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Abstract

Transformer has been successfully applied to many natural lan-
guage processing tasks. However, for textual sequence match-
ing, simple matching between the representation of a pair
of sequences might bring in unnecessary noise. In this pa-
per, we propose a new approach to sequence pair matching
with Transformer, by learning head-wise matching representa-
tions on multiple levels. Experiments show that our proposed
approach can achieve new state-of-the-art performance on
multiple tasks that rely only on pre-computed sequence-vector-
representation, such as SNLI, MNLI-match, MNLI-mismatch,
QQP, and SQuAD-binary.

Introduction

Textual sequence matching is important for many natural
language processing tasks, such as textual entailment (Bow-
man et al. 2015), paraphrase identification (Dolan and Brock-
ett 2005), question answering (Tan et al. 2015), etc. There
has been a large amount of work focusing on this problem,
from exploring classic human-crafted features (Wan et al.
2006), to tree-based neural structures (Mou et al. 2016;
Tai, Socher, and Manning 2015), and a large number of
attention-based models (Rocktäschel et al. 2015; Yin et al.
2015; Parikh et al. 2016; Lin et al. 2017). Table 1 provides
two examples of real sequence matching problems on dupli-
cated question detection and text entailment.

Across the rich history of sequence matching research,
there have been two main streams of studies for solving
this problem1. The first utilizes a sequence encoder (e.g.,
LSTM/CNN) to obtain static low-dimensional vector repre-
sentations of sequence pairs. Subsequently, a parameterized
function (e.g., Multi-layered Perceptron) is applied on top
of the representations to learn a matching score (Bowman et
al. 2015; Mou et al. 2016; Tai, Socher, and Manning 2015;
Lin et al. 2017). The second direction learns to aggregate
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1As classified in the leaderboard of SNLI, https://nlp.stanford.
edu/projects/snli/.

Q1 Is there a reason why we should travel alone?
Q2 What are,some reasons to travel alone?
L is duplicated

P Two young children in blue jerseys, one with
the number 9 and one with the number 2 are
standing on the wooden steps in a bathroom
and washing their hands in a sink.

H Two kids in numbered jerseys want their hands.
L Entailment

Table 1: Examples from Quora Question Pairs (QQP) dataset
for duplicated question detection and Stanford Natural Lan-
guage Inference dataset for text entailment. “Q1” and “Q2”
are the question pair. “P” represents the premise and “H” the
hypothesis. “L” is the label.

word and phrase level interactions using cross-sentence at-
tention, learning the entire matching function in an end-to-
end fashion (Rocktäschel et al. 2015; Wang and Jiang 2016;
Yin et al. 2015; Devlin et al. 2019).

While models that utilize cross-sentence attention typically
achieve better performance (Devlin et al. 2019), the encoders
are unfortunately not re-usable. Hence, new sequence pairs
require re-computation of word/phrasal alignments. Conse-
quently, this incurs additional computation costs. Conversely,
models that learn static representations enjoy reuse of their
fixed vector representations and are therefore inherently more
efficient (i.e., we only need to compute the scoring function
on top of the pre-computed representations). As pointed out
by Reimers and Gurevych (2019), finding the most similar
sentence pair in a collection of n = 10,000 sentences need
to run original BERT n × (n − 1)/2 = 49, 995, 000 times.
By making use of static representations, we only need to
run BERT n times together with some much cheaper matrix
multiplications, which will reduce the running time from 65
hours to 5 seconds. Moreover, this inherent scalability ben-
efit enables querying of up to millions of documents (Das
et al. 2019) or answers (Seo et al. 2018), which provides a
greater recall/coverage in open domain question answering.
Our work, inspired by this advantage, focuses on improving
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techniques based on learning with pre-computed representa-
tions.

Notably, there are several well-established methods for
matching pre-computed vector representations (e.g., cosine
similarity (Tan et al. 2015), element-wise subtraction (Tai,
Socher, and Manning 2015) and direct concatenation fol-
lowed by Multi-layered Perceptron (Bowman et al. 2015)).
Although these matching methods have demonstrated reason-
able success for LSTM (Tai, Socher, and Manning 2015)
or CNN encoders (Mou et al. 2016), they are not ideal
for matching representations obtained from Transformer en-
coders (Vaswani et al. 2017). Different from other types of en-
coders, the multi-headed self-attention mechanism that lives
at the heart of the Transformer model requires special treat-
ment. To this end, how to effectively aggregate information
from multiple heads and multiple layers of the Transformer
remains an unanswered research question.

This work is mainly concerned with (1) empirically study-
ing the behavior of the multi-head attention in pretrained
Transformer models (Devlin et al. 2019) and (2) proposing a
new matching aggregation scheme based on our empirical ob-
servations. More specifically, based on our empirical analysis
and visualization of the behavior of the underlying multi-
headed attention, we arrive at several conclusions. Firstly,
most of the heads will assign higher attention weights to
specific words. Secondly, heads from different layers target
at different aspects of the sequence. Thirdly, some heads pay
attention to the same or related words. Lastly, some heads pay
attention to stopwords or punctuation marks. Intuitively, it
seems as though the representation ability of the Transformer
encoder is spread out across the network, heads, and layers.
Therefore, specialized aggregation is necessary.

As per our observations, different heads may cover dif-
ferent aspects of information. Therefore, mixing the heads
together with a fully connected layer may be sub-optimal. In-
stead, we propose matching the corresponding heads from dif-
ferent sequences independently and then aggregating them for
sequence matching. This is in a similar spirit to the compare-
aggregate framework with cross-sequence attention (Wang
and Jiang 2016; Parikh et al. 2016), albeit largely based on
the head level representations.

Our contributions The contributions of our work can be
summarized as follows:
• We propose a new head-wise matching method, specifi-

cally designed for the Transformer model (Vaswani et al.
2017; Devlin et al. 2019).

• We investigate the utility of different matching functions
for head-wise matching. Based on our experiments, we
find that element-wise matching representation works the
best for head-wise matching.

• We show that we are able to further boost the performance
by making use of the head matching in different layers of
Transformer.

• We explore different methods to integrate the head-wise
matching representation, arriving at the conclusion that
max pooling based method works the best.

• We achieve state-of-the-art results on multiple tasks, in-

cluding SNLI (Bowman et al. 2015), QQP (Wang et al.
2018), MNLI (Williams, Nangia, and Bowman 2018),
SQuAD-binary (Rajpurkar, Jia, and Liang 2018), relying
on sentence vector representations.

Related Work

Learning the relationship between textual sequence pairs is a
fundamental problem in natural language processing (NLP).
A wide range of NLP tasks fit into this problem formulation,
ranging from textual entailment (Bowman et al. 2015) to
question answering (Tan et al. 2015).

The dominant approaches to sequence matching are largely
based on cross-sentence attention (Wang and Jiang 2016;
Parikh et al. 2016; Rocktäschel et al. 2015). The key idea
is to learn word/phrasal alignment between sequence pairs.
Models that compute such alignment on the fly can perform
well on many benchmarks. However, the inability to reuse
representations hampers its usability in real-world applica-
tions.

To mitigate this issue, pre-computed vector representation
can be used, due to its ability for reuse. Seo et al. (2018)
proposed phrase-indexed question answering (PIQA), a spe-
cial setting for reading comprehension that prohibits cross-
sentence attention being computed on the fly. Instead, repre-
sentations should be pre-computed and “cached”. This pro-
vides an intrinsic scalability benefit, enabling efficiency dur-
ing inference. In practice, requiring the re-computation of
alignment on the fly is not suitable for many real-world appli-
cations. Das et al. (2019) proposed multi-step reasoning using
pre-computed vector representations, which can accelerate
searching through documents.

Fine-tuning is another option (Devlin et al. 2019). The
key idea is to pretrain a Transformer model on a large Web
corpus with unsupervised objectives. These large pre-trained
models are then fine-tuned for downstream tasks. The state-
of-the-art pre-trained models such as BERT (Devlin et al.
2019) and GPT (Radford et al. 2018) all fine-tune over se-
quence pairs, and apply self-attention across concatenated
pairs. Effectively, these models can compute alignment on
the fly, but are expensive for real world applications due to
the need of computing token-level cross attention in each
forward pass. In this paper, we will investigate the usage of
these pre-trained models as static encoders.

Model

In this section, we will introduce the details of our model. An
overview of model architecture is shown in Figure 1.

Transformer Encoder

In this paper, we will focus on making use of the vectorized
representations built by Transformer (Vaswani et al. 2017),
which is initialized by BERT (Devlin et al. 2019), for se-
quence matching.

Considering the reusability of encoders, we will not di-
rectly concatenate the sequences and run a single Transformer
on it for matching. Instead, without cross-sequence attention,
we run Transformer on sequence pairs independently and
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Figure 1: An overview of the model. Fully connected layer (FCL) is a non-linear transformation layer. Figures (e)(f)(g) are
different Match functions applied in the first three models.

only match sequences based on their vectorized represen-
tations. This setting is useful for large-scale answer extrac-
tion (Seo et al. 2018) and multi-step reasoning (Das et al.
2019).

Each Transformer layer is constructed by multi-head self-
attention (Lin et al. 2017):

MultiHead(H) = f (Concat (head1, ..., headI)) , (1)
where H is the hidden representation from last layer. f(.) is
a non-linear transformation, and the function Concat(·, ·) is
to concatenate all the headi, which is collected by attention
mechanism:

headi = Attention(HWQ
i ,HWK

i ,HWV
i ), (2)

Attention(Q,K,V) = softmax (
QKT

√
d

)V, (3)

where WQ
i ,W

K
i ,W

V
i are the weights to learn and d is the

hidden size of headi for scaling the attention weights. In the

default setting of Transformer, the hidden representation of
the first token, which is an inserted special token “[CLS]” for
classification, represents the whole sequence as follows:

h = MultiHead(Q,K,V)[0], (4)

where [0] is to select the vector in the first position. When
we need to match a sequence pair, such as in the example in
Table 1, the hidden representations of the pair can be obtained
as h

s
and h

t
, respectively, which can be used as the input of

a match function to build the matching representation.

Head-wise Match

For the most widely used encoders, such as CNN (Kim
2014), LSTM (Hochreiter and Schmidhuber 1997), tree-
LSTM/CNN (Tai, Socher, and Manning 2015), the representa-
tions of different sequences, h

s
and h

t
, will be concatenated

and followed by a MLP layer for classification, as shown
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in Figure 1 (a). While, for the Transformer (Vaswani et al.
2017), it is constructed by the self-attention heads. And each
head can focus on a specific aspect of the sequence, as the
distribution of self-attention weights are usually quite sharp,
as shown in Figure 3. This is the special property for Trans-
former. In this way, besides directly matching the sequence
level representations of Transformer, we can first match the
corresponding heads in different sequences and then aggre-
gate the head-wise matching representations to build the
sequence level matching representation. An overview of the
model is shown in Figure 1 (b).

Specifically, instead of mixing up different heads to get
a better sequence level representation, as shown in Eqn.(1),
we directly match the headi from different sequences. For
simplicity, we use hi to represent the first vector, which cor-
responds to the first token of the sequence in the ith head:

hi = headi[0], (5)

hi represents the i aspect of the sequence information. Instead
of merging the heads from one sequence, we first match all
heads, hs

i,h
t
i, from the sequence pair:

mi = Match(hs
i,h

t
i) (6)

where mi is the head-wise matching representation. Then
another layer is used to aggregate the matched heads:

o = Aggregation (m1,m2, ...,mI) , (7)

where o will be used for sequence level matching. The Match
and Aggregation functions will be introduced in Eqn.(9-13).

Multi-level Head-wise Match

Different layers of the encoder can represent different levels
of information. Both the shallow and deep structures are
useful for the sequence matching. Moreover, based on our
visualization on the attention weights, we find that the heads
in different layers will also pay attention to different aspects
of the sequence. In this way, we can get the head-wise match
for every layer in the Transformer. We use ol to represent
the head-wise matching representation by making use of all
the heads in the kth layer, as shown in Figure 1 (c). And we
aggregate the representations from different layers as follows:

vi = ReLU(oiW
v + bv),

u = Aggregation (v1,v2, ...,vk) , (8)

where Wv and bv are the parameters to optimize. And the u
is the final representation of the sequence matching, which
consists of multi-level head-wise match, which can be used
for the final classification.

Match and Aggregation Functions

To the best our knowledge, this is the first work to aggre-
gate the head-wise matching in Transformer for sequence
matching. We have a further explorations on the influence
of different head-wise matching functions, in Eqn. (6), and
aggregation functions, in Eqn. (7,8) , for building the final
sequence matching representation.

For the match functions with two vectors, hs,ht, as in-
puts, the Cosine similarity would the most efficient one with-
out parameters to learn:

m = Match(hs,ht) = Cosine(hs,ht), (9)

where the output is a scalar value. Another more complicated
matching would a bilinear which is also widely used for the
representation matching or attention weight computing:

m = Match(hs,ht) = (hsWb) · ht, (10)

where Wb is the matrix weights to learn and the output of the
match function is a scalar. The most complicated and widely
adopted match function is based on a fully connected layer
with element-wise matching (Mou et al. 2016; Tai, Socher,
and Manning 2015; Bowman et al. 2016; 2018; Tay, Tuan,
and Hui 2017):

m = Match(hs,ht),

= g
(
Concat

(
hs,ht,hs − ht,hs ∗ ht)) , (11)

where the function g(·) is a non-linear transformation with
ReLU as activation function and output of this function is a
vector.

Next, we also explore two aggregation functions, where
the inputs are the different head-wise matching represen-
tations, m1,m2...mI. The most efficient way is the max
pooling:

e = MaxPooling(m1,m2...mI),

o = ReLU(eWe + be), (12)

where We ∈ R
d×d and be ∈ R

d are the parameters to learn.
And the other way is to directly concatenate them and make
use of another non-linear transformation layer to map it into
a smaller vector representation:

e = Concat(m1,m2...mI),

o = ReLU(eWc + bc), (13)

where Wc ∈ R
dI×d and bc ∈ R

d are the parameters to learn.
The transformation matrix Wc here is much larger than We.

Loss Function

We will mainly focus on the tasks of sequence pair classifica-
tion in the paper. The matching representation o will be used
as the input of final loss as follows:

loss = −log
exp(o ·wlabel + blabel)
∑

f exp(o ·wf + bf)
, (14)

where wf ∈ R
d and bf ∈ R are the parameters to learn.

Experiments

This section introduces our experiment results, implementa-
tion details and further analysis.

9212



Sentence vector-based models SNLI MNLI-m MNLI-mm QQP SQuAD-binary

LSTM (Bowman et al. 2015) 80.6 - - - -
SPINN-PI (Bowman et al. 2016) 83.2 - - - -
NSE (Munkhdalai and Yu 2017) 84.6 - - - -
CAFE (Tay, Tuan, and Hui 2017) 85.9 - - - -
RSN (Shen et al. 2018) 86.3 - - - -
DSA (Yoon, Lee, and Lee 2018) 87.4 - - - -
BiLSTM (Wang et al. 2018) - 70.3 70.8 61.4/81.7 -
BiLSTM+Cove (McCann et al. 2017) - 64.5 64.8 59.4/83.3 -
BiLSTM+ELMo (Peters et al. 2018) - 72.9 73.4 65.6/85.7 -
Skip-Thought (Kiros et al. 2015) - 62.9 62.8 56.4/82.2 -
InferSent (Conneau et al. 2017) - 58.7 59.1 59.1/81.7 -
GenSen (Subramanian et al. 2018) - 71.4 71.3 59.8/82.9 -

Classic Match 83.2 73.8 74.2 63.3/85.9 61.5
Single-level Head-wise Match 87.0 77.7 77.4 67.8/88.1 62.1
Multi-level Head-wise Match 88.1 79.2 79.3 69.0/88.6 62.9

SOTA (cross sentence attention) 91.1 86.7 86.0 72.4/89.6 83.2

Table 2: Experiment results. We only compare with the sentence vector-based models as listed in the SNLI Leaderboard. The
results on MNLI-m, MNLI-mm and QQP are tested through GLUE Leaderboard. SOTA are the state-of-the-art models with
cross sentence attention on the datasets.

train test #class

SNLI 549,367 9,824 3
MNLI-m 392,702 9,796 3
MNLI-mm 392,702 9,847 3
QQP 363,870 390,964 2
SQuAD-binary 130,319 11,873 2

Table 3: The statistics of different datasets.

Datasets

We test our models on the tasks of 1) Text Entailment, which
is to identify the relation (entailment, contradiction and neu-
ral) between a sequence pair, such as the datasets of Stanford
Natual Language Inference (SNLI) (Bowman et al. 2015),
Multi-Genre Natural Language Inference matched (MNLI-m)
and mismatched (MNLI-mm) (Williams, Nangia, and Bow-
man 2018) 2; 2). Duplicate Question Detection, which is to
identify whether the given question pair is duplicate or not,
such as Quora Question Pairs (QQP); 3) Question Answering,
such as the binary classification setting of Stanford Question
Answering Dataset 2.0 (SQuAD-binary) (Rajpurkar, Jia, and
Liang 2018) where we only need to predict whether the given
passage can answer the question or not.

We follow the setting of GLUE 3 to split the datasets of
MNLI-m, MNLI-mm and QQP. For SQuAD-binary, we use
the pulic dev set as test set. The statistics of the number of
samples and classes of different datasets is shown in Table 3.

2For the setting of MNLI-m, the sequence pairs from training
and test sets are derived from the same sources. For the setting of
MNLI-mm, the samples from training and test sets are in different
genres.

3https://gluebenchmark.com/tasks

Experiment Results

Our experiment results are shown in Table 2. For the QQP
task, we report the performance of F1 and accuracy. For the
other tasks, we only use the accuracy as the evaluation metric.

We compare our head-wise matching based method with
a classic way to matching the representations built by en-
coders. The “Classic Match” is the method making use of
the sequence representation built by Transformer, Eqn.(4),
and the element-wise match function, Eqn.(11), for sequence
pair matching. The “Single-level Head-wise Match” is our
method to aggregate the head-wise matching representation
by Eqn.(7) with element-wise match function and maxpool-
ing aggregation function. For a fair comparison, we only use
the representations in the final layer for sequence matching
for both above-mentioned methods. Based on our results, we
can clearly see that our head-wise matching based method
is significantly better than the classic matching model on all
the datasets. We have a further exploration on integrating
“Multi-level Head-wise Match” representations, by Eqn.(8),
also with element-wise match function and maxpooling ag-
gregation function. We can also see that it’s better than only
aggregating the head-wise matching representations in a sin-
gle layer.

We also compare to other sentence vector-based mod-
els: LSTM (Bowman et al. 2015) or BiLSTM (Wang et al.
2018) are trained from scratch without special initialization;
SPINN-PI (Bowman et al. 2016) is a stack-augmented parser-
interpreter neural network; NSE (Munkhdalai and Yu 2017) is
based on neural semantic encoder; CAFE (Tay, Tuan, and Hui
2017) is compare, compress and propagate with alignment-
factorized encoder; RSN (Shen et al. 2018) is a reinforced
self-attention encoder; DSA (Yoon, Lee, and Lee 2018) is
a dynamic self-attention encoder. BiLSTM+Cove (McCann
et al. 2017) is based a pre-trained encoder on neural ma-
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Match (M) and Aggregate (A) Functions SNLI

Match cosine (Eqn. 9) + Agg concate (Eqn. 13 ) 86.8
Match bilinear (Eqn. 10) +Agg concate (Eqn. 13 ) 86.7
Match element (Eqn. 11) +Agg concate (Eqn. 13 ) 88.0
Match element (Eqn. 11) +Agg concate (Eqn. 13 ) (no hier) 87.6
Match element (Eqn. 11)+Agg maxpooling (Eqn. 12 ) 88.1

Table 4: Comparison of different matching and aggregation functions in the model of Multi-level Head-wise Match. Each
matching/aggregate function corresponds to the its actual equation number. “no hier” is to simply aggregate all the representations
for classification, instead of aggregating all the head representations in each layer and then all the layer presentations.

chine translation. BiLSTM+ELMo (Peters et al. 2018) is
based a pre-trained encoder on language modeling. Skip-
Thought (Kiros et al. 2015), InferSent (Conneau et al. 2017),
GenSen (Subramanian et al. 2018) are also based on pre-
trained encoders trained with different methods.

By comparing all the previous models on matching vec-
torized sequence representations, we can see that our model
achieves the best performance under this setting. Although
our best models are still worse than state-of-the-art models
with cross sentence attention, the performance is quite close
on the datasets of SNLI and QQP, both of which have much
larger training set than MNLI and SQuAD-binary. For the
dataset of SQuAD-binary, all of our models obtain relatively
poor performance. One possible reason is the training set of
SQuAD-binary is relatively small and therefore insufficient
for learning a good encoder. Another main reason is that
SQuAD is in paragraph level, which is naturally longer than
the sequences in SNLI or QQP. As such, the hidden states of
Transformer are still not powerful enough to represent all the
information of the paragraphs containing more words.

Implementation Details

Our Transformer is initialized by BERT-large (Devlin et al.
2019) 4, with 24 layers, 16 heads each layer. Each head
is a 64 dimentional vector. We limit the maximal single se-
quence length of SQuAD-binary to 384 and the other datasets
64. We set the batch size to be 16. We tune the learning
rate from [10−5, 2 × 10−5, 3 × 10−5] and dropout from
[0, 0.1, 0.2, 0.3, 0.4]. We use a single GPU, Nvidia V100 with
16G memory, for training the models.

Analysis

This section presents a comprehensive ablative and qualitative
analysis.

Effect of Match-Aggregate functions We analyze the per-
formance of different match functions and aggregation func-
tions based on the experiments on the SNLI dataset. The
experiment results are shown in Table 4. According to our
results, we observe “Match element” performs the best in all
of our experiments in Table 2 also rely on this match function.
Although the “Match cosine” function performs marginally
worse, it requires fewer parameters and is also faster than

4https://github.com/huggingface/pytorch-pretrained-BERT

Figure 2: The performance of matching models on Trans-
former with different number of layers.

“Match element”, serving as a good choice when in large
scale settings.

As for the aggregation methods, we can see that
“Agg maxpooling” and “Agg concate” achieve similar perfor-
mance. However, “Agg maxpooling” requires I , the number
of heads, times fewer parameters for training. In a similar
fashion, we also extend our model with this aggregation
method to other datasets. Additionally, we also have a com-
parison with the models with and without hierarchical aggre-
gation, denoted as the “no hier” line in Table 4. The “no hier”
method performs slightly worse at extracting the most useful
head-wise match representation for the final classification.

Effect of Number of Layers Next, we analyze the ef-
fects of the number of Transformer layers on our models,
as shown in the Figure 2. We compare three different set-
tings, i.e., “Classic Match”, “Single-level Head-wise Match”,
and “Multi-level Head-wise Match”. We observe that the
head-wise matching based methods can always achieve bet-
ter performance than the classic match method, regardless
of how many Transformer layers we use. We also observe
that the more number of Transformer layers may not always
get better performance for all the match models. Lastly, our
“Multi-level Head-wise Match” model dynamically integrates
all the useful head-wise matching representations from differ-
ent layers. As a result, this model achieves better performance
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Figure 3: Visualization on the attention weights of different heads (16 in total) from layer 19 and 20 on two sentences.

than only using the representations from the final layer.

Visualization Finally, to further explain our motivation on
head-wise match, we conduct a visualization study on the
attention weights of Transformer, as shown in Figure 3. We
observe the attention weights are not uniformly distributed.
For example, the second head in the “Premise layer 19” fo-
cuses on the word “jerseys” and the fifth head pays atten-
tion on the word “young”. The head with the same id from
different encoders can focus on the related words. For ex-
ample, the second head from “Premise layer 19” and “Hy-
pothesis layer 19” focus on the “jerseys”, and the forth head
focus on the “young” and “kids” respectively. As a result,
head-wise matching can help identify which aspects of the
hypothesis can be explained by the premise. Moreover, the
aggregation of these aspect matching will lead to the final
sequence matching.

Additionally, we also observe that some heads pay
attention on the punctuations, such as the first head
in “Premise layer 19” and “Hypothesis layer 19”. The
maxpooling aggregation function learns to filter these types
of head matching that will not contribute to the final predic-
tion. Finally, we can also see that the heads from different
layers focus on different aspects of the sequence. For exam-
ple, the distribution of the words drawn attention by the heads
from “Premise layer 19” and “Premise layer 20” are quite
different. Hence, this explains the need for the head-matching
across different layers.

Conclusions

In this paper, we focused on sequence matching based on
pre-computed vector representations. We provide a compre-
hensive deep analysis on the representations built by pre-
trained Transformer models, making a key observation that
merging all the heads to build sequence representation for
matching is sub-optimal. Instead, we propose to integrate
the head-wise match between sequences, achieving a sub-
stantial performance gain on 5 different sequence matching
tasks. Moreover, by integrating the head-wise match from
all different Transformer layers, our model achieves the best
performance among the sentence vector-based models.
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