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Abstract

Most existing approaches to disfluency detection heavily rely
on human-annotated data, which is expensive to obtain in
practice. To tackle the training data bottleneck, we investi-
gate methods for combining multiple self-supervised tasks-
i.e., supervised tasks where data can be collected without
manual labeling. First, we construct large-scale pseudo train-
ing data by randomly adding or deleting words from unla-
beled news data, and propose two self-supervised pre-training
tasks: (i) tagging task to detect the added noisy words. (ii)
sentence classification to distinguish original sentences from
grammatically-incorrect sentences. We then combine these
two tasks to jointly train a network. The pre-trained net-
work is then fine-tuned using human-annotated disfluency de-
tection training data. Experimental results on the commonly
used English Switchboard test set show that our approach can
achieve competitive performance compared to the previous
systems (trained using the full dataset) by using less than 1%
(1000 sentences) of the training data. Our method trained on
the full dataset significantly outperforms previous methods,
reducing the error by 21% on English Switchboard.

Introduction

Automatic speech recognition (ASR) outputs often con-
tain various disfluencies, which create barriers to subse-
quent text processing tasks like parsing, machine transla-
tion, and summarization. Disfluency detection (Zayats, Os-
tendorf, and Hajishirzi 2016; Wang, Che, and Liu 2016;
Wu et al. 2015) focuses on recognizing the disfluencies from
ASR outputs. As shown in Figure 1, a standard annotation
of the disfluency structure indicates the reparandum (words
that the speaker intends to discard), the interruption point
(denoted as ‘+’, marking the end of the reparandum), an op-
tional interregnum (filled pauses, discourse cue words, etc.)
and the associated repair (Shriberg 1994).

Ignoring the interregnum, disfluencies are categorized
into three types: restarts, repetitions and corrections. Table
1 gives a few examples. Interregnums are relatively easier to
detect as they are often fixed phrases, e.g. “uh”, “you know”.
On the other hand, reparandums are more difficult to detect
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I want a flight [ to Boston + {um} to Denver ]
RM IM RP

Figure 1: A sentence from the English Switchboard
corpus with disfluencies annotated. RM=Reparandum,
IM=Interregnum, RP=Repair. The preceding RM is cor-
rected by the following RP.

Type Annotation

repair [ I just + I ] enjoy working
repair [ we want + {well} in our area we want ] to
repetition [it’s + {uh} it’s ] almost like
restart [ we would like + ] let’s go to the

Table 1: Different types of disfluencies.

in that they are in free form. As a result, most previous dis-
fluency detection work focuses on detecting reparandums.

Most work (Zayats and Ostendorf 2018; Lou and John-
son 2017; Wang et al. 2017; Jamshid Lou, Anderson, and
Johnson 2018; Zayats and Ostendorf 2019) on disfluency
detection heavily relies on human-annotated data, which is
scarce and expensive to obtain in practice. In this paper,
we investigate self-supervised learning method (Agrawal,
Carreira, and Malik 2015; Fernando et al. 2017) to tackle
this training data bottleneck. Self-supervised learning aims
to train a network on auxiliary tasks where ground-truth
is obtained automatically. The merits of this line work are
that they do not require manually annotations but still uti-
lize supervised learning by inferring supervisory signals
from the data structure. Neural networks pre-trained with
these tasks can be fine-tuned to perform well on standard
supervised task with less manually-labeled data than net-
works which are initialized randomly. In natural language
processing domain, self-supervised research mainly focus
on word embedding (Mikolov et al. 2013a; 2013b) or lan-
guage model learning (Bengio et al. 2003; Peters et al. 2018;
Radford et al. 2018; Devlin et al. 2019). Motivated by the
success of self-supervised learning, we propose two self-
supervised tasks for disfluency detection task, as shown in
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Step1: construct pseudo training data 
unlabeled news data

s1: i like the cat

s2: i do n’t know

s3: i have two kids
……

 i like the the cat

 <i do n’t know ||| i do n’t think know>

 <i two kids ||| i have two kids>
……

pseudo training data

Step2: pre-train two self-supervised tasks 

Transformer
Encoder

Tagging input: 
i like the the cat

 Sentence Classification input:
<i two kids ||| i have two kids>

Step3: fine-tune on supervised disfluency data

Tagging

Sentence 
Classification

Transformer
Encodera flight to boston to denver Tagging

add “the”

add “think”

delete “have”

Figure 2: Illustration of our proposed methods.

Figure 2.
The first task aims to tag corrupted parts from a disfluent

sentence, generated by randomly adding words to a fluent
sentence. Although there are discrepancies between the dis-
tribution of gold disfluency detection data and the generated
sentences, this task endows the model to recover the fluent
sentences from the disfluent ones, which matches the final
goal of disfluency detection.

The second task is sentence classification to distinguish
original sentences from corrupted sentences. We align each
original sentence from the news dataset and another dis-
fluent sentence generated by randomly deleting or adding
words to the original fluent sentence. The goal of the task is
to take these sentence pairs as input and predict which sen-
tence is the fluent one. This task enables the model to distin-
guish grammatically-correct sentences from grammatically-
incorrect ones. We hypothesize that this task is helpful for
disfluency detection, as one core challenge for disfluency
detection is to keep the output sentences grammatically-
correct.

The second task can help the first by modeling sentence-
level grammatical information. Inspired by the hypothe-
sis, we combine these two tasks to jointly train a network
based on the auto-constructed pseudo training data. The pre-
trained network is later fine-tuned using human-annotated
disfluency detection data.

Our contributions can be summarized as follows:

• We propose two self-supervised tasks for disfluency de-
tection to tackle the training data bottleneck. To our
best knowledge, this is the first work to investigate self-
supervised representation learning in disfluency detec-
tion.

• Based on the two self-supervised tasks, we further in-
vestigate multi-task methods for combining the two self-
supervised tasks.

• Experimental results on the commonly used English
Switchboard test set show that our approach can achieve
competitive performance compared to the previous sys-
tems (trained using the full dataset) by using less than
1% (1000 sentences) of the training data. Our method
trained on the full dataset significantly outperforms pre-
vious methods, reducing the error by 21% on English
Switchboard.

Related Work

Disfluency Detection

Most work on disfluency detection focus on supervised
learning methods, which mainly fall into three main cate-
gories: sequence tagging, noisy-channel, and parsing-based
approaches. Sequence tagging approaches label words as
fluent or disfluent using a variety of different techniques,
including conditional random fields (CRF) (Georgila 2009;
Ostendorf and Hahn 2013; Zayats, Ostendorf, and Hajishirzi
2014) , Max-Margin Markov Networks (M3N) (Qian and
Liu 2013), Semi- Markov CRF (Ferguson, Durrett, and
Klein 2015), and recurrent neural networks (Hough and
Schlangen 2015; Zayats, Ostendorf, and Hajishirzi 2016;
Wang, Che, and Liu 2016). Noisy channel models (Char-
niak and Johnson 2001; Johnson and Charniak 2004; Zwarts,
Johnson, and Dale 2010; Lou and Johnson 2017) use the
similarity between reparandum and repair as an indica-
tor of disfluency. Parsing-based approaches (Rasooli and
Tetreault 2013; Honnibal and Johnson 2014; Wu et al. 2015;
Yoshikawa, Shindo, and Matsumoto 2016) jointly perform
dependency parsing and disfluency detection. The joint
models can capture long-range dependency of disfluencies
as well as chunk-level information.

There exist a limited effort to tackle the training data
bottleneck. Wang et al. (2018) and Dong et al. (2019) use
an autoencoder method to help for disfluency detection by
jointly training the autoencoder model and disfluency de-
tection model. They construct large-scale pseudo disflu-
ent sentences by using some simple rules and use autoen-
coder to reconstruct the disfluent sentence. We take inspira-
tion from their method when generating disfluent sentences.
They achieve higher performance by introducing pseudo
training sentence. However, the performance of their method
still heavily relies on annotated data.

Self-Supervised Representation Learning

Self-supervised learning aims to train a network on an auxil-
iary task where ground-truth is obtained automatically. Over
the last few years, many self-supervised tasks have been in-
troduced in image processing domain, which make use of
non-visual signals, intrinsically correlated to the image, as a
form to supervise visual feature learning (Agrawal, Carreira,
and Malik 2015; Wang and Gupta 2015).

In natural language processing domain, self-supervised
research mainly focus on word embedding (Mikolov et al.
2013a; 2013b) and language model learning (Bengio et al.
2003; Peters et al. 2018; Radford et al. 2018). For word em-
bedding learning, the idea is to train a model that maps each
word to a feature vector, such that it is easy to predict the
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words in the context given the vector. This converts an ap-
parently unsupervised problem into a “self-supervised” one:
learning a function from a given word to the words surround-
ing it.

Language model pre-training (Bengio et al. 2003; Peters
et al. 2018; Radford et al. 2018; Devlin et al. 2019) is another
line of self-supervised learning task. A trained language
model learns a function to predict the likelihood of occur-
rence of a word based on the surrounding sequence of words
used in the text. There are mainly two existing strategies
for applying pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The feature-
based approach, such as ELMo (Peters et al. 2018), uses
task-specific architectures that include the pre-trained repre-
sentations as additional features. The fine-tuning approach,
such as the Generative Pre-trained Transformer (OpenAI
GPT) (Radford et al. 2018) and BERT (Devlin et al. 2019),
introduces minimal task-specific parameters and is trained
on the downstream tasks by simply fine-tuning the pre-
trained parameters.

Liu et al. (2016) propose a method to automatically gen-
erate large-scale pseudo training data for zero pronoun res-
olution, and propose a two-step training mechanism to over-
come the gap between the pseudo training data and the real
one.

Motivated by the success of self-supervised learning, we
propose a token-level tagging task and a sentence-level clas-
sification task especially powerful for disfluency detection
task.

Multi-Task Learning

MTL (Multi-Task Learning) has been used for a variety of
NLP tasks including named entity recognition and semantic
labeling (Martı́nez Alonso and Plank 2017), super-tagging
and chunking (Bingel and Søgaard 2017) and semantic de-
pendency parsing (Peng, Thomson, and Smith 2017). The
benefits of MTL largely depend on the properties of the
tasks at hand, such as the skewness of the data distribution
(Martı́nez Alonso and Plank 2017), the learning pattern of
the auxiliary and main tasks where “target tasks that quickly
plateau” benefit most from “non-plateauing auxiliary tasks”
(Bingel and Søgaard 2017) and the “structural similarity”
between the tasks (Peng, Thomson, and Smith 2017). In our
work, we use the sentence classification task to help the tag-
ging task by integrating sentence-level grammatical infor-
mation.

Proposed Approach

Self-Supervised Learning Task

Let S = {w1, w2, ..., wn} be an ordered sequence of n to-
kens, which is taken from raw unlabeled news data, assumed
to be fluent. We then propose two self-supervised tasks.

Tagging Task The input of the tagging task is a disflu-
ent sentence Sdisf , generated by randomly adding words
to a fluent sentence. Sdisf is fed into a transformer en-
coder network to learn the representation of each word,
{h1, h2, ..., hn}. The goal is to detect the added noisy words

by associating a label for each word, where the labels D
and O means that the word is an added word and a fluent
word, respectively. Although the distribution of the tagging
task data is different from the distribution of the gold dis-
fluency detection data, the training goal is to keep the gen-
erated sentences fluent by deleting disfluent words, which
matches the goal of disfluency detection. We argue that the
tagging model can capture more sentence structural infor-
mation which is helpful for disfluency detection.

We start from a fluent sequence S and introduce random
perturbations to generate a disfluent sentence Sdisf . More
specifically, we propose two types of perturbations:

• Repetition(k) : the m (randomly selected from one to six)
words starting from the position k are repeated.

• Inserting(k) : we randomly pick a m-gram (m is ran-
domly selected from one to six) from the news corpus
and insert it to the position k.

For the input fluent sentence, we randomly choose one to
three positions, and then randomly take one of the two per-
turbations for each selected position to generate the disfluent
sentence Sdisf . It is important to note that it is possible that
in some cases Sdisf will itself form a fluent sentence and
hence violate the definition of the disfluent sentence. We do
not address this issue and assume that such cases will be
relatively few and will not harm the training goal when the
training data is large.

Sentence Classification Task The input of sentence clas-
sification task is a sentence pair < S1, S2 >, where one is
a fluent sentence and the other one is disfluent, generated
by randomly adding or deleting some words from the cor-
responding fluent sentence. The sentence pair is fed into a
transformer encoder network to obtain a sentence pair rep-
resentation hs. The goal of the task is to discriminate be-
tween fluent sentence and corresponding disfluent one. We
define a label set, {add0, add1, del0, del1}, where add0 and
del0 mean that the first input sentence S1 is generated by
randomly adding and deleting some words from the sec-
ond sentence S2, respectively. We hypothesize that this task
can capture sentence-level grammatical information, which
is helpful for disfluency detection whose training goal is to
keep the generated sentence fluent by deleting the disfluent
words.

We construct two kinds of disfluent sentences for this
task. We use the same method described in the tagging task
to construct the disfluent sentence Sadd with added noisy
words. For the disfluent sentence Sdel with deleted words,
we consider a new type of perturbations:

• Delete(k) : for selected position k, m (randomly selected
from one to six) words starting from this position are
deleted.

For the input fluent sentence, we randomly choose one to
three positions, and then take the Delete(k) perturbation to
generate Sdel. Note that one sentence can only be used to
generate one kind of disfluent sentence to prevent the model
from learning some statistical rules (e.g. the sentence with
intermediate length is a fluent sentence) beyond our goals.
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Transformer Encoder

Input Embedding Layer

[CLS] i the cat [SEP] i like the cat

                  h[CLS ]
h1 h2

Classification 
Layer

del_0

                   …….

[CLS] a flight to boston to denver

h[CLS ] h1 h2                          …            …   hi hn

… …
Tagging Layer

… …
O O D O

Figure 3: Model structure. The parameters of input embed-
ding layer I , encoder layer E, and tagging layer T (yellow
box) are shared among pre-training and fine-tuning

Network Structure

As shown in Figure 3, the model consists of four parts: an
input embedding layer I , an encoder layer E, a tagging layer
T for the tagging task, and a classification layer C for the
classification task.

For I , given a token, its input representation is constructed
by summing the corresponding token, position, and segment
embeddings. For E, we use the multi-layer bidirectional
transformer encoder described in Vaswani et al. (2017).

For the tagging task, E takes a sequence of input
([CLS], x1, x2, ..., xn) and returns a representation se-
quence (h[CLS], h1, h2, ..., hn). Then the representation se-
quence (h1, h2, ..., hn) is sent to T to get a sequence of la-
bels (y1, y2, ..., yn), where yi ∈ {O,D}.

For the sentence classification task, E takes two se-
quences of input ([CLS], x1

1, x
1
2, ..., x

1
m, [SEP ], x2

1, x
2
2, ...,

x2
n) and returns a representation sequence (h[CLS], h

1
1, h

1
2,

..., h1
m, h[SEP ], h

2
1, h

2
2, ..., h

2
n). Then we send the represen-

tation h[CLS] to C to get the classification label y, where
y ∈ {add0, add1, del0, del1}.

Multi-Task Pre-training Procedure

Multi-task learning helps in sharing information between
different tasks and across domains. Our primary aim is to
use the sentence classification task to help the tagging task
by integrating sentence-level grammatical information.

Under the multi-task learning framework, the parameters
of I and E are shared. We denote Tind and Cind as the rep-
resentations of the tagging layer and the classification layer,
respectively. The total loss of the multi-task neural network
is calculated as:

Loss = Losstag + Losscl,

where Losstag means the loss of tagging task, and Losscl
means the loss of sentence classification task.

In practice, we construct mini-batches of training exam-
ples, where 30% of the data are single sentences used for
the tagging task, and another 70% are sentence pairs for the
sentence classification task. Since parts of the encoder are

shared among both tasks, we optimize both loss terms con-
currently.

Disfluency Detection Fine-tuning

We directly fine-tune the pre-trained tagging model (includ-
ing input embedding layer I , encoder layer E, and tag-
ging layer T ) on gold human-annotated disfluency detection
data. Given a pre-trained tagging model, this stage converges
faster as it only needs to adapt to the idiosyncrasies of the
target disfluency detection data, and it allows us to train a
robust disfluency detection model even for small datasets.
For fine-tuning, most model hyperparameters are the same
as in pre-training, with the exception of the batch size, and
number of training epochs.

Experiment

Settings

Dataset. English Switchboard (SWBD) (Godfrey, Holli-
man, and McDaniel 1992) is the standard and largest (1.73×
105 sentences for training ) corpus used for disfluency de-
tection. We use English Switchboard as main data. Follow-
ing the experiment settings in Charniak and Johnson (2001),
we split the Switchboard corpus into train, dev and test set
as follows: train data consists of all sw[23]∗.dff files, dev
data consists of all sw4[5-9]∗.dff files and test data consists
of all sw4[0-1]∗.dff files. Following Honnibal and John-
son (2014), we lower-case the text and remove all punctu-
ations and partial words.1 We also discard the ‘um’ and ‘uh’
tokens and merge ‘you know’ and ‘i mean’ into single to-
kens.

Unlabeled sentences are randomly extracted from
WMT2017 monolingual language model training data
(News Crawl: articles from 2016), consisting of English
news2. Then we use the methods described previously to
construct the pre-training dataset. The training set of the tag-
ging task contains 3 million sentences, in which half of them
are pseudo disfluent sentences Sdisf and others are fluent
sentences directly extracted from the news corpus. We use 9
million sentence pairs for the sentence classification task.
Metric. Following previous works (Ferguson, Durrett, and
Klein 2015), token-based precision (P), recall (R), and (F1)
are used as the evaluation metrics.
Baseline. We build two baseline systems including:(1)
Transition-based (Wang et al. 2017) is a neural transition-
based model and achieves the current state-of-the-art re-
sult by integrating complicated hand-crafted features. We
directly use the code released by Wang et al. (2017).3
(2) Transformer-based is a multi-layer bidirectional trans-
former encoder with random initialization to directly train
on human-annotated disfleuncy detection data. The network
structure is similar to our model except for the classification
layer C in Figure 3. We add it to show that the improvements
do not come from the multi-layer bidirectional transformer
encoder, yet from the pre-training process.

1words are recognized as partial words if they are tagged as
‘XX’ or end with ‘-’.

2http://www.statmt.org/wmt17/translation-task.html
3https://github.com/hitwsl/transition disfluency
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Method
Full 1000 sents

Dev Test Dev Test
P R F1 P R F1 P R F1 P R F1

Transition-based 92.2 84.7 88.3 92.1 84.1 87.9 82.2 57.4 67.6 81.2 56.7 66.8
Transformer-based 86.5 70.4 77.6 86.1 71.5 78.1 78.2 51.3 62.0 79.1 51.1 62.1
Our self-supervised 92.9 88.1 90.4 93.4 87.3 90.2 90.0 82.8 86.3 88.6 83.7 86.1

Table 2: Experiment results on English Switchboard data, where “Full” means the results using 100% human-annotated data,
and “1000 sents” means the results using less than 1% (1000 sentences) human-annotated data.

Method P R F1

UBT (Wu et al. 2015) 90.3 80.5 85.1
Semi-CRF (Ferguson et al., 2015) 90.0 81.2 85.4
Bi-LSTM (Zayats et al., 2016) 91.8 80.6 85.9
LSTM-NCM (Lou and Johnson 2017) - - 86.8
Transition-based (Wang et al. 2017) 91.1 84.1 87.5
Our self-supervised (1000 sents) 88.6 83.7 86.1
Our self-supervised (Full) 93.4 87.3 90.2

Table 3: Comparison with previous state-of-the-art methods
on the test set of English Switchboard. “Full” means us-
ing 100% human-annotated data for fine-tuning, and “1000
sents” means using less than 1% (1000 sentences) human-
annotated data for fine-tuning.

Training Details

In all experiments including the transformer-based baseline
and our self-supervised method, we use a transformer ar-
chitecture with 512 hidden units, 8 heads, 6 hidden lay-
ers, GELU activations (Hendrycks and Gimpel 2016), and
a dropout of 0.1. We train our models with the Adam opti-
mizer.

For the joint tagging and sentence classification objec-
tives, we use streams of 128 tokens and a mini-batches of
size 256. We use learning rate of 1e-4 and epoch of 30.
When fine-tuning on gold disfluency detection data, most
model hyperparameters are the same as in pre-training, with
the exception of the batch size, learning rate, and number
of training epochs. We use batch size of 32, learning rate of
1e-5, and epoch of 20.

Performance On English Switchboard

Table 2 shows the overall performances of our model on
both development and test sets. We can see that our self-
supervised method outperforms the baseline methods in
all the settings. Surprisingly, our self-supervised method
achieves almost 20 point improvements over transition-
based method when using less than 1% (1000 sentences)
human-annotated disfluency detection data.

We compare our self-supervised model to five top
performing systems, which rely on large-scale human-
annotated data and complicated hand-crafted features. Our
model outperforms the state-of-the-art, achieving a 90.2%
F1-score as shown in Table 3. We attribute the success to
the strong ability to learn global sentence-level structural in-
formation. Surprisingly, with less than 1% (1000 sentences)

Method Full 1000 sents
P R F1 P R F1

Random-Initial 86.1 71.5 78.1 79.1 51.1 62.1
Tagging 91.8 84.0 87.7 85.1 79.6 82.3
Classification 91.2 83.1 87.0 83.2 78.3 80.7
Multi-Task 93.4 87.3 90.2 88.6 83.7 86.1

Table 4: Ablation over the two self-supervised tasks.
“Random-Initial” means training transformer network on
gold disfluency detection data with random initialization.

Hyperparams Dev Set Performance
#L #H #A F1 (1000 sents) F1 (Full)
2 256 4 78.1 85.7
2 256 6 79.7 86.8
4 256 6 81.8 88.2
4 256 8 82.9 89.1
6 256 8 84.5 89.6
6 512 8 86.3 90.3

Table 5: Ablation over model size. #L = the number of lay-
ers; #H = hidden size; #A = number of attention heads.
“Full” means fine-tuning on 100% gold training data, and
“1000 sents” means fine-tuning on less than 1% (1000 sen-
tences) gold training data.

human-annotated training data, our model achieves compa-
rable F1-score as the previous top performing systems using
100% human-annotated training data, which shows that our
self-supervised method can substantially reduce the need for
human-annotated training data. Note that we do not com-
pare our work with the work of Wang et al. (2018) using
semi-supervised method for disfluency detection. Wang et
al. (2018) treat interregnum and reparandum types equally
when training and evaluating their model, while others (in-
cluding ours and all the baselines in Table 3) only focus on
reparandums which are more difficult to detect.

Ablation Studies

Effect of the two Self-Supervised Tasks

We explicitly compare the impact of the tagging task and the
sentence classification task. As shown in Table 4, both of our
two self-supervised tasks achieve higher performance com-
pared with the baseline system with random initialization.
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(a) (b) (c)

(d) (e)

Figure 4: (a) Plot showing the impact of pseudo training data size to disfluency detection. (b) Plot showing the impact of human-
annotated data size when fine-tuning. (c) Plot showing the effectiveness of pre-training compared with the baseline methods of
directly merging gold training data with the pseudo training data. (d) Plot showing learnability of self-supervised tasks. (e) Plot
showing the effectiveness of multi-task learning.

Higher performance is achieved by combining the two self-
supervised tasks, which demonstrates that the two tasks can
coexist harmoniously, and share useful information between
each other.

Effect of Model Size

We explore the effect of model size on fine-tuning disflu-
ency detection task. We mainly tune the number of layers,
hidden units, and attention heads, while otherwise using the
same hyperparameters as described previously. In order to
avoid the impact of randomness, we run 3 random restarts of
fine-tuning and report the average F1-Score on the Dev set.
Results are shown in Table 5. We can see that larger mod-
els always lead to a strict F1-score improvement on the Dev
set. It is also surprising that larger models always reduce the
performance gap between fine-tuning using full gold train-
ing data and fine-tuning using less than 1% (1000 sentences)
training data. We believe that much more performance will
be gained if we keep increasing the model size.

Analysis

Varying Amounts of Pseudo Data

We observed the impact of pseudo training data size to
disfluency detection task. Figure 4 (a) reports the results
of adding varying amounts of pseudo training data to the
self-supervised pre-training model. We observe that F1-
score keeps growing when the amount of automatically-
generated data increases. We conjecture that our two self-

supervised tasks and disfluency detection task can coex-
ist harmoniously, and more automatically-generated training
data will bring more structural information. Another surpris-
ing observation is that the performance on the small super-
vised dataset (1000 sentences) grows faster, which shows
that our method has huge potential to tackle the training data
bottleneck.

Varying Amounts of Supervised Data

We explore how fine-tuning scales with human-annotated
data size, by varying the amount of human-annotated
training data the model has access to. We plot F1-score
with respect to the amounts of human-annotated disflu-
ency detection data for fine-tuning in Figure 4 (b). Com-
pared with the baseline systems, fine-tuning based on our
self-supervised models improves performance considerably
when limited gold human-annotated training data is avail-
able, but those gains diminish with more high-quality
human-annotated data. Using only 2% of the labeled data,
our approach already performs as well or better than the pre-
vious state-of-the-art transition-based method using 100%
of the human-annotated training data, demonstrating that
our self-supervised tasks are particularly useful on small
datasets.

Effectiveness of Pre-Training

We explore the contribution of pre-training to the final ex-
perimental results. As the pseudo-training data (Sdisf con-
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structed by adding words) is similar to the gold disfluency
detection data in format, a natural idea is to directly train
previous methods with the mixed pseudo Sdisf data and
gold training data. So we re-train the baseline transition-
based method and transformer-based method by merging the
gold training data with the pseudo Sdisf data. As shown in
Figure 4 (c), F1-scores of the two baseline methods keep
decreasing when the amount of the pseudo training data in-
creases, while F1-score of our self-supervised method keeps
increasing. The results show that our self-supervised method
is much more effective compared with the methods of di-
rectly merging the gold training data with the pseudo data.
We attribute the F1-score decrease of baseline methods to
the discrepancies between the distribution of gold disfluency
detection sentence and the pseudo disfluent sentence Sdisf .

Learnability of Self-Supervised Tasks

Our self-supervised tasks are very similar to supervised
tasks, excepted that the training data is collected with-
out manual labeling. To prove the learnability of our self-
supervised tasks, we explore the performance of our self-
supervised models on the pseudo testing data when pre-
training. We plot the performance with respect to the
amounts of pseudo training data for pre-training in Figure
4 (d). The performance keeps growing when the amount
of automatically-generated data increases, achieving about
80% F1-score on tagging task and 97% accuracy on sen-
tence classification task, respectively. The results show that
our self-supervised tasks are reasonable, which can really
capture more sentence structural information.

Repetitions vs Non-repetitions

Repetition disfluencies are easier to detect and even some
simple hand-crafted features can handle them well. Other
types of reparandums such as repair are more complex (Za-
yats, Ostendorf, and Hajishirzi 2016; Ostendorf and Hahn
2013). In order to better understand model performances,
we evaluate our model’s ability to detect repetition vs. non-
repetition (other) reparandum. The results are shown in
Table 6. All three models achieve high scores on repeti-
tion reparandum. Our self-supervised model is much better
in predicting non-repetitions compared to the two baseline
methods. We conjecture that our self-supervised tasks can
capture more sentence-level structural information.

Comparison with BERT

We would like to see the performance comparison between
our pre-trained model and BERT. The large version of pre-
trained BERT model (24-layer transformer blocks, 1024
hidden-size, and 16 self-attention heads, totally 340M pa-
rameters) is used for the comparison. In our experiment, we
follow the hyper-parameters (e.g. batch size of 32) of Devlin
et al. (2019) when fine-tuning BERT. Additionally, for the
large version of pre-trained BERT model, fine-tuning was
sometimes unstable on small datasets, so we run 3 random
restarts and select the best model on the development set.

Compared with BERT, we use much smaller training cor-
pus and model parameters (6-layer transformer blocks, 512

Method Repet Non-repet Either

Transition-based 93.8 68.3 87.9
Transformer-based 93.6 58.9 78.1
Our self-supervised 93.7 70.8 90.2

Table 6: F1-score of different types of reparandums on En-
glish Switchboard test data.

Method F1 (Full) F1 (1000 sents)

Random-Initial 78.1 62.1
BERT-fine-tune 90.1 82.4
Our self-supervised 90.2 86.1
Combine 91.4 87.8

Table 7: Comparison with BERT. “random-initial” means
training transformer network on gold disfluency detection
data with random initialization. “combine” means con-
catenating hidden representations of BERT and our self-
supervised models for fine-tuning.

hidden-size, and 8 self-attention heads) limited by devices.
Results are shown in Table 7. Both our method and BERT
outperforms the baseline model with random initialization,
which proves the strong ability of pre-training model. Al-
though our pre-training corpus and model parameters are
much smaller than BERT, we achieve a similar result with
BERT when fine-tuning on full gold training data. Surpris-
ingly, our method achieves 3.7 point improvements over
BERT when fine-tuning on 1%(1000 sentences) of the gold
training data. We also try to combine our pre-train model
and BERT by concatenating their hidden representation.
The result shows that much higher performance is achieved.
We also plot the performance with respect to the length of
human-annotated disfluency detection data in Figure 4 (e).
The performance is always much higher by combining our
pre-train model and BERT. This proves that our model and
BERT can coexist harmoniously, and capture different as-
pects of information helpful for disfluency detection.

Conclusion

In this work, we propose two self-supervised tasks to tackle
the training data bottleneck. Experimental results on the
commonly used English Switchboard test set show that our
approach can achieve competitive performance compared to
the previous systems (trained using the full dataset) by us-
ing less than 1% (1000 sentences) of the training data. Our
method trained on the full dataset significantly outperforms
previous methods, reducing the error by 21% on English
Switchboard.
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