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Abstract

Aspect-based sentiment analysis (ABSA) aims to detect the
targets (which are composed by continuous words), aspects
and sentiment polarities in text. Published datasets from
SemEval-2015 and SemEval-2016 reveal that a sentiment po-
larity depends on both the target and the aspect. However,
most of the existing methods consider predicting sentiment
polarities from either targets or aspects but not from both,
thus they easily make wrong predictions on sentiment polari-
ties. In particular, where the target is implicit, i.e., it does not
appear in the given text, the methods predicting sentiment po-
larities from targets do not work. To tackle these limitations in
ABSA, this paper proposes a novel method for target-aspect-
sentiment joint detection. It relies on a pre-trained language
model and can capture the dependence on both targets and
aspects for sentiment prediction. Experimental results on the
SemEval-2015 and SemEval-2016 restaurant datasets show
that the proposed method achieves a high performance in de-
tecting target-aspect-sentiment triples even for the implicit
target cases; moreover, it even outperforms the state-of-the-
art methods for those subtasks of target-aspect-sentiment de-
tection that they are competent to.

Introduction

Sentiment analysis, aiming to detect the sentiment expressed
in text, is a fundamental task in natural language processing.
Since the sentiments in a sentence can be complex and
varied by different aspects, aspect-based sentiment analysis
(ABSA) is proposed to refine sentiment analysis. It often
aims to detect fine-grained opinions towards different as-
pects. Recently ABSA has gained more and more attention
especially with the rise of social media and public opinion.

SemEval-2015 Task 12 (Pontiki et al. 2015) and
SemEval-2016 Task 5 (Pontiki et al. 2016) formalize ABSA
as a task for target-aspect-sentiment detection from a
sentence, where the target is composed of continuous words
in the sentence, the aspect is drawn from a predefined vo-
cabulary, and the sentiment is a polarity (positive, negative,
or neutral) towards the target and the aspect. Figure 1 gives
three examples in the restaurant dataset from SemEval-2016
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    Even though its good seafood, the prices are too high.

id = 1632445:5

target: seafood        aspect: FOOD#QUALITY               sentiment: positive

target: seafood        aspect: FOOD#PRICES                   sentiment: negative

    Admittedly some nights inside the restaurant were rather warm, but 

the open kitchen is part of the charm.

id = 1189674:3

target: open kitchen  aspect: AMBIENCE#GENERAL  sentiment: positive

target: restaurant      aspect: AMBIENCE#GENERAL   sentiment: negative

    The food arrived 20 minutes after I called, cold and soggy.

id = 1726473:4

target: NULL         aspect: SERVICE#GENERAL         sentiment: negative

target: food            aspect: FOOD#QUALITY                sentiment: negative

Figure 1: Three examples in the restaurant dataset from
SemEval-2016 Task 5.

Task 5. The first example shows that the sentiment cannot
be determined by the sentence and the aspect. The second
example shows that the sentiment cannot be determined by
the sentence and the target. That is, the sentiment depends
on both the target and the aspect. Moreover, the target of
the last example can be given implicitly; i.e., it is assigned
NULL and does not contain any word in the sentence.

Two restaurant datasets are published by the above two
competitions, respectively. They give new challenges to
ABSA. The primary challenge is that the sentiment actually
depends on both the target and the aspect. Most existing
studies in ABSA do not handle this dual dependence. For
example, some studies such as (Wang et al. 2016) and (Xue
and Li 2018) predict sentiments from aspects alone, while
other studies such as (Schmitt et al. 2018) and (Sun, Huang,
and Qiu 2019) predict sentiments from targets alone. More-
over, most existing studies such as (Ma, Li, and Wang 2018;
Wang, Lan, and Wang 2018; Luo et al. 2019b) ignore im-
plicate target cases. However, from the restaurant datasets,
there are about one fourth of opinions that have implicit
targets (see Table 1). Thus handling implicit target cases is
also a non-neglectable challenge in ABSA.

The above challenges call for a solution to the task of
target-aspect-sentiment detection (TASD), namely detecting
target-aspect-sentiment triples from a sentence. By consid-
ering that the target and the aspect are highly related and that
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detecting the target benefits detecting the aspect and vice
versa, we propose to detect the three elements (target, aspect
and sentiment) simultaneously. To this end, we develop a
novel neural based method for target-aspect-sentiment joint
detection. The method separates the joint detection problem
into two subproblems on the basis of aspect-sentiment pairs,
where for every given aspect-sentiment pair, one subprob-
lem determines whether targets exist and is reducible to a
binary text classification problem, and the other extracts
all targets and is reducible to a sequence labeling problem.
Both subproblems are solved by a single neural model
built upon the pre-trained language model BERT (Devlin
et al. 2019). The neural model is trained by minimizing a
combined loss function about two subproblems.

We conduct experiments on the aforementioned two
restaurant datasets. The results show that our proposed
method achieves a high performance in the TASD task and
works significantly better than solving the two subproblems
separately. We also evaluate five subtasks of TASD, namely
aspect-sentiment joint detection (ASD), target-sentiment
joint detection (TSD), target-aspect joint detection (TAD),
aspect detection (AD) and target detection (TD). The results
show that our method outperforms the state-of-the-art
methods for all those subtasks that they are competent to.

The main contributions of this work include:
• We propose a solution to capture the dual dependence of

sentiments on both targets and aspects and to handle im-
plicit target cases.

• We propose a neural model built upon the pre-trained lan-
guage model BERT, which can be used to predict target-
aspect-sentiment together.

• We empirically verify that the proposed method achieves
the state-of-the-art performance in the task of target-
aspect-sentiment joint detection as well as all its subtasks.

Related Work

Most existing studies for ABSA focus on the five subtasks
of TASD, namely ASD, TSD, TAD, AD and TD.

The ASD task is designed to detect aspects and senti-
ments simultaneously. (Schmitt et al. 2018) tackles this task
by an end-to-end CNN model. A more recent study (Sun,
Huang, and Qiu 2019) reduces the problem of ASD to a set
of binary classification problem and solves it by fine-tuning
a pre-trained language model.

The TSD task aims to jointly detect targets and senti-
ments. In the earliest, (Mitchell et al. 2013) and (Zhang,
Zhang, and Vo 2015) reduce the TSD task to a sequence
labeling problem and solve it by a CRF decoder with
hand-crafted linguistic features. Recently neural models
are widely used. (Li et al. 2019) proposes a unified model
composed of two stacked LSTM networks to tackle the TSD
task. (Luo et al. 2019b) presents a dual cross-shared RNN
model for TSD which uses sentiment lexicon and part-of-
speech of words as auxiliary information. (Hu et al. 2019)
introduces a span-based pipeline framework and solves the
TSD task by fine-tuning a pre-trained language model.

There is little work specifically designed to the TAD task,
which aims to detect targets and aspects together. In contrast,

there have been much work addressing the AD task, which
aims to detect aspects only. Pioneer studies on AD such as
(Kiritchenko et al. 2014; Xenos et al. 2016) train SVM clas-
sifiers to detect aspects. (Liu, Cohn, and Baldwin 2018) in-
troduces neural models to improve the performance of the
AD task. In the studies (He et al. 2017; Xue et al. 2017;
Ma, Peng, and Cambria 2018; Movahedi et al. 2019), differ-
ent attention mechanisms are introduced to a neural model
to detect aspects in a more accurate way.

The TD task aims to extract targets only. Traditionally,
the targets are extracted by CRF (Jakob and Gurevych 2010;
Yin et al. 2016) or by syntactic patterns (Liu, Xu, and Zhao
2013). Lately, neural models such as CNN (Xue et al. 2017;
Xu et al. 2018) and RNN (Li and Lam 2017; Xue et al. 2017;
Luo et al. 2019a) are widely used in target extrac-
tion. In the studies (Wang et al. 2017; He et al. 2017;
Li et al. 2018), different attention mechanisms are also in-
troduced to a neural model to extract targets more accurately.

All the above tasks cannot capture the dual dependence
of sentiments on both targets and aspects. Only the TASD
task can capture this dual dependence, which aims to
jointly detect target-aspect-sentiment triples. As far as we
know, there is only one study (Brun and Nikoulina 2018)
addressing the TASD task. It proposes a method relying on
available parsers and domain-specific semantic lexicons, but
this method performs poorly as shown in our experiments.

Besides the above tasks, there are two simpler tasks for
ABSA, where one aims to classify the sentiment according
to a given aspect, which has been investigated e.g. in (Wang
et al. 2016; Xue and Li 2018), and the other aims to classify
the sentiment according to a given target, studied e.g. in
(Zeng, Ma, and Zhou 2019). Since these tasks rely on
prerequisite tasks such as AD or TD to fulfill ABSA, they
are incomparable to the TASD task.

Target-Aspect-Sentiment Detection

Problem Definition

Given a sentence S consisting of n words s1, . . . , sn, a pre-
defined set A of aspects and a predefined set P of sentiment
polarities, the TASD task aims to detect all triples (t, a, p)
that S entails in the natural language meaning, where t
(called a target) is a subsequence of S, a is an aspect in A
and p is a sentiment polarity (simply called a sentiment) in
P . The target t can be empty, denoted by NULL. This case
is referred to as an implicit target case. Since the general
goal of ABSA is detecting fine-grained opinions, we also
call the triple (t, a, p) an opinion. Consider the last example
given in Figure 1. There are two opinions (NULL, SER-
VICE#GENERAL, negative) and (food, FOOD#QUALITY,
negative) detected from the sentence with id 1726473:4.

Problem Reduction

Considering that the text classification problem and the
sequence labeling problem are well-studied in natural
language processing, we attempt to reduce the problem of
TASD to a set of text classification problems and sequence
labeling problems such that the state-of-the-art methods
for the reduced problems can be adapted to the TASD task.
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[SEP]
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Figure 2: The architecture and a running example for the TAS-BERT model. TAS-BERT takes a sentence-aspect-sentiment
token sequence “[CLS]· · ·[SEP]· · ·[SEP]” as input. It outputs “yes/no” for predicting whether targets exist for the aspect-
sentiment pair and a tag sequence for extracting the targets.

To this end, we divide a given problem which detects all
opinions from a sentence S, a set A of aspects and a set P of
sentiments into |A||P | problems on the basis of all aspect-
sentiment pairs, where |X| is the cardinality of the set X .

Every resulting problem is further separated into two
subproblems, where one determines whether targets exist
for the given aspect-sentiment pair, and the other extracts
the targets corresponding to the given aspect-sentiment pair.
The first subproblem can be reduced to a binary text classifi-
cation problem, with “yes” indicating that at least one target
(including the implicit target) exists and “no” indicating that
no target exists. The second subproblem can be reduced to
a sequence labeling problem using either the BIO tagging
scheme or the TO tagging scheme, where “B” (resp. “I”)
denotes the starting (resp. an internal) word of a target, “T”
a word inside a target and “O” a word outside any target.

The results of the two subproblems can be merged to get
opinions. Given a sentence S and an aspect-sentiment pair
(a, p), if the first subproblem outputs “no”, there will be no
opinion of the form (t, a, p) that can be detected from S.
Otherwise, suppose there are n subsequences of S output by
the second subproblem where n ≥ 0. If n = 0, there is only
one opinion (NULL, a, p) with implicit target detected from
S, otherwise there are n opinions (t, a, p) detected from S
for t a subsequence output by the second subproblem.

The TAS-BERT Model

We propose a neural based model for solving the afore-
mentioned two subproblems together. In order to guarantee
a high prediction performance, the model is built upon
a pre-trained language model BERT (Devlin et al. 2019)
and is named TAS-BERT.1 The proposed model consists
of five components, including a BERT encoder, two linear
fully-connected (FC) layers, a softmax decoder for binary
classification of “yes/no”, and either a conditional random
field (CRF) decoder (Ma and Hovy 2016) or a softmax
decoder for sequence labeling, as shown in Figure 2.

The training set of the TASD task is given by a set of
sentence-opinion pairs where one sentence corresponds to
multiple opinions. In order to learn the proposed model over
the training set, we need to preprocess the training set to
obtain a tuple (S, a, p, f,T) for every combination of S, a
and p, where S is a sentence in the training set, a an aspect
appearing in the training set, p a sentiment appearing in the
training set, f a “yes/no” label, and T is a sequence of labels
in either the BIO or the TO tagging scheme. The label f and
the label sequence T are constructed as follows. Suppose
(t1, a, p), . . . , (tk, a, p) are all opinions corresponding to S
in the training set where k can be zero. If k = 0, we set f as

1Code and experimental datasets for TAS-BERT are available
at https://github.com/sysulic/TAS-BERT
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“no” and construct T as an all-O label sequence with length
n where n is the number of words in S no matter which
tagging scheme is used. Otherwise, we set f as “yes” and
encode the k targets t1, . . . , tk to a label sequence T using
the specified tagging scheme. We always treat the implicit
target NULL as the last target tk. In case two targets ti and
tj (where i < j) have overlapped words, we ignore the latter
target tj . In case the implicit target exists, we construct T as
an all-O label sequence if the implicit target is t1, or ignore
the implicit target otherwise. According to the restaurant
datasets published by SemEval-2015 Task 12 (Pontiki et al.
2015) and SemEval-2016 Task 5 (Pontiki et al. 2016), this
preprocessing step ignores only a very few opinions and can
retain as many implicit target cases as possible.

In the training phase, when given a tuple (S, a, p, f,T)
for S a sentence consisting of n words s1, . . . , sn, a
an aspect, p a sentiment, f a “yes/no” label and T
a label sequence, we first construct a token sequence
“[CLS], s1, · · · , sn,[SEP], a1, · · · , am, p,[SEP]” composed
of n + m + 4 tokens, where a1, · · · , am are words that
constitute a, and [CLS] and [SEP] are tokens specifically in-
troduced in BERT. This token sequence is fed into the BERT
encoder, outputting a sequence of d-dimensional vectors
T[CLS], Ts1 , . . . , Tsn , T[SEP ],1, Ta1

, . . . , Tam
, Tp, T[SEP ],2

at the final layer of BERT, where the two [SEP] tokens
correspond to two different vectors T[SEP ],1 and T[SEP ],2.

The first vector T[CLS] is used to predict a “yes/no” label
through a FC layer followed by a softmax decoder. More
precisely, the probability distribution vector g ∈ R

2 on the
“yes/no” label is defined below.

P[CLS] = tanh(W1T[CLS] + b1) (1)
g = softmax(P[CLS]) (2)

where W1 ∈ R
d×2 and b1 ∈ R

2 are trainable parameters.
The next n vectors Ts1 , . . . , Tsn are used to predict a label

sequence in the specified tagging scheme. These vectors are
fed into another FC layer followed by a CRF decoder or a
softmax decoder. In more details, the vector Psi computed
from TSi (where 1 ≤ i ≤ n) by the FC layer is defined as

Psi = tanh(W2Tsi + b2) (3)

where W2 ∈ R
d×o and b2 ∈ R

o are trainable parameters,
and where o = 3 if the BIO tagging scheme is used or o = 2
if the TO tagging scheme is used.

In case a CRF decoder is used, the probability for
predicting a label sequence T, denoted by p(T | P), can
be computed in the way presented by (Ma and Hovy 2016),
where P is a n × o matrix composed of Ps1 , . . . , Psn . In
case a softmax decoder is used, the probability distribution
vector hi ∈ R

o (where 1 ≤ i ≤ n) on the ith label in T is
defined as softmax(Psi).

The loss value for predicting the “yes/no” label f is
defined as

lossg = −
2∑

i=1

I(yn(i) = f) log(gi) (4)

where gi is the ith element of g, yn(1) = yes, yn(2) = no,
and I(X) = 1 if X is true or I(X) = 0 otherwise.

The loss value for predicting the label sequence T =
〈t1, . . . , tn〉 is defined as

lossh = − log(p(T | P)) (5)
if a CRF decoder is used; otherwise, it is defined as

lossh = −
n∑

i=1

o∑

j=1

I(map(j) = ti) log(hij) (6)

where hij is the jth element of hi, and map(1) = B,
map(2) = I, map(3) = O when the BIO tagging scheme is
used, or map(1) = T, map(2) = O when the TO tagging
scheme is used.

The proposed TAS-BERT model is trained by minimizing
the following combined loss function over all training tuples.

loss =

N∑

i=1

lossg
i + lossh

i (7)

where N is the number of training tuples, and lossg
i and

lossh
i denote the two loss values for the ith training tuple.

In the prediction phase, when a sentence S is given, we
construct a triple (S, a, p) for every aspect a appearing in
the training set and every sentiment p appearing in the train-
ing set. Afterwards, we feed (S, a, p) into the TAS-BERT
model, yielding a “yes/no” label for the first subproblem as
well as a possibly empty set of subsequences of S for the
second subproblem. Finally, we apply the method described
in the previous subsection to merge the results of the two
subproblems and to obtain opinions for (S, a, p).

Experiments

Datasets

We conducted experiments on two datasets in the restaurant
domain, where one (denoted Res15) is from SemEval-2015
Task 12 and the other (denoted Res16) is from SemEval-
2016 Task 5. Although most existing studies experimented
on the dataset from SemEval-2014 Task 4, we did not use
this dataset since it does not provide target-aspect-sentiment
triples and is unsuitable for the TASD task.

Table 1 reports the statistics on the two experimental
datasets. These statistics reveal the limitations of most
subtasks of TASD. The TSD task and the TD task ignore
all opinions with implicit targets. This is a crucial limitation
since there are about one fourth of opinions that have
implicit targets. All opinions can be grouped by the same
sentence and the same target. We call every resulting group
a target-sharing opinion group. It can be seen from the table
that there exist some target-sharing opinion groups that have
multiple sentiments. Since the TSD task does not consider
aspects, any method for TSD is impossible to predict com-
pletely correct sentiments for multi-sentiment target-sharing
opinion groups. On the other hand, all opinions can also
be grouped by the same sentence and the same target. We
call every resulting group a aspect-sharing opinion group.
It can also be seen that there exist some aspect-sharing
opinion groups that have multiple sentiments. Since the
ASD task does not consider targets, any method for ASD
is impossible to predict completely correct sentiments for
multi-sentiment aspect-sharing opinion groups.
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Table 1: The statistics on Res15 and Res16.
Sentences Opinions target-sharing opinion groups aspect-sharing opinion groups

Datasets all opinions opinions with implicit targets all groups multi-sentiment groups all groups multi-sentiment groups

Res15 Train 1315 1654 375 (22.67%) 1545 22 (1.42%) 1478 27 (1.83%)
Test 685 845 248 (29.35%) 761 21 (2.76%) 775 14 (1.81%)

Res16 Train 2000 2507 627 (25.01%) 2312 44 (1.90%) 2258 42 (1.86%)
Test 676 859 208 (24.21%) 810 16 (1.98%) 743 8 (1.08%)

Experimental Setup

In our experiments, we considered both the BIO and the TO
tagging schemes. Since the CRF decoder in our TAS-BERT
model only works well for tagging schemes that have
transition constraints, we only considered the combination
of the CRF decoder and the BIO tagging scheme as well
as the combination of the softmax decoder and the TO
tagging scheme. In addition, the restaurant datasets contain
a number of words that are out of the vocabulary of the
pre-trained language model BERT2, thus we considered
two methods for dealing with the unknown words. One
method is replacing an unknown word with the longest
prefix match in the vocabulary, called the Longest Prefix
Match (LPM) method. The other method is splitting an
unknown word into several recognizable words based on the
vocabulary, called the Split Word (SW) method. Hence, we
obtained four variants of the proposed model, denoted by
TAS-BERT-LPM-BIO-CRF, TAS-BERT-LPM-TO, TAS-
BERT-SW-BIO-CRF and TAS-BERT-SW-TO, respectively.
To train these models, we set the dropout probability as 0.1
for all layers, the max sequence length as 128, the learning
rate as 2e-5, and the maximum number of epochs as 30.

Comparison Methods

We compared our method with the following methods on
the TASD task and all its subtasks.3

• E2E-TBSA: E2E-TBSA (Li et al. 2019) is a unified
model for TSD. We used the published code to evaluate
on Res15 and Res16.

• DOER: DOER (Luo et al. 2019b) is a dual cross-shared
RNN model for TSD. We used the published code to eval-
uate on Res15 and Res16.

• BERT-pair-NLI-B: BERT-pair-NLI-B (Sun, Huang, and
Qiu 2019) is a BERT based model for ASD. We used the
published code to evaluate on Res15 and Res16 for both
ASD and its subtask AD.

• SemEval-Top: SemEval-Top represents the the best
scores in the SemEval competitions. They involve three
subtasks AD, TD and TAD.

• MTNA: MTNA (Xue et al. 2017) is a multi-task model
based on RNN and CNN. The paper reported results on
Res15 and Res16 for both AD and TD.
2We used the uncased BERT base model available at https://

github.com/google-research/bert.
3We cannot reproduce the reported results of TAN and DE-

CNN due to problems in the published code, thus we only give
the reported results for Res16 alone in Table 2.

• TAN: TAN (Movahedi et al. 2019) is a neural model with
the multi-attention mechanism for AD. The paper only re-
ported results on Res16.

• Sentic LSTM + TA + SA: It (Ma, Peng, and Cambria
2018) augments the LSTM network with target-level at-
tention and sentence-level attention. The source code is
not provided and the paper only reported results on Res15.

• DE-CNN: DE-CNN (Xu et al. 2018) is a CNN model for
TD. The paper only reported results on Res16.

• THA + STN: THA + STN (Li et al. 2018) is neural model
for TD with a bi-linear attention layer and a FC layer. The
paper reported results on both Res15 and Res16.

• BERT-PT: BERT-PT (Xu et al. 2019) is a BERT based
model for TD. We used the published code to evaluate on
both Res15 and Res16.

• baseline-1-f lex: baseline-1-f lex (Brun and Nikoulina
2018) is a pipeline method for TASD. The source code is
not provided and the paper only reported results on Res15
for both TASD and its subtask ASD.

For all BERT based methods including ours, we used the
same BERT model. For ASD, TAD, AD and TASD, we eval-
uated on the full datasets. For TD and TSD, we evaluated on
the partial datasets without implicit targets. In particular for
TSD, since existing methods are unable to handle opinions
with implicit targets while our method can, we evaluated
our method on both the full datasets and the partial datasets.

Result Analysis

We used micro-F1 score (in percent) as the evaluation metric
for all tasks. For the four variants of our method, we used
the output of the TASD task to estimate the corresponding
micro-F1 scores for all subtasks of TASD. The comparison
results are reported in Table 2.

• Results on ASD: Currently, there are fewer studies on
ASD. The baseline-1-f lex method performs poorly, prob-
ably because the linguistic features are extracted from
an NLP pipeline, which leads to error accumulation for
the joint task. BERT-pair-NLI-B, which subtly transforms
the problem of ASD into a binary classification problem,
achieves significantly better results. However, it adopts
the assumption that the sentiment depends on the aspect
alone, thus it cannot work correctly for multi-sentiment
aspect-sharing opinion groups and cannot make use of
the dependence relationship between targets and aspects
to further improve the performance. All four variants of
our method except TAS-BERT-LPM-BIO-CRF on Res16
achieve better results than comparison methods.
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Table 2: Comparison results for six tasks on ABSA, where “-” denotes unreported results. For the TSD task, scores outside
brackets are for test sets without implicit targets, whereas scores in brackets are for the full test sets.

ASD TSD TAD

Method Res15 Res16 Method Res15 Res16 Method Res15 Res16

baseline-1-f lex - 63.50 E2E-TBSA 53.00 63.10 SemEval-Top 42.90 52.61
BERT-pair-NLI-B 63.67 72.70 DOER 56.33 65.91

TAS-BERT-LPM-BIO-CRF 65.07 72.08 TAS-BERT-LPM-BIO-CRF 64.49 (63.25) 73.42 (70.70) TAS-BERT-LPM-BIO-CRF 61.09 70.93
TAS-BERT-LPM-TO 67.75 73.87 TAS-BERT-LPM-TO 63.82 (62.85) 69.29 (67.94) TAS-BERT-LPM-TO 60.86 67.55
TAS-BERT-SW-BIO-CRF 68.50 74.12 TAS-BERT-SW-BIO-CRF 66.11 (64.29) 75.68 (72.92) TAS-BERT-SW-BIO-CRF 63.37 71.64
TAS-BERT-SW-TO 70.42 76.33 TAS-BERT-SW-TO 64.84 (65.02) 73.34 (71.02) TAS-BERT-SW-TO 62.60 69.98

AD TD TASD

Method Res15 Res16 Method Res15 Res16 Method Res15 Res16

SemEval-Top 62.68 73.03 SemEval-Top 70.05 72.34 baseline-1-f lex - 38.10
MTNA 65.97 76.42 MTNA 67.73 72.95
Sentic LSTM + TA + SA 73.82 - DE-CNN - 74.37
TAN - 78.38 THA + STN 71.46 73.61
BERT-pair-NLI-B 70.78 80.25 BERT-PT 73.15 77.97

TAS-BERT-LPM-BIO-CRF 73.74 81.12 TAS-BERT-LPM-BIO-CRF 74.10 79.77 TAS-BERT-LPM-BIO-CRF 54.76 64.66
TAS-BERT-LPM-TO 74.22 81.67 TAS-BERT-LPM-TO 72.17 75.15 TAS-BERT-LPM-TO 55.47 62.29
TAS-BERT-SW-BIO-CRF 76.34 81.57 TAS-BERT-SW-BIO-CRF 75.00 81.37 TAS-BERT-SW-BIO-CRF 57.51 65.89
TAS-BERT-SW-TO 76.40 82.77 TAS-BERT-SW-TO 71.54 78.10 TAS-BERT-SW-TO 58.09 65.44

• Results on TSD: Existing studies on TSD often perform
joint extraction of targets and sentiments by transforming
TSD into a sequence labeling problem. Based on this idea,
both E2E-TBSA and DOER are unable to distinguish ab-
sence of opinions from opinions with implicit targets. On
the contrary, our TAS-BERT model makes use of the re-
sult from a binary classification problem to distinguish
absence of opinions from opinions with implicit targets,
thus it can work correctly for opinions with implicit tar-
gets. All four variants of our method achieve significantly
better results than comparison methods.

• Results on TAD: Due to little work on TAD, we can only
compare the results achieved by our method with the best
results in the SemEval competitions. All four variants of
our method achieve significantly better results than the
champions in the SemEval competitions.

• Results on AD and TD: Almost all four variants of our
method achieve better results than comparison methods.
This confirms that the dependence relationship between
aspects and targets helps both aspect detection and target
detection. In particular, a method for pure AD cannot dis-
tinguish different aspects for different targets in the same
sentence, while a method for pure TD cannot distinguish
different targets for different aspects in the same sentence.

• Results on TASD: There is little work on this task, and
the only method baseline-1-f lex that we can find only
evaluated on Res16. baseline-1-f lex uses the linguistic
features obtained from a NLP pipeline and extracts three
elements of an opinion separately. All four variants of our
method achieve much better results than this baseline.

In addition, by comparing the results achieved by the
four variants of our method, we can see that SW methods
always outperforms LPM methods in dealing with unknown
words. When target extraction is not involved, namely in the
AD and ASD tasks, TAS-BERT-SW-TO achieves the best
results. When target extraction is involved, namely in the

Table 3: Comparison results between our proposed joint
model and the separate models. C1 refers to the micro-F1
score (in percent) on the full dataset; C2 refers to the micro-
F1 score (in percent) on the partial dataset consisting of
opinions with implicitly targets only; C3 refers to the ratio
(in percent) of occurrences of all-O sequences in case “no”
is predicted.

Res15 Res16

Method C1 C2 C3 C1 C2 C3

TAS-BERT-LPM-BIO-CRF separate 52.03 40.00 98.84 60.33 41.95 99.03
joint 54.76 43.21 98.86 64.66 49.63 99.00

TAS-BERT-LPM-TO separate 51.45 40.64 98.86 61.71 45.96 98.98
joint 55.47 44.50 98.96 62.29 49.52 99.08

TAS-BERT-SW-BIO-CRF separate 55.24 43.45 98.86 62.42 44.83 99.11
joint 57.51 45.75 98.96 65.89 50.59 99.08

TAS-BERT-SW-TO separate 53.92 46.63 98.97 62.90 45.78 99.07
joint 58.09 51.33 99.03 65.44 51.61 99.16

TD, TSD, TAD and TASD tasks, TAS-BERT-SW-BIO-CRF
almost achieves the best results except in two cases on
Res15. We conjecture that it is due to the fact that the pro-
portion of opinions with implicit targets on Res15 is larger
than that on Res16. It is likely that the combination of the
TO tagging scheme and the softmax decoder outperforms
the combination of the BIO tagging scheme and the CRF
decoder in handling opinions with implicit targets.

Ablation Study

A straightforward weakened variant of our method can be
obtained by separately training two models for the first sub-
problem (namely “yes/no” classification) and for the second
subproblem (namely sequence labeling), respectively, and
by combining the results output by the two models to form
opinions, where the first model minimizes lossg defined in
Equation (4) and the second model minimizes lossh defined
in Equation (5) or (6) for all training tuples.

We compared our method with this weakened variant on
four different settings that correspond to the aforementioned
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Table 4: The results of our method vs. the results of two best existing methods (DOER for TSD task, BERT-pair-NLI-B for
ASD task). Underlined sentiments in are incorrect while words in italic outline the reason why no relevant prediction is made.

Text Gold Method Prediction Type

lobster was good, nothing spectacular. {lobster, FOOD#QUALITY, neutral}
DOER {lobster, positive} Error-3

BERT-pair-NLI-B {FOOD#QUALITY, negative} Error-2

Our method {lobster, FOOD#QUALITY, neutral} Correct

In fact, many want to return a second
time during their visit. {NULL, RESTAURANT#GENERAL, positive}

DOER unable to find opinions with implicit targets Error-1

BERT-pair-NLI-B {RESTAURANT#GENERAL, negative} Error-2

Our method {NULL, RESTAURANT#GENERAL, positive} Correct

Always busy, but they are good at seating
you promptly and have quick service.

{service, SERVICE#GENERAL, positive} DOER {service, positive}
unable to find opinions with implicit targets

Correct
Error-1

{NULL, SERVICE#GENERAL, positive} BERT-pair-NLI-B {SERVICE#GENERAL, positive}
removed due to duplication

Correct
Error-2

Our method {service, SERVICE#GENERAL, positive}
removed due to conflicts between targets

Correct
Error-4

four variants of our method. The comparison results are
reported in Table 3. It can be seen that, our method signif-
icantly outperforms the weakened variant on both the full
datasets and the partial datasets that consist of opinions with
implicit targets only. In addition, for both methods the ratio
of occurrences of all-O sequences in case “no” is predicted
is always very high, and the two methods are comparable in
this metric. These results show that the joint training frame-
work in our method is superior to the traditional separate
training mechanism. They further demonstrate the effec-
tiveness of exploiting the dependence relationship between
targets and aspects in target-aspect-sentiment detection.

Case Study

We observed four main error types. The type Error-1 is the
ignorance of opinions with implicit targets. The type Error-2
is the ignorance of targets. The type Error-3 is the ignorance
of aspects. The type Error-4 is the conflict between different
targets which happens when the aspect and the sentiment
are the same and either the targets are overlapped or one
of multiple targets is NULL. We select three representative
examples to compare our method with two state-of-the-art
methods DOER and BERT-pair-NLI-B, as shown in Table 4.

As for the first example, the sentiment should be pre-
dicted based on both the target and the aspect. However,
DOER only gives a prediction of sentiments based on the
target “lobster” whereas BERT-pair-NLI-B just takes aspect
“FOOD#QUALITY” into consideration. This ignorance
of targets or aspects leads to false sentiment prediction in
DOER and BERT-pair-NLI-B. In contrast, our method can
capture the dual dependence of sentiments on both targets
and aspects and predict the correct sentiments.

When it comes to the second example, DOER is unable to
find opinions with implicit targets, while BERT-pair-NLI-B
is unable to give correct prediction due to ignorance of
targets. Our method, in contrast, can deal with the opinion
with implicit target in a correct way.

As for the third example, “service” and implicit target
appear simultaneously. DOER just provides one predic-
tion since it is unable to handle implicit targets. When
“service” and implicit target refer to the same aspect
“SERVICE#GENERAL”, BERT-pair-NLI-B gives only one

prediction, which is not completely correct either. Since
a conflict between targets happens when the aspect and
the sentiment are the same while one of multiple targets is
NULL, our method fails to detect the opinion with implicit
target. This failure is caused by data construction in our
method. There should exist optimizations to tackle this kind
of failure cases but they are beyond the scope of this paper.

Conclusions and Future Work

In order to capture the dual dependence of sentiments on
both targets and aspects and to handle implicit target cases
in aspect-based sentiment analysis, we have proposed a
novel method for target-aspect-sentiment joint detection.
It reduces the joint detection problem to binary text classi-
fication problems and sequence labeling problems, solved
by the proposed TAS-BERT model which is built upon the
pre-trained language model BERT. Experimental results on
the SemEval-2015 and SemEval-2016 restaurant datasets
demonstrate that our method achieves a high performance
in detecting target-aspect-sentiment triples even for the im-
plicit target cases and outperforms the state-of-the-art meth-
ods for five subtasks of target-aspect-sentiment detection.

For future work, we will enhance the proposed method by
optimizing data construction and further improve the perfor-
mance in joint detection.
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