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Abstract

Visual storytelling aims at generating a story from an im-
age stream. Most existing methods tend to represent images
directly with the extracted high-level features, which is not
intuitive and difficult to interpret. We argue that translating
each image into a graph-based semantic representation, i.e.,
scene graph, which explicitly encodes the objects and re-
lationships detected within image, would benefit represent-
ing and describing images. To this end, we propose a novel
graph-based architecture for visual storytelling by modeling
the two-level relationships on scene graphs. In particular, on
the within-image level, we employ a Graph Convolution Net-
work (GCN) to enrich local fine-grained region representa-
tions of objects on scene graphs. To further model the inter-
action among images, on the cross-images level, a Tempo-
ral Convolution Network (TCN) is utilized to refine the re-
gion representations along the temporal dimension. Then the
relation-aware representations are fed into the Gated Recur-
rent Unit (GRU) with attention mechanism for story genera-
tion. Experiments are conducted on the public visual story-
telling dataset. Automatic and human evaluation results indi-
cate that our method achieves state-of-the-art.

1 Introduction
For most people, showing them images and ask them to
compose a reasonable story about the images is not a dif-
ficult task. Though the recent advances in deep neural net-
works have achieved encouraging results, it is still non-
trivial for the machine to summarize the meanings from im-
ages and generate a narrative story. Recently, visual story-
telling has attracted increasing attention from the areas of
both Computer Vision (CV) and Natural Language Process-
ing (NLP) (Huang et al. 2016; Yu, Bansal, and Berg 2017;
Wang et al. 2018a; Huang et al. 2019). Different from image
captioning (Karpathy and Fei-Fei 2015; Vinyals et al. 2017;
Yao et al. 2018; Fan et al. 2019) which aims at generating
a literal description for a single image, visual storytelling is
more challenging, which further investigates machine’s ca-
pabilities of understanding a sequence of images and gener-
ate a coherent story with multiple sentences.

Existing methods (Huang et al. 2016; Wang et al. 2018a;
Huang et al. 2019) for visual storytelling employ encoder-
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Figure 1: A scene graph based example for visual story-
telling from VIST dataset. The story presented is from a hu-
man annotator. (Best viewed in color)

decoder structure to translate images to sentences directly,
with CNN-based models for visual feature extraction and
RNN-based models for text generation. However, it is not
intuitive to represent all the visual information of the images
with an abstract high-level feature, and this also hurts the
interpretability and reasoning ability of the model. Recall
that when we humans telling stories for an image sequence,
we will recognize the objects in each image, reason about
their visual relationships, and then abstract the content into a
scene. Next, we will observe the images in order and reason
the relationship among images.

Taking this idea as motivation, we propose a novel graph-
based architecture named SGVST for visual storytelling,
which first translates each image into a graph-based seman-
tic representation, i.e., scene graph, and then models the
relationship on within-image level and cross-images level,
as shown in Figure 1. Specifically, inspired by the success
of scene graph generation (Xu et al. 2017; Li et al. 2018;
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Figure 2: An overview of our SGVST model (better viewed in color).

Zellers et al. 2018), a scene graph parser, consisting of Faster
R-CNN (Ren et al. 2015) and relationship detector, is firstly
implemented to parse images into scene graphs. In each
scene graph, vertexes represent different regions and di-
rected edges denote relationships between them, which can
be represented as tuples <subject-predicate-object>, e.g.,
<man-holding-girl>, explicitly encoding the objects and re-
lationships detected within an image. Then for processing
the scene graphs to enrich region representations, we em-
ploy Graph Convolution Network (GCN) which passes the
information along graph edges. After processing the local re-
gion representations for each image, we further utilize Tem-
poral Convolution Network (TCN) (Bai, Kolter, and Koltun
2018) to process the region representations along the tempo-
ral dimension, which models relationships on cross-images
level. To this end, the relation-aware representations are inte-
grated with the information on both within-image level and
cross-images level. In order to make full use of image in-
formation, we use a bidirectional-GRU (Chung et al. 2014)
(biGRU) to encode the feature maps obtained from Faster
R-CNN as high-level visual features, and then fuse them
with the relation-aware representations to get new represen-
tations. Finally, the obtained new relation-aware represen-
tations are fed into the hierarchical decoder to conduct the
story generation.

The main contributions can be summarized as follows:

• We first propose to translate images into graph-based
semantic representations called the scene graphs to
benefit representing images and high-quality story
generation.
• We propose a framework based on scene graphs

to realize enriching fine-grained representations by
modeling the visual relationships through GCN on
the within-image level and through TCN on the
cross-images level.
• Extensive experiments on the VIST dataset (Huang

et al. 2016) demonstrate that our method achieves the
state-of-the-art performance.

2 Method

The overall architecture of our proposed model is shown in
Figure 2. Here we have an image stream I = {I1, . . . , IN},
we aim to output a story y = {y1, . . . , yN}, where N is
the number of images in the image stream and sentence
yn = {w1, . . . , wT } consisting of T words in the vocab-
ulary Vs of all output words. We argue that modeling re-
lationships on within-image and cross-images levels would
help for understanding and describing images. To this end,
we propose a graph-based architecture. First, scene graphs
G = {G1, . . . , GN} are first generated by a pre-trained
scene graph parser, where the vertex (object) represents each
region and the edge denotes the visual relationship between
them. Then the scene graphs are passed through Multi-
modal Graph ConvNet to obtain the relation-aware repre-
sentations v̄ = {v̄1, . . . , v̄N}, which integrate both within-
image and cross-images levels information. In the story gen-
eration state, we feed the relation-aware representations v̄
into a hierarchical decoder to generate the story. Each of
these modules will be described in details in the following
sections.

2.1 Scene Graph Parser

Scene graph parser is proposed to parse an image to a scene
graph. Thanks to the recent advances in visual relationship
detection (Xu et al. 2017; Zellers et al. 2018), detecting the
relationship can be simplified as a semantic relation classifi-
cation task on visual relationship datasets. Formally, a scene
graph is a tuple Gn = (Vn, En), where n ∈ N denotes n-th
scene graph for n-th image In, Vn = {vn,1, . . . , vn,K} is
a set of K detected objects with each region representation
vn,i ∈ R

DV , and En is a set of directed edges of the form
(vn,i, rn,(i,j), vn,j), assigning two directional edges from
vn,i to rn,(i,j) and from rn,(i,j) to vn,j , where rn,(i,j) de-
notes a relationship categories (labels). The details of pars-
ing an image to scene graph are given as follows.
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Object Detector. We use pre-trained Faster-RCNN (Ren
et al. 2015) as the object detector to produce and classify ob-
jects in an image In. To this end, for each image, we get the
set of region representations Vn = {vn,1, . . . , vn,K} and la-
bels O = {on,1, . . . , on,K} of detected objects, where each
vn,i ∈ R

Dv denotes the Dv dimension feature, and each
on,i ∈ C denotes object categories (labels).

Relationship Detector. We use the LSTM-based model
proposed by Zellers et al. (2018) as our relationship detector
to classify relationships between objects. Then we follow
them to train our relationship detector on Visual Genome
dataset (Krishna et al. 2017).

In subsequent experiments, the parameters of scene graph
parser will be fixed. We directly employ the pre-trained
scene graph parser to construct the corresponding scene
graph Gn = (Vn, En) for image In, where a directional
edge from the subject region to object region is established
and the relation class with maximum probability is regarded
as the label of this edge. As a first stage of processing, we ap-
ply a embedding layer on each region representation vn,i of
object and categorical label rn,(i,j) of edge of the graph, con-
verting them to vn,i ∈ R

Dv and a dense vector vr ∈ R
Dr ,

respectively.

2.2 Multi-modal Graph ConvNet

Inspired by the recent advances in spatial Graph Convolution
Network (GCN), we can enrich the fine-grained region-level
features by modeling the relations on scene graphs, allow-
ing our model to explicitly reason about objects and their
relationships. Furthermore, we employ Temporal Convolu-
tion Network (TCN) (Bai, Kolter, and Koltun 2018) to model
temporal interaction within an image stream. To this end, we
get the relation-aware representations which integrated with
both within-image and cross-images levels information.

Graph Convolution Network. For enriching each region
representation, we follow the way similar to Johnson, Gupta,
and Fei-Fei (2018), aggregating the information of its local
neighbors through a graph convolution layer.

For enriching each node by aggregating the information of
its local neighbors through a graph convolution layer, we fol-
low the way similar as Johnson, Gupta, and Fei-Fei (2018).
Given an input graph with vectors of each node and edge, it
computes new vectors for each node and edge. Each graph
convolution layer propagates information along edges of the
graph.

Formally, given input vectors vn,i ∈ R
Dv , vr ∈ R

Dr

for all objects and edges, we compute output vectors v
′
n,i,

v
′
r ∈ RDout for all nodes and edges using three functions
gs , gp and go, which take as input the triple of vectors
(vn,i, rn,(i,j), vn,j) for an edge and output new vectors for
objects and edges.

For the output edges vectors v
′
r, we simply compute via v

′
r

= gp(vn,i, vr, vn,j). Then the output object vectors v
′
n,i de-

pend on all features of objects which connected via edges.

To this end, for each edge starting at vn,i we use gs to com-
pute a candidate vector, collecting all such candidates in the
set V s

n,i; we similarly use go to compute a set of candidate
vectors V o

i for all edges terminating at vn,i as follows:

V s
n,i = {gs (vn,i, vr, vn,j)}

V o
n,i = {go (vn,j , vr, vn,i)}

(1)

In our implementation, we concatenate its three input vec-
tors as the input for functions gs, gp and go, and feed them
to a MLP, and computes three output vectors for objects
and edges. The output vector is then calculated as v

′
n,i =

h(V s
n,i ∪ V o

n,i) where h denotes an average pooling function
after with a MLP layer which converts a set of vectors to a
single output vector. After passing all scene graphs through
GCN, the enriched region representations v

′
n,i are integrated

with the inherent visual relation information at object level.

Temporal Convolution Network. With the help of GCN,
we enrich representation for each object which aggregates
information across all objects and relationships in the graph.
In order to capture the interaction among images, we now
advance to the task of modeling temporal relationships
among images. To this end, we use Temporal Convolution
Network (TCN) (Bai, Kolter, and Koltun 2018) to process
region representations along temporal dimension.

Notably, before using TCN, we calculate the mean-pooled
region vectors over K object regions {v′

n,i}Ki=1 via follows:

v̄n =
1

K

K∑

i=1

v
′
n,i (2)

Specifically, TCN employs dilated causal convolutions
that enable an exponentially large receptive field. For a 1-
D sequence input {v̄n}Nn=1 ∈ R

Dv and fully-convolutional
network (FCN) (Long, Shelhamer, and Darrell 2015) as filter
f : {0, . . . , k − 1} → R, the dilated convolution operation
F on each v̄n is defined as

F (v̄n) =

k−1∑

i=0

f(i) · v̄n−d·i (3)

where d denotes the dilation factor, k denotes the filter size,
and v̄n−d·i denotes the v̄n pointing to d · i-th dilated convo-
lution layer. Then with the help of a residual structure (He
et al. 2016), the region representations can be updated via
follows:

v̄n = ReLU(v̄n + F (v̄n)) (4)
where v̄n denotes n-th relation-aware representations. After
modeling interaction among images through TCN, we get
the relation-aware representations which integrated with the
information on both within-image and cross-images levels.

High-level Encoder. Although the scene graph abstracts
away most of the informative characteristics of an image,
there is still some image information lost in the process. In
order to make full use of image information, we use a bidi-
rectional gated recurrent unit (biGRU) to encode the feature

9187



maps obtained from the previous Faster R-CNN as high-
level visual features, and then fuse with the relation-aware
representations to get new relation-aware representations.

At this stage, the high-level visual vectors hv
n can be cal-

culated as:
−−→
hn,t =

−−→
GRU(fn,

−−−−→
hn,t−1)

←−−
hn,t =

←−−
GRU(fn,

←−−−−
hn,t+1)

hv
n = ReLU([

←−
hn;
−→
hn] + fn)

(5)

where [·] indicates concatenation,
−−→
hn,t is the forward hidden

state at time step t of n-th high-level feature fn, while the←−−
hn,t is the backward one.

At the end of encoding state, we fuse relation-aware repre-
sentations with high-level visual vectors to update relation-
aware representations. Formally,

vmul = ReLU(Wmul(v̄n � hv
n))

vminus = ReLU(Wminus(v̄n − hv
n))

v̄n = ReLU(Wfinal[vmul, vminus])

(6)

where [·] indicates concatenation, Wmul, Wminus, Wfinal

are the projection matrix, � denotes Hadamard product.

2.3 Hierarchical Story Decoder

We devise our hierarchical story decoder by injecting all
of the relation-aware representations v̄ into a two-layer
GRU with attention mechanism. Specifically, we concate-
nate relation-aware representations v̄n with the previous
word token wn,t−1 and the previous output h2

n,t−1 of the
second-layer GRU, as the input of the first layer GRU. For-
mally, the output of first layer GRU is generated through this
process:

h1
n,t = GRU(h1

n,t−1, [Wswn,t−1, v̄n, h
2
n,t−1]) (7)

where [·] indicates concatenation, Ws is the projection ma-
trix for the input word. Then we use a traditional soft atten-
tion mechanism (Rocktäschel et al. 2015). Given the out-
put h1

n,t of the first layer GRU, the attention mechanism
will produce normalized attention weights aatt over all the
relation-aware features via following:

Z = tanh
(
Wvv̄n +Whh

1
n,t

)
(8)

aatt = softmax(WzZ) (9)

where Wv,Wh,Wz are the projection matrix, att denotes
the attention weights. Based on the above attention weights,
the attended relation-aware representations v̂n as calculated
as the weighted sum:

v̂n = v̄na
T
att (10)

At last, we concatenate the attended relation-aware repre-
sentations v̂n with the output h1

n,t of first layer GRU, and
then feed them into second layer GRU. Then we leverage
h2
n,t to generate a next word wt through a softmax layer.

Formally, the generation process can be written as:

h2
n,t = GRU

(
h2
n,t−1, [wn,t−1, v̂n]

)
(11)

p(wn,t|wn,1:t−1) = softmax
(
MLP(h2

n,t)
)

(12)

Attention
Mechanism

GRU
Layer 1

GRU
Layer 2

wt

wt-1

previous
word token

h1t

h2
t-1

relation-aware
representation

V
_ Vt

^

Figure 3: An overview of our hierarchical story decoder.

where h2
n,t denotes the t-th hidden state of second layer

GRU of n-th hierarchical decoder. The output p is a proba-
bility distribution over the whole story vocabulary Vs. Even-
tually, the final story y is the concatenation of the sub-stories
yn = {w1, . . . , wT } consisting of T words in Vs.

2.4 Training and Inference

In the training stage, we fix the parameters of our pre-trained
scene graph parser as described in Section 2.1, and other
components of our model are trained and evaluated on VIST
dataset for visual storytelling task. We define cross-entropy
(MLE) loss for the training process, as shown in Equa-
tion 13:

L(θ) = −
T∑

t=1

log
(
pθ(y

∗
t |y∗1 , ..., y∗t−1)

)
(13)

where θ is the parameters of our model; y∗ is the ground-
truth story and y∗t denotes the t-th word in y∗. During train-
ing, our goal is minimizing L using stochastic gradient de-
scent.

For inference in story generation, we adopt the beam
search strategy to produce story with a beam size of 3.

3 Experimental Evaluation

3.1 Experimental Setup

Datasets. VIST (Huang et al. 2016) dataset includes
10,117 Flicker albums with 210,819 images. In our exper-
iments, we follow the same split settings as (Huang et al.
2016; Yu, Bansal, and Berg 2017; Wang et al. 2018b). Thus,
the samples have been split into three parts, 40,098 for train-
ing, 4,988 for validation and 5,050 for testing, respectively.
Each sample (album) contains five images and a story with
five sentences. We train and evaluate our models (except the
scene graph parser) on VIST.

Visual Genome (VG) (Krishna et al. 2017) comprises
108,077 images annotated with scene graphs, which can be
exploited to train the object detector and relationship detec-
tor. We follow the setting as Xu et al. (2017), containing
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Table 1: Overall performance of story generation on VIST dataset for different models in terms of BLEU (B), METEOR (M),
ROUGE-L (R-L), and CIDEr-D (C). ∗ directly optimized with RL rewards, e.g., the CIDEr Metric, † optimized with cross-
entropy (MLE). Bolded numbers are the best performance in each category.

Methods B-1 B-2 B-3 B-4 R-L C M

seq2seq† (Huang et al. 2016) − − − 3.5 − 6.8 31.4
BARNN† (Liu et al. 2017) − − − − − − 33.3
h-attn-rank† (Yu, Bansal, and Berg 2017) − − 21.0 − 29.5 7.5 34.1
HPSR† (Wang et al. 2019) 61.9 37.8 21.5 12.2 31.2 8.0 34.4
AREL∗ (Wang et al. 2018b) 63.7 39.0 23.1 14.0 29.6 9.5 35.0
HSRL∗ (Huang et al. 2019) - - - 12.3 30.8 10.7 35.2
SGVST w/o GCN or TCN† 62.8 38.4 22.8 13.9 29.6 8.5 35.1
SGVST w/o GCN† 63.1 39.0 23.3 14.1 29.8 8.8 35.2
SGVST w/o TCN† 65.4 39.8 23.5 14.2 29.6 9.3 35.4
SGVST w/ single-dec† 64.5 39.7 23.5 14.4 29.7 9.4 35.5
SGVST w/o high-level-enc† 64.9 40.0 23.6 14.5 29.8 9.6 35.6
SGVST† 65.1 40.1 23.8 14.7 29.9 9.8 35.8

150 object classes and 50 relation classes. The VG dataset
is only used to train the relationship detector in our scene
graph parser.

Automatic Metrics. We adopt four automatic metrics in
our experiments: BLEU (Papineni et al. 2002), ROUGE-L
(Lin and Och 2004), METEOR (Banerjee and Lavie 2005),
and CIDEr-D (Vedantam, Lawrence Zitnick, and Parikh
2015).

3.2 Implementation Details

In the scene graph parser, we use Faster RCNN with a VGG
backbone as our object detector and use MOTIFS (Zellers
et al. 2018) as relationship detector. For each scene graph,
we set the max number of objects as 10 and the max num-
ber of relationship as 20. The dimension of region feature
for each object and the high-level feature of an image is
4096. In Multi-modal Graph ConvNet, we use a 5 layers
GCN, whose the input and output dimension both as 512;
for TCN, we set the dilation factor=5 and filter size=7; for
high-level encoder, we use a bi-GRU with the hidden dimen-
sion of 512. We build a story vocabulary with a size of 9,837
words which contain those words appearing more than three
times in the training set. All the parameters are initialized by
a kaiming-normal distribution (He et al. 2015).

We set the batch size as 100 during the whole experi-
ments. We use Adam (Kingma and Ba 2015) to optimize
our models with the initial learning rate of 0.0004. We se-
lect the best model which achieves the highest METEOR
score on the validation set. The reason is that METEOR is
proved to correlate better with human judgment than CIDEr-
D in the small references case and superior to BLEU@N
and ROUGE all the time (Vedantam, Lawrence Zitnick, and
Parikh 2015; Wang et al. 2018a).

3.3 Models for Comparison

We compare our proposed methods with several baselines
for visual storytelling. Moreover, five variants of our method

are provided to reveal the impact of each component. Each
of these models will be described as follows.

seq2seq (Huang et al. 2016): This model is the ordinary
seq2seq model, which encodes an image sequence by run-
ning an RNN, and decodes sentences with a RNN decoder.

BARNN (Liu et al. 2017): BARNN is a new-designed
sGRU model, with attention on semmatic relation extracted
from space space to enhance the textual coherence in story
generation.

h-attn-rank (Yu, Bansal, and Berg 2017): h-attn-rank
is a hierarchically-attentive RNN based model consisting of
three RNN stages, i.e., encoding photo stage, photo selection
stage and generation stage.

HPSR (Wang et al. 2019): HPSR is a model includes the
hierarchical photo-scene encoder, decoder, and reconstruc-
tor.

AREL (Wang et al. 2018b): AREL is a model based on
reinforcement learning. It takes a CNN-RNN architecture
as the policy model for story generation, while the reward
model aims to learn the reward function from human demon-
strations.

HSRL (Huang et al. 2019): HSRL develops a hierar-
chically structured reinforcement learning approach, which
propose to generate a local semantic concept for each im-
age in the sequence and generate a sentence for each image
using a semantic compositional network.

SGVST w/o GCN or TCN: This model is the basic base-
line, which is ablated from our full model by removing GCN
and TCN.

SGVST w/o GCN: To investigate the role of the GCN and
its what effect it has for modeling the relationships between
objects, in this baseline, we ablate our model by removing
the GCN.

SGVST w/o TCN: To investigate the role of the TCN
and its what effect it has for modeling the interaction among
images, in this baseline, we ablate our model by removing
the TCN.

SGVST w/ single-dec: Again, we ablate our model by re-
placing hierarchical decoder with single-layer GRU decoder.
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Figure 4: Qualitative example of different models with an image stream, scene graph, ground-truth story and generated story
by three approaches, i.e., seq2seq, AREL and our SGVST.

SGVST w/o high-level-enc: Again, we ablate our model
by removing high-level encoder.

SGVST: SGVST is the complete method in this paper.

3.4 Quantitative Results

Comparing with state-of-the-art. Table 1 shows the per-
formances of different models on seven automatic evalua-
tion metrics. Some works (Wang et al. 2018a; Modi and
Parde 2019) have confirm that CIDEr do not correlate well
with human evaluations in this task, but here we still adopt
this metric for reference. Overall, the results indicate that
our proposed SGVST model achieves superior performances
over other state-of-the-art models optimized with MLE and
RL, which directly demonstrates our graph-based model can
help for story generation. In particular, the BLEU-1, BLEU-
4 and METEOR scores of our SGVST makes the relative
improvement over the best method optimized with cross-
entropy loss by 3.2%, 2.5% and 1.4%, respectively, which
is considered as significant progress on this dataset. It is
worth noting that, our SGVST also outperforms state-of-the-
art model optimized with RL rewards.

Comparing with ablations. As shown in Table 1, we con-
duct experiments on five ablations with our proposed model.
Overall, we find that all our models achieve almost the same
performance on ROUGE, which indicates ROUGE is not
very suitable for evaluation in this task as shown in Wang et
al. (2018b). In particular, (1) SGVST w/o GCN slightly out-
performs our basic baseline SGVST w/o GCN or TCN. This
demonstrates that only modeling the relationships among
images is effective but not obvious. (2) SGVST w/o TCN sig-
nificantly outperforms our basic baseline SGVST w/o GCN

or TCN. This demonstrates that modeling the visual relation-
ships between objects in each image can enhance the fine-
grained region representations and help to describe images.
(3) The performance of SGVST in BLEU@3-4, CIDER and
METEOR is clearly better than SGVST w/o TCN. This indi-
cates modeling the interaction among the images can refine
the relation-aware representations on cross-images level.
(4) SGVST makes obvious improvement over BLEU@1-2
comparing with SGVST w/ single-dec, which indicates that
this two-layer GRU decoder with attention mechanism can
help generate story in word (entity) level; (5) SGVST w/o
high-level-enc achieves a comparable performance, which
slightly loses compared with SGVST. This demonstrates
from another aspect that our graph-based model has the abil-
ity to learn high-level information through reasoning the re-
lationships.

3.5 Qualitative Results

Qualitative Examples. Figure 4 shows some examples
with the an image stream, scene graphs, ground-truth story
and generated story by three approaches, i.e., seq2seq, AREL
and our SGVST, where the seq2seq (Huang et al. 2016) is
implemented by us and AREL (Wang et al. 2018b) is trained
and evaluated according to its publicly available code. From
these examples, it is easy to find that the story generated by
our SGVST is more coherent, informative and descriptive.

Human Evaluation. To better evaluate the qualities of
the generated story, we conduct two kinds of human eval-
uation through Amazon Mechanical Turk (AMT). Specifi-
cally, we randomly select 150 stories, each evaluated by 3
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Table 2: Human evaluation results. Workers on AMT rate the quality of the story by telling how much they Agree or Disagree
with each question, on a scale of 1-5.

Methods Focused Coherent Share Human-like Grounded Detailed
seq2seq 2.30 2.33 2.12 2.22 2.30 2.30
AREL 3.51 3.53 3.37 3.43 3.31 3.39
SGVST 3.97 4.01 3.91 3.99 4.02 4.07

GT 4.37 4.40 4.21 4.38 4.32 4.39
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Figure 5: Pairwise comparison results, where the charts each
comparing two methods in human evaluation. Each color
represents the percentage of works who consider the story
generated by the corresponding method is more human-like
and descriptive. “Tie” in grey color indicates hard to tell.

crowd workers. (1) Pairwise Comparison In pairwise com-
parison, the workers are asked to compare two stories gen-
erated by corresponding methods and choose the one that
more human-like and descriptive. Figure 5 shows the stories
generated by our SGVST are significantly better than sto-
ries generated by other machines, and achieve competitive
performance compared with human. (2) Human Rating For
a more detailed comparison of different stories generated
from different models, we conduct human rating survey cor-
responding to the following characteristics modified from
Visual Storytelling Challenge (NAACL 2018): 1© Focused:
the story is focused, 2© Coherent: the story is coherent, 3©
Share: inclination to share, 4© Human-like: the story sounds
like written by a human, 5© Grounded: the story is visually
grounded, and 6© Detailed: the story is detailed. The work-
ers are asked to rate the quality of the story by telling how
much they Agree or Disagree with each question, on a scale
of 1-5. The results are shown in Table 2. The scores reported
show that our SGVST model outperforms in all six charac-
teristics, which further proves the storied generated by our
model are more informative and high-quality.

4 Related work

There are many works focus on vision-to-language, e.g.,
VQA (Fan et al. 2018a; 2018b) and image captioning. Some
earlier works (Karpathy and Fei-Fei 2015; Vinyals et al.
2017) propose CNN-RNN frameworks for image caption-
ing. Further, some works (Yao et al. 2018; Lu et al. 2018)
explore visual relationship for image captioning. Different
from image captioning, visual storytelling aims at generat-
ing a narrative story from an image stream. The pioneering
work was done by Park and Kim (2015). Huang et al. (2016)

introduces the first dataset (VIST) for visual storytelling
task. Yu, Bansal, and Berg (2017) designs a hierarchically-
attentive RNN structure. Wang et al. (2018a) propose a re-
inforcement learning framework with two discriminators.
Due to the bias can be brought by the hand-coded evalu-
ation metrics, Wang et al. (2018b) proposes an adversar-
ial reward learning framework to uncover a reward func-
tion from human demonstrations. Wang et al. (2019) pro-
pose a model with a hierarchical photo-scene encoder and a
re-constructor. Huang et al. (2019) develops a hierarchically
reinforcement learning approach, which introduces a local
semantic concept to model. However, these methods tend to
represent images with high-level features, which is not intu-
itive and difficult to interpret.

Scene graphs present scenes as directed graphs, where
vertexes represent objects and edges represent relationships
between objects. Recently, scene graphs have been used for
many tasks, e.g., image generation (Johnson, Gupta, and
Fei-Fei 2018), image captioning (Yao et al. 2018; Yang et
al. 2019) and image retrieval (Johnson et al. 2015). There
are many works (Xu et al. 2017; Zellers et al. 2018) fo-
cus on scene graph parsing, which aims at producing struc-
tured graph representations of visual scenes. Inspired by the
booming in scene graphs, we propose to encode images into
graphs, which contains objects and corresponding visual re-
lationships, and this eventually helps for story generation.

5 Conclusion

In this paper, we propose a novel graph-based method
named SGVST for visual storytelling, which parses im-
ages to scene graphs, and models the relationships on scene
graphs at two levels, i.e., within-image and cross-images
levels. Extensive experiments demonstrate that our method
achieves state-of-the-art, and the stories generated by our
method are more informative and fluent. In the further, we
would explore our method to other multi-modal tasks, e.g.,
video captioning.
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