrast, we propose a more practical approach of decom-
posing common grounding based on well-defined subtasks:
in our case we focus on reference resolution. Although our
approach does not give a formal account of common ground-
ing, we show that our annotation is general with simple and
clear definition, reliable in terms of annotator agreement un-
der complex settings, and useful for interpreting and analyz-
ing the intermediate process of common grounding.

Our work is also relevant to the recent literature of in-
terpretable and explainable machine learning (Doshi-Velez
and Kim 2017; Lipton 2016). Especially the analysis of neu-
ral based models is gaining attention in NLP (Belinkov and
Glass 2019), including end-to-end dialogue models (Sankar
et al. 2019). The main novelty of our approach is that we
decompose the original task (common grounding) based on
its central subtask (or could be subtasks), define the subtask
(reference resolution) formally with an annotation frame-
work, and create a large-scale resource to study the subtask
along with the original task. Our approach has several ad-
vantages compared to previous analysis methods. First, it
is applicable to both humans and machines, which is es-
pecially important in dialogue domains where they interact.
Second, it can be used to study the relationships between
the original task and its subtasks, which is critical for a more

skill-oriented evaluation of artificial intelligence (Hernndez-
Orallo 2017; Sugawara, Yokono, and Aizawa 2017). Third,
it can be used for investigating the dataset on which the
models are trained: this is important in many aspects, such
as understanding undesirable bias in the dataset (Gururan-
gan et al. 2018; Sugawara et al. 2018) or correct model pre-
dictions based on the wrong reasons (McCoy, Pavlick, and
Linzen 2019). Finally, the collected resource can be used
for both probing whether the models solve the subtasks im-
plicitly (Linzen, Dupoux, and Goldberg 2016) or developing
new models which can be explicitly supervised, evaluated
and interpreted based on the subtasks.

Coreference and anaphora resolution have also been
studied extensively in NLP (Pradhan et al. 2011; Poesio,
Stuckardt, and Versley 2016), including disagreements in
their interpretations (Recasens, Martı́, and Orasan 2012;
Poesio et al. 2019). The main difference between our an-
notation schema and theirs is that we focus on exophoric
references and directly annotate the referent entities of each
referring expression in situated dialogues. We show that our
annotation can be conducted reliably, even by using non-
expert annotators for referent identifications. Our annotation
does not capture explicit relations between anaphora, but
they capture basic coreference relations as well as complex
associative anaphora (such as part-of relations), at least in
an indirect way. Most importantly, they are compatible with
such existing schema, and annotating explicit anaphoric re-
lations could be a viable approach for future work.

Finally, visually grounded dialogues have been studied in
a wide variety of settings. In comparison, the main strengths
and novelty of our corpus can be summarized as follows:
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A. Our corpus is based on the advanced setting of con-
tinuous and partially-observable context where complex
common grounding strategies are required.

B. Our corpus has more simplicity and controllability com-
pared to realistic visual dialogues, which makes con-
trolled experiments and analyses easier.

C. Our corpus includes large-scale manual annotation of
reference resolution and detailed analyses of agree-
ments/disagreements based on multiple judgements.

Prior work in common grounding (Potts 2012; De Vries
et al. 2017) and visual reference resolution (Tokunaga et al.
2012; Zarrieß et al. 2016; Shore, Androulakaki, and Skantze
2018) mostly focus on categorical or fully-observable set-
tings and do not satisfy A. While visual dialogues (Das et al.
2017; Haber et al. 2019; Chen et al. 2019; Ilinykh, Zarrieß,
and Schlangen 2019) have the strengths of being more com-
plex and realistic, they do not satisfy B and C. Although
Götze and Boye (2016) conducted a smaller-scale (and more
loosely defined) annotation of reference resolution, they did
not assess the reliability of the annotation (hence does not
satisfy B and C). To the best of our knowledge, our work is
the first to satisfy all of the above criteria.

3 Background Task

Our annotation is conducted on a recently proposed common
grounding dataset, which is a minimal formalization of a
collaborative referring task under continuous and partially-
observable context (Udagawa and Aizawa 2019). In this
task, two players are given slightly different but overlapping
perspectives of a 2-dimensional grid. Both players have 7 en-
tities in each view, but only 4, 5 or 6 of them are in common:
this makes their setting partially-observable with different
degrees of partial-observability. In addition, each entity only
has continuous attributes (color, size and location). The goal
of the task is to find one of the common entities through nat-
ural language communication, and the task is successful if
and only if they could find and select the same entity.

Some distinguishing characteristics of their dataset in-
clude its large size (a total of 6,760 dialogues, out of which
5,191 were successful on the task), rich linguistic variety
with limited vocabulary (a total of only 2,035 unique tokens
after preprocessing in our curated corpus), and most im-
portantly the complexity of common grounding introduced
by continuous and partially-observable context. As shown
in Figure 2, there could be complex misunderstandings and
partial understandings that need to be resolved through ad-
vanced skills of common grounding. We can also find var-
ious nuanced expressions (“almost in a line”, “I think I
see ...”, “could be”) and pragmatic expressions (“a line”,
“largest”, “bottom left”) which can be ambiguous or need
to be interpreted based on their context.

4 Annotation Procedure

The goal of our annotation is to provide a general, reliable
and useful annotation of reference resolution to interpret the
intermediate process of common grounding. In this work,

we use the 5,191 successful dialogues from the existing cor-
pus which are expected to be of higher quality (however, our
annotation is applicable to unsuccessful dialogues as well).
Our annotation procedure consists of two main steps: mark-
able detection to semi-automatically annotate referring ex-
pressions currently under consideration and referent identi-
fication to identify the referents of each referring expression.

As an optional step, we also conducted preprocessing of
the dialogues to correct obvious misspellings and grammati-
cal errors. Due to the limited size of the vocabulary, we man-
ually looked for rare unigrams and bigrams in the dialogue
and carefully created rules to correct them. Our preprocess-
ing step is reversible, so the collected annotation can also be
applied to the original dialogues without preprocessing.

4.1 Markable Detection

In this work, we define a markable as an independent refer-
ring expression of the entities currently under consideration
(in our case, the dots in the circular view). Basically, we an-
notate a markable as a minimal noun phrase including all
prenominal modifiers (such as determiners, quantifiers, and
adjectives) but excluding all postnominal modifiers (such
as prepositional phrases and relational clauses). This elim-
inates the complexity of the annotation because markables
will not overlap or nest with each other. See the figures for
many examples of the detected markables (underlined).

To reduce the annotation effort in the later process, we op-
tionally annotate three attributes for each markable if they
are obvious from the context: a generic attribute when the
markable is not specific enough to identify the referents, all-
referents when the markable is referring to all of the enti-
ties in the speaker’s view, and no-referent when the refer-
ents are empty. Generic markables are ignored in our an-
notation, and the referents of all-referents or no-referent are
annotated automatically in the later process. To reduce the
redundancy of annotation, we consider a predicative noun
phrase as a markable only if there is no previous markable
in the same utterance that refer to the same entities: for ex-
ample, “a triangle” in “three dots are forming a triangle”
is not considered as a markable since “three dots” is already
annotated, but it is considered a markable in “one light dot
and two dark dots are forming a triangle”. We also annotate
obvious anaphoric and cataphoric relations in the same ut-
terance: this way, the referents of anaphoric and cataphoric
markables can be annotated automatically based on their an-
tecedents or postcedents. Note that we do not annotate such
relations across utterances, as they can actually refer to dif-
ferent entities (see Figure 2 for such example).

Detection of the markables, their attributes and relations
are conducted using the brat annotation tool (Stenetorp et al.
2012). Annotators were trained extensively and had access
to all available information (including original dialogues,
players’ observations and selections) during annotation.

4.2 Referent Identification

Next, we used crowdsourcing on Amazon Mechanical Turk
to collect large-scale judgements of the referents of each
markable. Our visual interface for referent identification is
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Misunderstanding Partial Understanding

A’s view B’s view A’s view B’s view

A: I see three smaller circles almost in a line slanting down
from right to left
B: I think I see it. Is the left one the largest? ...

A: I have 5 larger dots close together, the bottom left one is
largest and darkest?
B: i have three that could be part of that ...

Figure 2: Example of misunderstanding and partial understanding captured by our annotation.

Figure 3: Visual interface for referent identification.

shown in Figure 3. Annotators were instructed to read the in-
structions carefully (including description of the background
task), put a check on ambiguous box and select all possi-
ble candidates when the referents are ambiguous, and put
a check on unidentifiable if the referents are completely
unidentifiable based on the available information.

To collect reliable annotations, we restricted the workers
to those with at least 100 previously completed HITs and
above 99% acceptance rate. We paid the workers well, with
$0.25 for dialogues with less than 7 markables, $0.35 with
less than 14 markables, and $0.45 otherwise. In addition,
we automatically detected outliers based on several statis-
tics (such as agreement with other workers) and manually
reviewed them to encourage better work or reject clearly un-

acceptable works. The overall rejection rate was 1.18%.
As a result of this careful crowdsourcing, we were able to

collect a large-scale annotation of 103,894 judgements with
at least 3 judgements for each of the 34,341 markables.

5 Annotated Corpus

5.1 Basic Statistics

First, we report the basic statistics of the annotation for
markable detection in Table 1 and referent identification in
Table 2. All agreements are computed based on pairwise
judgements. For markable detection, agreement is calculated
for the markable text span (at the token level of whether
each token is the start or end of the markables). Agree-
ments for markable attributes and relations are also publicly
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# Markables # All-Referents # No-Referent # Anaphora # Cataphora % Start Agreement % End Agreement

40,172 128 1,149 4,548 6 99.11 (96.32) 99.06 (96.11)

Table 1: Basic statistics of markable detection. Referents for all-referents, no-referent, anaphora and cataphora are annotated
automatically. 130 dialogues with 3 independent annotations are used to compute agreement (Fleiss’s Multi-π in parenthesis).

# Markables # Judgements % Ambiguous % Unidentifiable % Agreement % Exact Match

34,341 103,894 4.65 0.77 96.26 (88.66) 86.90

Table 2: Basic statistics of referent identification, along with the rate of ambiguous and unidentifiable checked in the judgements.
Agreement is calculated at the entity level (Fleiss’s Multi-π in parenthesis) and exact match rate at the markable level.

available (but omitted in this paper since they were optional
and annotated only in obvious cases). For referent identifi-
cation, agreement is calculated based on binary judgements
of whether each entity is included in the referents or not,
and exact match is calculated only if the referents of the
markable matched exactly. In addition, we compute Fleiss’s
Multi-π (Fleiss 1971) to remove the effect of chance level
agreements.

Overall, we found high agreement for all annotations,
which verified the reliability of our annotation framework.

5.2 Disagreement Analysis

However, it is natural that there is a certain degree of dis-
agreements in referent interpretations. In fact, it is impor-
tant to capture such disagreements as there can be genuine
ambiguity and uncertainty under continuous and partially-
observable context (see Figure 4 for example). Therefore, in
addition to explicitly annotating the ambiguity and uniden-
tifiability as described in Subsection 4.2, we aim to capture
them implicitly by collecting multiple judgements from dif-
ferent annotators, similar in approach to Poesio et al. (2019).

Annotator 1 Annotator 2

medium sized light gray dot with a darker one di-
rectly under it and to the right?

Figure 4: Example of seemingly reasonable disagreements
captured by our annotation.

To study the disagreements in detail, we compute the ob-
served agreement statistics given the number of referents in
each judgement. To be specific, for a certain number of refer-

ents (from 0 to 7), we consider all judgements with the num-
ber of referents, make all possible pairs with other judge-
ments on the same markable, and compute the average of
entity level agreement and exact match rate. The results are
summarized in Table 3.

# Referents % Agreement % Exact % Judgements

0 78.04 17.78 1.31
1 97.45 90.28 71.81
2 94.87 82.17 14.85
3 93.93 83.03 7.51
4 92.18 76.66 2.20
5 90.31 71.03 0.88
6 90.75 78.14 1.22
7 81.47 62.50 0.21

Table 3: Agreement statistics given the number of referents
in the judgement and the percentages of such judgements.

We can see that there is a significant amount of disagree-
ments when the number of referents was judged to be either
0 or 7. This could be due to several reasons: obvious cases
were already annotated as no-referent or all-referents during
markable detection (so only difficult cases were left), anno-
tators simply made mistakes (e.g. forgot to annotate), or the
referents were annotated as such when it was too difficult to
identify them. Since the number of such judgements are rel-
atively small, their effect can be mitigated after appropriate
aggregation of multiple judgements. In addition, they could
be a useful resource for studying whether the disagreements
are caused by annotation error or genuine difficulty in the
annotation, as suggested in Poesio et al. (2019).

We also found that the exact match rate is highest when
the number of referents is 1, and much lower as the number
of referents increases. This is reasonable because referring
expressions for multiple entities tend to be more pragmatic
and ambiguous (e.g. “a cluster”, “most of”, “a line”), and it
would be more difficult to match the referents exactly. Note
that entity level agreements are still at a high level, and the
interpreted referents seem to mostly overlap with each other.

Next, as a preliminary analysis to study which expressions
tend to have higher (or lower) disagreements, we compute
the correlations between the occurrence of common tokens
(represented by binary values) and the exact match rate of
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the pairwise judgements for each markable. Illustrative ex-
amples are shown in Table 4 and the whole list will be pub-
licly available.

Low ρ Count

it -0.149 12.7K
any -0.103 0.5K
that -0.100 12.5K
your -0.083 1.5K
few -0.081 0.1K

what -0.081 0.4K
others -0.064 0.8K
line -0.062 1.7K

bunch -0.060 0.2K
all -0.048 1.1K

triangle -0.046 2.5K
some -0.042 0.2K

medium -0.041 12.5K
another -0.039 1.4K

and -0.029 1.7K

High ρ Count

lower 0.028 1.3K
two 0.030 14.7K

three 0.031 4.2K
darkest 0.036 2.1K
larger 0.039 7.7K
middle 0.041 2.1K

smallest 0.043 2.0K
very 0.056 6.1K
top 0.061 5.2K

light 0.072 18.7K
tiny 0.076 7.8K

large 0.084 21.7K
the 0.125 55.0K
one 0.136 57.1K

black 0.145 26.9K

Table 4: Tokens with low or high correlation with the exact
match rate. Correlation scores are shown in ρ.

In general, the correlations are very small and the amount
of disagreements seem relatively constant across all token
types. However, the general trend is still intuitive: ambigu-
ous or complex expressions such as pronouns, interroga-
tives, quantifiers, and coordinating conjunctions tend to have
negative correlations, while simple and less ambiguous ex-
pressions tend to have positive correlations.

To summarize the analyses, our annotation has high over-
all agreement but also includes interesting, reasonable dis-
agreements which capture the ambiguity and uncertainty un-
der continuous and partially-observable context.

5.3 Pragmatic Expressions

Finally, as an illustrative example of additional analyses that
can be conducted based on our annotation, we give a more
quantitative analysis of pragmatic expressions which have
been pointed out to exist in previous work but without suffi-
cient amount of evidence (Udagawa and Aizawa 2019).

In this work, we focus on pragmatic expression of color
and estimate the distribution of the actual color of the refer-
ents described by the common adjectives. We simply assume
that the adjective in the minimal noun phrase describe the
color of the referents, since the exceptions (such as negation
in the prenominal modifier) seemed rare and ignorable. Dis-
tributions are calculated based on kernel density estimation.
As we can see in Figure 5, all adjectives (including the spe-
cific color black) have smooth and wide distributions which
overlap with each other. This is a strong evidence that the
same color can be described in various ways and become
more pragmatic under continuous context.

6 Experiments

In this section, we evaluate and analyze baseline models
based on three tasks. First is the target selection task pro-
posed by Udagawa and Aizawa (2019), which tries to predict

Figure 5: Distribution of the actual color of the referents ex-
pressed by common adjectives (the range of color is 256 as
in RGB scale, lower is darker).

the entity selected by each player at the end of the collabo-
rative referring task: this requires correct recognition of the
created common ground based on the dialogue and context
(i.e. player’s view). Second is the reference resolution task,
where we focus on binary predictions of whether each entity
is included in the referents or not. Last is the selfplay dia-
logue task where the model plays the whole collaborative
referring task (Section 3) against an identical copy of itself.

For reference resolution, we use simple majority voting
(at the entity level) and automatic annotation of the refer-
ents to create gold annotation. Markables are removed if the
majority considered them as unidentifiable.

6.1 Model Architecture

The overall architecture of our baseline models is shown in
Figure 6.

Encoders Our baseline models have two encoders: one for
encoding dialogue tokens and one for context information.

Dialogue tokens are encoded with a standard GRU (Cho
et al. 2014). To encode context information, we embed each
entity using a shared entity encoder. This consists of an at-
tribute encoder which embeds the attributes of each entity
(size, color and location) with a matrix followed by a tanh
layer, and a relational encoder which embeds relative at-
tributes of each entity pairs (e.g. distance) with another ma-
trix followed by a tanh layer. The final embedding of each
entity is the concatenation of its attribute embedding and the
sum of relational embeddings with the other 6 entities.

Decoders Our models can have up to three decoders:
TSEL for target selection, REF for reference resolution,
and DIAL for predicting next tokens. Each decoder shares
(some or all layers of) the attention module based on MLP
to compute a scalar score for each entity based on its
embedding and certain positions of the GRU: TSEL takes
the final hidden state, REF takes (the mean of) the start
position of the markable, the end position of the markable,
and the end position of the utterance including the markable,
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YOU: I see

Dialogue
Encoder

Entity Encoders

three black dots lined up <eou> <eod>lets choose it

Attention Module Attention Module Attention Module

Next Token Prediction

Reference Resolution Target Selection

three

Figure 6: Our baseline model architecture (best seen in color). TSEL decoder is shown in green, REF decoder and the input
markable three black dots are in red, and DIAL decoder is in blue. All decoders share the entity-level attention module.

and DIAL takes the current hidden state. Based on these
attention scores, TSEL simply computes the softmax and
REF computes logistic regressions for each entity. DIAL
reweights the entity embeddings based on these attention
scores, concatenates it with the current hidden state and
decodes with an MLP (Bahdanau, Cho, and Bengio 2014).

In this experiment, we built five models based on different
combinations of the three decoders. All models are trained
with the default hyperparameters with minimal tuning.

6.2 Results

We run the experiments 10 times with different random
seeds and dataset splits (8:1:1 for train, validation and test).
For selfplay dialogues, we generated 1,000 scenarios with
each number of shared entities (4, 5 or 6) and set the output
temperature to 0.25 during next token prediction. We report
the mean and standard deviation of the results in Table 5.

In terms of target selection and selfplay dialogue tasks,
we found consistent improvements by training the models
jointly with reference resolution. This verified that we can
indeed leverage the central subtask of reference resolution
to improve performance on difficult end tasks. The results
for reference resolution are reasonably high in terms of en-
tity level accuracy but much lower in terms of exact match
rate. Considering the high agreements (Subsection 5.1) and
improved reliability of the gold annotation after aggregation,
we expect there to be a huge room for further improvements.

Overall, common grounding under continuous and
partially-observable context is still a challenging task, and
we expect our resource to be a fundamental testbed for solv-
ing this task through advanced skills of reference resolution.

6.3 Analysis

To demonstrate the advantages of our approach for interpret-
ing and analyzing dialogue systems, we give a more detailed
analysis of TSEL-REF-DIALmodel which performed well
on all three tasks. In Table 6, we show the results for refer-
ence resolution (entity level accuracy and exact match rate)
grouped by the number of referents in the gold annotation. In
terms of the exact match rate, we found that the model per-
forms very well on 0 and 7 referents: this is because most
of them can be recognized at the superficial level, such as
“none of them”, “all of mine” or “I don’t have that”. How-
ever, the model struggles on all other cases: the results are
especially worse for markables with more than 1 referent.
This shows that the model still lacks the ability of precisely
tracking multiple referents, which can be expressed in com-
plex, pragmatic ways (such as groupings).

In addition, we found that the correlation between refer-
ence resolution score (average accuracy of reference reso-
lution in each dialogue) and target selection score (binary
result of target selection in each dialogue) was relatively
weak, with an average of only 0.23 in 10 runs of the experi-
ments. Indeed, we verified that the model is often correct for
the target selection task based on the wrong reason, without
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Model Target Selection Reference Resolution (Exact Match) Selfplay Dialogue
#Shared=4 #Shared=5 #Shared=6

TSEL 67.79±1.53 - - - -
REF - 85.75±0.22 (33.91±0.86) - - -

TSEL-REF 69.01±1.58 85.47±0.36 (32.88±1.28) - - -

TSEL-DIAL 67.01±1.29 - 42.07±1.27 57.37±1.29 77.00±1.13
TSEL-REF-DIAL 69.09±1.12 85.86±0.18 (33.66±0.93) 45.78±2.15 61.95±1.72 80.01±1.61

Human 90.79 96.26 (86.90) 65.83 76.96 87.00

Table 5: Results of our baseline models. Human scores from Udagawa and Aizawa (2019) and Table 2 as a reference.

# Referents % Accuracy % Exact Match Count

0 95.91±1.38 83.53±4.65 148.5
1 89.34±0.17 36.86±1.32 2782.5
2 78.14±1.07 20.59±1.90 587.9
3 70.64±1.02 13.63±2.06 283.3
4 69.12±2.69 10.16±3.47 81.0
5 73.57±2.94 17.56±5.88 33.0
6 78.69±4.45 13.18±7.31 43.0
7 74.60±7.49 50.38±11.40 22.3

Table 6: Results of the reference resolution task grouped by
the number of referents in the gold annotation (along with
the average count of such markables in the test set).

Model A’s view Model B’s view

A: I have a large black dot with a smaller dark dot to the
right of it
B: I see that . Let’s pick the large black dot

Figure 7: Example dialogue from the selfplay task by
TSEL-REF-DIAL model. Predicted referents are high-
lighted (no referents were predicted for the large black dot).

tracking the referents correctly. Our annotation is also use-
ful for error analysis in recognizing the process of common
grounding, by inspecting where the model made a mistake
and lost track of the correct referents.

Finally, we show an example dialogue from the selfplay
task along with the interpreted process of common ground-
ing in Figure 7. Referring expressions are automatically de-
tected by a BiLSTM-CRF tagger (Huang, Xu, and Yu 2015)
trained on our corpus (with 98.9% accuracy at the token
level). Based on the raw dialogue only, it is difficult to iden-
tify which dots the models are referring to. However, by vi-

sualizing the intended referents, we can see that model A is
describing two dots in somewhat unnatural and inappropri-
ate way (albeit using the anaphoric expression it appropri-
ately). In turn, model B acknowledges this in a perfectly co-
herent way but without predicting any referents for the large
black dot: we often observed such phenomena, where the ut-
terance by a model cannot be interpreted correctly even by
itself. This way, our annotation allows for fine-grained anal-
ysis of both capabilities and incapabilities of existing dia-
logue systems. The generated dialogue is short in this exam-
ple, but our approach would be even more critical for inter-
pretation as the dialogues get longer and more complicated.

7 Conclusion

We propose a novel method of decomposing common
grounding based on its subtasks to study the intermediate
process of common grounding. We demonstrated the advan-
tages of our approach through extensive analysis of the an-
notated corpus and the baseline models. Overall, we expect
our work to be a fundamental step towards interpreting and
improving common grounding through reference resolution.
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