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Abstract

As a special machine translation task, dialect translation has
two main characteristics: 1) lack of parallel training cor-
pus; and 2) possessing similar grammar between two sides
of the translation. In this paper, we investigate how to ex-
ploit the commonality and diversity between dialects thus to
build unsupervised translation models merely accessing to
monolingual data. Specifically, we leverage pivot-private em-
bedding, layer coordination, as well as parameter sharing to
sufficiently model commonality and diversity among source
and target, ranging from lexical, through syntactic, to seman-
tic levels. In order to examine the effectiveness of the pro-
posed models, we collect 20 million monolingual corpus for
each of Mandarin and Cantonese, which are official language
and the most widely used dialect in China. Experimental re-
sults reveal that our methods outperform rule-based simpli-
fied and traditional Chinese conversion and conventional un-
supervised translation models over 12 BLEU scores.

Introduction

Dialect refers to a variant of a given language, which could
be defined by factors of regional speech patterns, social class
or ethnicity (Lyons 1981). Except for pronunciation, a di-
alect is also distinguished by its textual expression (Wong
and Lee 2018). For instance, Mandarin (MAN) and Can-
tonese (CAN) are the official language and the most widely
used dialect of China, respectively (Lee and Wong 1998). As
seen in Fig. 1, although the sentences have absolutely same
semantic meaning, they have distinct attributes with respect
to the expression on text. Correspondingly, in this task we
attempt to build automatic translation system for dialects.

An intuitive way is to leverage advanced machine transla-
tion systems which have recently yielded human-level per-
formance with the use of neural networks (Chen et al. 2018;
Li et al. 2018). Nevertheless, contrast with traditional ma-
chine translation, there are two main challenges in dialect
translation. First, the success of supervised neural machine
translation depends on large-scale training parallel data,
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CAN
nei yaugeiho faan ngukkei jamdaam tong sin 

MAN
ni nande hui jia xian hekou tang 

Figure 1: An example of CAN-MAN translation.

while dialect translation is not equipped such kind of pre-
requisite. This makes our task fall into unsupervised learn-
ing category (Artetxe et al. 2018; Lample et al. 2018a;
2018c). Second, dialects are closely related and, despite their
differences, often share similar grammar, e.g. morphology
and syntax (Chambers and Trudgill 1998). The extraction of
commonality is beneficial to unsupervised mapping (Lam-
ple et al. 2018b) and model robustness (Firat, Cho, and Ben-
gio 2016), in the meanwhile, preserving the explicit diversity
plays a crucial role in our dialect translation. Consequently,
it is challenging to balance the commonality and diversity
for dialect translation thus to improve its performance.

We approach the mentioned problems by proposing un-
supervised neural dialect translation model, which is merely
trained using monolingual corpus and sufficiently leverage
commonality and diversity of dialects. Specifically, we train
an advanced NMT model TRANSFORMER (Vaswani et al.
2017) with denoising reconstruction (Vincent et al. 2008)
and back-translation (Sennrich, Haddow, and Birch 2016a),
which aim at building common language model and map-
ping different attributes, respectively. We introduce several
strategies into translation model for balancing the common-
ality and diversity: 1) parameter-sharing that forces dialects
to share the same latent space; 2) pivot-private embedding
which models similarities and differences at lexical level;
and 3) layer coordination which enhances the interaction of
features between two sides of translation.

In order to evaluate the effectiveness of the proposed
model, we propose monolingual dialect corpus which con-
sists of 20 million colloquial sentences for each of MAN1

and CAN. The sentences are extracted from conversations
and comments in forums, social medias as well as subti-

1For simplification, we regard official language as a dialect.
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tles, and carefully filtered during data preprocessing.2 Em-
pirical results on two directions of MAN-CAN translation
task demonstrate that the proposed model significantly out-
performs existing unsupervised NMT (Lample et al. 2018c)
with even fewer parameters. The quantitative and qualitative
analyses verified the necessity of commonality and diversity
modeling for dialect translation.

Preliminary

Neural machine translation (NMT) aims to use a neural net-
work to build a translation model, which is trained to max-
imize the conditional distribution of sentence pairs (Bah-
danau, Cho, and Bengio 2015; Sennrich, Haddow, and Birch
2016b; Vaswani et al. 2017). Given a source sentence X =
{x1, · · · ,xI}, conditional probability of its corresponding
translation Y = {y1, · · · ,yJ} is defined as:

P(Y|X) =

|J|∏

j=1

P(yj |Y<j ,X; θ), (1)

where yj indicates the j-th target token. θ denotes the pa-
rameters of NMT model, which are optimized to minimize
the following loss function over the training corpus D:

L = E(X,Y)∼D[− logP(Y|X; θ)] (2)

Such kind of auto-regressive translation process is
generally achieved upon the encoder-decoder frame-
work (Sutskever, Vinyals, and Le 2014). Specifically, the in-
puts of encoder S0 and decoder T0 are obtained by looking
up source and target embeddings according to the input sen-
tences X and Y, respectively:

S0 = Embsrc(X) ∈ R
I×d (3)

T0 = Embtrg(Y) ∈ R
J×d (4)

where d indicates the dimensionality. The encoder is com-
posed of a stack of N identical layers. Given the input layer
Sn−1 ∈ R

I×d, the output of the n-th layer can be formally
expressed as:

Sn = Layernenc(S
n−1) ∈ R

I×d (5)

The decoder is also composed of a stack of N identical lay-
ers. Contrary to the encoder which takes all the tokens into
account, the decoder merely summarizes the forward repre-
sentations in the input layer Tn−1 ∈ R

J×d at each decod-
ing step, since the subsequent representations are invisible.
Besides, the generation process considers the contextual in-
formation of source sentence, by feeding the top layer of the
encoder SN . Accordingly, the j-th representation in n-th de-
coding layer Tn = {tn1 , · · · , tnJ} is calculated as:

tnj = Layerndec(T
n−1
�j ,Attn(tn−1

j ,SN )) ∈ R
d (6)

where Att(·) indicates the attention model (Bahdanau, Cho,
and Bengio 2015) which has recently been a basic module
to allow a deep learning model to dynamically select related

2Our codes and data are released at: https://github.com/
NLP2CT/Unsupervised Dialect Translation.

representations as needed. Finally, the conditional probabil-
ity of the j-th target word yj is calculated using a non-linear
function Softmax(·):

P(yj |Y<j ,X; θ) = Softmax(Proj(tNj )) (7)

In this section, we propose unsupervised neural dialect
translation. We first serve the dialect translation as an unsu-
pervised learning task to tackle with the low-resource prob-
lem. Moreover, concerning the commonality and diversity
between dialects, we introduce pivot-private embedding and
layer coordinating to improve the dialect translation model.

Dialect Translation with Unsupervised Learning

Despite the success of NMT over past years, the perfor-
mance of a NMT model relies on large-scale parallel train-
ing corpus (Sennrich, Haddow, and Birch 2016a; Artetxe et
al. 2018). As a low-resource translation task, dialect transla-
tion fails at leveraging conventional training strategy, since
parallel resources are normally inaccessible. The scarcity of
bilingual corpus leads to extraordinary challenging on build-
ing translation models for dialects. On the contrary, mono-
lingual corpora is relatively easier to be collected. Partially
inspired by recent studies on unsupervised NMT (Lample
et al. 2018a; Artetxe et al. 2018; Lample et al. 2018c), we
propose to build dialect translation model with unsupervised
learning which merely depends on monolingual data. Gen-
erally, most of the features with respect to dialects are simi-
lar, while only a few of the surface information is different.
To this end, we propose to divide the training process into
two parts: 1) commonality modeling which learns to capture
general features of all dialects; and 2) diversity modeling
which builds connections between different expressions.

Commonality Modeling This procedure aims at offer-
ing our model the ability to extract the universal features
of two dialects. Intuitively, the commonality modeling can
be trained by reconstructing two dialects using one model.
Artetxe et al. (2018) and Lample et al. (2018a) suggest that
denoising autoencoding is beneficial to the language model-
ing. More importantly, it can avoid our model from severely
copying the input sentence to the output. Contrary to Artetxe
et al. (2018) and Lample et al. (2018a) who employ distinct
model for each language, we train one model for both the
two dialects, thus to encourage different dialects to be mod-
eled under a common latent space. Consequently, the loss
function is defined as:

Lcom =EX∼DX
[− logP(X|Xnoise; θ)]+

EY∼DY
[− logP(Y|Ynoise; θ)] (8)

where DX and DY are monolingual corpora for two di-
alects, Xnoise and Ynoise denote noised inputs.3 As seen,
the two reconstruction models are shared with the same pa-
rameter θ.

3We add noises to inputs by swapping, dropping and blanking
words following Lample et al. (2018a), except that we swap two
words rather than three, which shows better empirical results in
our experiments.
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(a) Conventional NMT model.
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(b) The proposed model.

Figure 2: Illustration of (a) conventional NMT model and (b) the proposed model. As seen, we propose pivot-private embedding,
which learns commonality (Embpi) and diversity (Embprsrc and Embprtrg) at lexical level. Besides, the decoder attends to source
representations layer by layer, rather than merely from the topmost layer.

Diversity Modeling Although there is marginal differ-
ence between dialects, the transfer of diversity is the key
problem of dialect translation. Contrast to supervised NMT
model which learns relevance between source and target
using parallel data, dialect translation model fails to di-
rectly establish the functional mapping from source la-
tent space to target one. An alternative way is to exploit-
ing back-translation (Sennrich, Haddow, and Birch 2016a;
Edunov et al. 2018). Specifically, X and Y are first trans-
lated to their candidate translation Ybak and Xbak, respec-
tively. The mapping of cross-dialect latent spaces can be
learned by minimizing:

Ldiv =EX∼DX
[− logP(X|Ybak; θ)]+

EY∼DY
[− logP(Y|Xbak; θ)] (9)

Finally, the loss function in Equation 2 is modified as:

L = λcomLcom + λdivLdiv (10)

where λcom, λdiv are hyper-parameters balancing the impor-
tance of commonality and diversity modeling, respectively.

Pivot-Private Embedding

An open problem in unsupervised NMT is the initialization
of the translation model, which plays a crucial role in the it-
eratively training (Lample et al. 2018a; Artetxe et al. 2018)
and affects the final performance of the unsupervised learn-
ing (Lample et al. 2018c). For two languages with different
vocabularies, an usual solution in recent studies is to map
the same tokens which are then cast as seeds for aligning
other words (Artetxe et al. 2018; Lample et al. 2018a). For
example, Artetxe et al. (2018) employ unsupervised bilin-
gual word embeddings (Artetxe, Labaka, and Agirre 2017),
while Lample et al. (2018c) utilize the representations of
shared tokens (Mikolov et al. 2013) in different languages
to initialize the lookup tables. Fortunately, dialect transla-
tion dispels this problem since most of tokens are shared

among dialects. Therefore, we propose pivot and private em-
bedding, in which, the former learns to share a part of the
features while the latter captures the word-level characteris-
tics in different dialects.

Pivot Embedding Since vocabularies in different dialects
are almost the same, we join monolingual corpora of two di-
alects and extract all the tokens in it. In order to build the
connections between source and target, we assign pivot em-
bedding with ds dimensions as the initial alignments:

Spi = Embpi(X) ∈ R
I×ds (11)

Tpi = Embpi(Y) ∈ R
J×ds (12)

where the function of looking up embedding Embpi(·)
shares parameters across dialects.

Private Embedding Except the common features, there
also exists differences between dialects. We argue that such
kind of difference mainly lies in the word-level surface in-
formation. To this end, we introduce private embedding for
each translation side to distinguish and maintain the charac-
teristics in dialects:

Spr = Embprsrc(X) ∈ R
I×(d−ds) (13)

Tpr = Embprtrg(Y) ∈ R
J×(d−ds) (14)

Contrary to pivot embedding, Embprsrc(·) and Embprtrg(·) are
assigned distinct parameters. Thus, the final input embed-
ding in Equation 3 and 4 are modified as:

S0 = Spr ⊕ Spi ∈ R
I×d (15)

T0 = Tpr ⊕ Tpi ∈ R
J×d (16)

where ⊕ is the concatenation operator. Note that, since each
token has ds and d − ds dimensions for the associate pivot
embedding and private embedding, the final input is still
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composed of d-dimensional vector. Embpi(·), Embprsrc(·)
and Embprtrg(·) are all pretrained, and co-optimized un-
der the translation objective. In this way, we expect that
pivot embedding can enhance the commonality of transla-
tion model, while private embedding raises the ability to
capture the diversity of different dialects (Liu et al. 2019).

Layer Coordination

Recent studies have pointed out that multiple neural net-
work layers are able to capture different types of syntactic
and semantic information (Peters et al. 2018; Li et al. 2019).
For example, Peters et al. (2018) demonstrate that higher-
level layer states capture the context-dependent aspects of
word meaning while lower-level states model the aspects
of syntax, and simultaneously exposing all of these signals
is highly beneficial. To sufficiently interact these features,
an alternative way is to perform attention from a decoder
layer to its corresponding encoder layer, rather than merely
from the topmost layer. Accordingly, the n-th decoding layer
(Equation 6) is changed to:

tnj = Layerndec(T
n−1
�j ,Attn(tn−1

j ,Sn)) ∈ R
d (17)

This technique has been proven effective (He et al. 2018;
Yang et al. 2019a; Hao et al. 2019) upon NMT tasks via
shortening the path of gradient propagation, thus stabilizes
the training of a extremely deep model. However, the im-
provements on traditional translation tasks become marginal
when we apply layer coordination to the models with less
than 6 layers (He et al. 2018). We attribute this to the fact
that directly interacting lexical and syntactic level informa-
tion between different languages affects the diversity mod-
eling of them, since it forces the two languages to share the
same latent space layer by layer. Different from prior stud-
ies, our work focuses on a pair of languages which have ex-
tremely similar grammar. We examine whether layer coor-
dination is conductive to commonality modeling of dialects
and the translation quality.

Datasets

In this section, we first introduce the CAN and MAN datasets
collected for our experiments, then show adequate rudimen-
tary statistical results upon training corpora.

Monolingual Corpora The lack of CAN monolingual cor-
pora with strong colloquial features is serious obstacle in
our research. Existing CAN corpora, such as HKCanCor
(Luke and Wong 2015) and CANCORP (Lee and Wong
1998), all have the following shortcomings: 1) they were col-
lected in rather early years, the linguistic features of which
vary from the current ones due to language evolution; and
2) they are scarce for data-intensive unsupervised training.
Due to the fact that colloquial corpora possess more dis-
tinguished linguistic features of CAN, we collect CAN sen-
tences among domains including talks, comments and dia-
logues from scratch.4 In order to maintain the consistency

4https://www.wikipedia.org, https://www.cyberctm.com, http://
discuss.hk and https://lihkg.com.

Dialect # Sents Vocab size Unique
CAN 20M 9,025 541
MAN 20M 8,856 372

Table 1: Statistics of two monolingual corpora after pre-
processing. We conduct experiment at character-based level,
and the joint vocabulary size is exactly 9,397.

of training sets, MAN corpora are also derived from same
domains as CAN from ChineseNlpCorpus and Large Scale
Chinese Corpus for NLP.5

Parallel Corpus We collect adequate parallel corpora for
the development and evaluation of models. Parallel sentence
pairs from dialogues are manually selected by native CAN
and MAN speakers. Consequently, 1,227 and 1,085 sentence
pairs are selected as development and test set, respectively.

Data Preprocessing & Statistics As there is no well-
performed CAN segment toolkit, we conduct all the experi-
ments at character level. In order to share the commonality
of both languages and reduce the size of vocabularies, we
convert all the texts into simplified Chinese.6 For reasons
of computational efficiency, we keep the sentences whose
length lies between 4 and 32, and remove sentences compos-
ing characters with low frequencies. Finally, each of MAN
and CAN monolingual training corpora consists of 20M sen-
tences. The statistics of training set are concluded in Tab. 1.
As seen, CAN has larger vocabulary size and more unique
characters than MAN. To identify the commonality and di-
versity of CAN and MAN, we compute the Spearman’s rank
correlation coefficient (Zhelezniak et al. 2019) between two
vocabulary rankings by their frequencies within each cor-
pus. The coefficient score of two full vocabularies is 0.81
(p < 0.001), meaning that the overall relation is signifi-
cantly strong. While the coefficient score of the 250 most
frequent tokens is 0.26 (p < 0.001), indicating that the rela-
tion is significantly weak. These results cater to our hypoth-
esis that dialects share considerate commonality with each
other, but possess diversity upon most frequent tokens.

Experiments

Experimental Setting

We use TRANSFORMER (Vaswani et al. 2017) as our model
architecture, and follow the base model setting for our model
dimensionalities. We refer to the parameter setting of Lam-
ple et al. (2018c), and implement our approach on top of
their source code.7 We use BLEU score as the evaluation

5https://github.com/brightmart/nlp chinese corpus and https://
github.com/SophonPlus/ChineseNlpCorpus.

6We also attempt to transform all the texts into traditional char-
acters. It does not work well since some simplified characters has
multiple corresponding traditional characters and such kind of one-
to-many mapping results in ambiguity and data sparsity.

7https://github.com/facebookresearch/UnsupervisedMT
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Model CAN⇒MAN MAN⇒CAN # Params (M)
Baseline

Character-level Rule-based Transition 42.18 42.27 -
Unsupervised Style Transfer (Hu et al. 2017) 41.97 42.03 14.40
Unsupervised PB-SMT (Lample et al. 2018c) 42.12 42.20 -
Unsupervised NMT (Lample et al. 2018c) 42.90 42.39 39.08

Ours
Layer Coordination 48.45 43.11 39.08
Pivot-Private Embedding 52.74 46.69 36.65
Pivot-Private Embedding + Layer Coordination 54.95 47.45 36.65

Table 2: Experimental results on unsupervised dialect neural machine translation. # Params (M): number of parameters in
million. We can see that layer coordination provides improvement over baseline on both directions, and pivot-private embedding
improves the result further by almost 10 BLEU scores on CAN⇒MAN. Combining both layer coordination and pivot-private
embedding gives the best result, exceeding 12 and 5 BLEU scores than baseline NMT system on two directions, respectively.

metric. The training of each model was early-stopped to
maximize BLEU score on the development set.

All the embeddings are pretrained using fasttext (Bo-
janowski et al. 2017),8 and pivot embeddings are derived
from concatenated training corpora. In the procedure of
training, λdiv is set to 1.0, while λcom is linearly decayed
from 1.0 at the beginning to 0.0 at the step being 200k.

Baseline We compare our model with four systems:

• We collect simple CAN-MAN conversion rules and regard
character-level transition as one of our baseline systems.

• Our model is built upon unsupervised NMT methods, we
choose one of the most widely used architecture (Lample
et al. 2018c) as our baseline system.

• Moreover, unsupervised phrase-based statistical MT
(Lample et al. 2018c) has comparable performance to its
NMT counterpart. Therefore, we also take unsupervised
PB-SMT model into account.

• For reference, we also examine whether a style transfer
system (Hu et al. 2017) can handle dialect translation task.

Overall Performances

Tab. 2 lists the experimental results. As seen, character-
level rule-based translation system performs comparably
with conventional unsupervised NMT system. This is in ac-
cord with Lample et al. (2018c) that training process of un-
supervised NMT is vulnerable, because no aligned informa-
tion between languages can be afforded to model training.
Relatively, character transition rules offer adequate aligned
references to conduct the fairish results. Besides, the unsu-
pervised PB-SMT model performs slightly worse than NMT
system, a possible reason is that the model is hard to extract
a well-performed phrase table from colloquial data (Laurens
et al. 1997). We also evaluate a style transfer system (Hu
et al. 2017). The model underperforms unsupervised NMT
baseline, indicating that, to some extent, style transfer is not
adequate for dialect translation.

8https://github.com/facebookresearch/fastText

Model CAN⇒MAN MAN⇒CAN

Baseline 1.80 ± 0.44 2.57 ± 0.50
Our Model 2.50 ± 0.87 ↑ 3.16 ± 0.61 ↑

Table 3: Human assessment on our experimental results. ↑:
improvement is strongly significant (p < 0.01).

As to our proposed methods, layer coordination im-
proves the performance by more than 5 BLEU scores at
CAN⇒MAN direction, proving that sharing coordinate in-
formation at the same semantic level among dialects is ef-
fective. Besides, using pivot-private embedding further gives
a higher increase of nearly 10 BLEU scores as well as re-
ducing the model size, verifying that jointly modeling com-
monality and diversity of both dialects is both effective and
efficient. Furthermore, combining both of above can give
us more than 12 BLEU scores improvement than baseline
NMT system, revealing that both pivot-private embedding
and layer coordination are complementary to each other. As
to the MAN⇒CAN direction, we can also observe improve-
ments of our proposed methods. Translating MAN to CAN is
more difficult since it contains more one-to-many character-
level transition cases than its reversed direction. Despite this,
our best approach still gains 5 BLEU scores improvement
than baseline systems on MAN⇒CAN translation, revealing
the universal effectiveness of our proposed method.

Human Assessment Since BLEU metric may be insuffi-
cient to reflect the quality of oral sentences, we randomly
extract 50 CAN ⇒ MAN and 50 MAN ⇒ CAN examples
from test set for human evaluation, respectively. Each ex-
ample contains source sentence, translated sentences from
Unsupervised NMT model (“baseline”) and our proposed
model. Each native speaker is asked to present a score rang-
ing from 1 to 4 to determine the translation quality of each
translated result within each example. Each of the reported
result is the average score assessed by 10 native speakers.
As seen in Tab. 3, results prove that proposed method sig-
nificantly outperforms baseline NMT system (p < 0.01) in
both CAN⇒MAN and MAN⇒CAN directions.
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Figure 3: Model performances with various pivot embedding
dimensionalities upon dev set. # Params (M): number of pa-
rameters in million. We can observe that applying adequate
dimensionality to pivot embedding is effective, rather than
non-sharing any dimension among two dialects (dimension-
ality is 0) or sharing all dimensions (dimensionality is 512).

Effectiveness of Pivot-Private Embedding

To investigate the effectiveness of pivot-private embedding,
we also conduct further research on the dimensionality of
pivot embedding. As seen in Fig. 3, adequately sharing part
of word embedding among dialects can greatly improve the
effect, while using two independent sets of embedding for
dialects, or sharing all dimensions of embedding leads to
poor results. This indicates the importance of balancing the
commonality and diversity for dialect translation. Moreover,
the more the dimensionalities assigned to pivot embedding,
the fewer the parameters required by models. We argue that
using pivot-private embedding is not only an efficient way to
augment the ability of dialect translation system to model di-
versity, but also offer an alternative way to relieve the effect
of over-parameterization.

Comparing to the model with the dimensionality being
128, the model with 256 pivot embedding dimensions yields
comparable results on the two translation directions, while
assigns fewer parameters. Consequently, we apply 256 as
our default setting for pivot embedding dimensionality.

Effectiveness of Layer Coordination

Layer coordination intuitively interacts features from all di-
alects, helping the model to capture the commonality of lin-
guistic features at coordinate semantic level (Peters et al.
2018). He et al. (2018) reveal that layer coordination of-
fers more aligned features at the same level, from lexical,
through syntactic, to semantic. In this section, we investi-
gate how layer coordination effects on translation quality.

Stability Analysis We first visualize the convergence of
models with and without layer coordination. From Fig. 4 we
can observe that the model with layer coordination gains a
steady training process, whereas training process of model
without layer coordination is fragile, especially drop nearly
5 BLEU scores upon dev set at the middle term. We attribute
this to the fact that layer coordination provides coordinate
semantic information (He et al. 2018), which is beneficial
to our dialect translation task with respect to commonality
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Figure 4: Learning curves of models upon dev set. Model
with layer coordination (w) reaches its convergence at
around step 240k, while model without (w/o) at around step
200k. As seen in this figure, applying layer coordination im-
proves the performance of dialect translation model, as well
as significantly stabilizes the training process.

modeling. Since the two dialects share similar features, each
decoder layer can leverage more fine-grained information
from source side at the same semantic level, instead of only
exploiting top-level representations.

Parameter Sharing For further investigation, we also
conduct analyses on the effect of shared layers. As visu-
alized in Fig. 5, baseline system performs worse when the
number of shared layer is less than 1, and models with
3 layers shared performs better. This is consistent with
findings in Lample et al. (2018c) who suggest to share
higher 3 layers in encoder and lower 3 ones in decoder.
Considering the proposed model, sharing more layers for
CAN and MAN translation on both directions is profitable,
and model with all layers shared gives the best perfor-
mance on both directions. This demonstrates that CAN and
MAN have more similar characteristics in numerous aspects
of linguistics than distant languages (Artetxe et al. 2018;
Lample et al. 2018a), and layer coordination also contributes
to the balance of commonality and diversity modeling upon
dialect translation task.

Related Work

In this section, we will give an account of related research.

Dialect Translation To the best of our knowledge, related
studies on dialect translation have been carried upon a lot
of languages. For example, in Arabic (Baniata, Park, and
Park 2018) and Indian (Chakraborty, Sinha, and Nath 2018),
applying syllable symbols is effective for sharing informa-
tion across languages. Compared to these tasks, our work
mainly focus on handling problems in CAN and MAN trans-
lation task. CAN and MAN have little syllable information
in common, as even the same character can be widely di-
vergent in aspect of pronunciation (Lee and Wong 1998;
Wong and Lee 2018). To push the difference further, a set of
CAN characters is quite rarely to be seen in MAN, because
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Figure 5: Experiments on number of shared encoder/decoder layers upon dev set. Here w and w/o denotes with and without layer
coordination, respectively. From both figures, we can see that even without any shared layer, model with layer coordination can
also be trainable rather than without. Models without layer coordination gain significant improvement upon sharing adequate
layers for two dialects, while the performances decrease if all layers are shared. As to proposed layer coordination, the more
layers shared for two dialects, the higher performance models can possess.

CAN is a dialect that without formal regulation of written
characters (Lee and Wong 1998). Moreover, younger CAN
speakers more likely refer to use phonetic labels (e.g. “d”
responses to “di”) or homophonetic character symbols in-
stead of ground truth, which raises intractable issues when
building the translation model.

Unsupervised Learning Our work refers to quantitative
researches on unsupervised machine translation (Lample et
al. 2018a; Artetxe et al. 2018; Lample et al. 2018c), which
compose a well-designed training schedule for unsupervised
translation tasks. The difference between our research and
theirs mainly lies in the similarity of involved languages,
where dialects in our research are far similar with each other
than those in unsupervised NMT tasks.

Moreover, our research is closely related to studies on
style transfer (Hu et al. 2017; Prabhumoye et al. 2018).
There are two main differences between our task and style
transfer. Firstly, the source and target sides in style trans-
fer task belong to the same language, where the difference
mainly contributed by style, e.g. sentiment (Hu et al. 2017),
while dialect translation has to identically guarantee the se-
mantics between two sides. Secondly, there are more com-
monalities between source and target in style transfer than
that in dialect translation. The former focus on the transition
of different styles, the two sides can sometimes be distin-
guished by only a few words. Nevertheless, dialects have
wide discrepancies which vary from vocabulary and word
frequency to syntactic structure.

Methodologically, compare to the mentioned studies, we
motivated by similarity and difference between dialects and
propose pivot-private embedding and layer coordination to
jointly balance commonality and diversity.

Conclusions and Future Work

In this study, we investigate the feasibility of building a di-
alect machine translation system. Due to the lack of parallel
training corpus, we approach the problem with unsupervised
learning. Considering the characteristics in dialect transla-

tion, we further improve our translation model by contribut-
ing pivot-private embedding and layer coordination, thus en-
riching the mutual linguistic information sharing across di-
alects (CAN-MAN). Our experimental results confirm that
our improvements are universally-effectiveness and comple-
mentary to each other. Our contributions are mainly in:

• We propose dialect translation task, and conduct massive
examples of monolingual sentences with respect to di-
alects of spoken MAN and CAN;

• We apply an unsupervised learning algorithm to accom-
plish CAN-MAN dialect translation task. We leverage
commonality and diversity modeling to strengthen the
translation functionality among dialects, including pivot-
private embedding and layer coordination;

• Our approach outperforms conventional unsupervised
NMT system over 12 BLEU scores, achieving a consider-
able performance and a new benchmark for the proposed
CAN-MAN translation task.

In the future, it is interesting to validate our principles, i.e.
commonality and diversity modeling, into other tasks, such
as conventional machine translation and style transfer. An-
other promising direction is to incorporate linguistic knowl-
edge into unsupervised learning procedure, e.g. phrasal pat-
tern (Xu et al. 2019), word order information (Yang et al.
2019b) and syntactic structure (Yang et al. 2019c).
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