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Abstract

The key challenge of multi-domain translation lies in simul-
taneously encoding both the general knowledge shared across
domains and the particular knowledge distinctive to each do-
main in a unified model. Previous work shows that the stan-
dard neural machine translation (NMT) model, trained on
mixed-domain data, generally captures the general knowl-
edge, but misses the domain-specific knowledge. In response
to this problem, we augment NMT model with additional do-
main transformation networks to transform the general repre-
sentations to domain-specific representations, which are sub-
sequently fed to the NMT decoder. To guarantee the knowl-
edge transformation, we also propose two complementary
supervision signals by leveraging the power of knowledge
distillation and adversarial learning. Experimental results on
several language pairs, covering both balanced and unbal-
anced multi-domain translation, demonstrate the effective-
ness and universality of the proposed approach. Encourag-
ingly, the proposed unified model achieves comparable re-
sults with the fine-tuning approach that requires multiple
models to preserve the particular knowledge. Further analyses
reveal that the domain transformation networks successfully
capture the domain-specific knowledge as expected.1

Introduction

In multi-domain translation, a unified neural machine trans-
lation (NMT) model is expected to provide high quality
translations across a wide range of diverse domains. The
main challenge of multi-domain translation lies in learn-
ing a unified model that simultaneously 1) exploits the gen-
eral knowledge shared across domains, and 2) preserves
the particular knowledge that represents distinctive char-
acteristics of each domain. Unfortunately, standard NMT
models trained on the mixed-domain data generally capture
the general knowledge while ignoring the particular knowl-
edge, rendering them sub-optimal for multi-domain transla-
tion (Koehn and Knowles 2017).

*Work done when interning at Tencent AI Lab.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The source code and experimental data are available at https:
//github.com/wangyong1122/dtn.

A natural approach to this problem is fine-tuning, which
first trains a general model on all data and then separately
fine-tunes it on each domain (Luong and Manning 2015).
However, the fine-tuning approach requires maintaining a
distinct NMT model for each domain, which makes it un-
wieldy in practice. Towards learning a unified multi-domain
translation model, several researchers turn to augment the
NMT model to learn domain-specific knowledge. For ex-
ample, Kobus et al. (2016) introduced a special domain tag
to the source sentence, and Britz et al. (2017) and Zeng
et al. (2018) guide the encoder output to embed domain-
specific knowledge via an auxiliary object. However, all the
approaches require the encoder representations to embed
both the general and the particular knowledge at the same
time. Recent studies have shown that such overloaded usage
of hidden representation makes training the model difficult,
and such problem can be mitigated by separating these func-
tions (Rocktäschel et al. 2017; Zheng et al. 2018).

In this work, we explicitly model the domain-specific
functionality for multi-domain translation by introducing
domain transformation networks (DTNs). More specifically,
the DTNs transform the general knowledge learned by the
encoder to the domain-specific knowledge, which is subse-
quently fed to the decoder. In this way, the encoder learns
general knowledge in the standard fashion, and the newly
added DTNs learn to preserve the particular knowledge. We
employ a residual connection on DTNs to enable the de-
coder to exploit both the general and particular knowledge.
To guarantee the knowledge transformation, we also propose
two supervision strategies: 1) domain distillation that en-
courages the unified model to learn domain-specific knowl-
edge in a teacher-student framework; and 2) domain dis-
crimination that guides the encoder output and the trans-
formed representation to embed the required knowledge
with adversarial learning.

We conduct experiments on three language pairs:
Chinese⇒English, German⇒English and English⇒French,
covering balanced, unbalanced and large-scale multi-
domain data. Experimental results show that our model sig-
nificantly and consistently outperforms both the TRANS-
FORMER baseline by +3.35 BLEU points and previous
multi-domain translation models (Kobus et al. 2016; Britz
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et al. 2017; Zeng et al. 2018) by +1.0∼2.0 BLEU points
on different data, demonstrating the effectiveness and uni-
versality of the proposed approach. Encouragingly, our uni-
fied model is on par with the fine-tuning approach that re-
quires multiple models to preserve the particular knowledge.
Further analysis reveals that the domain transformation net-
works successfully capture the domain-specific knowledge
while maintaining the specificity of each domain.

Contributions Our main contributions are:
1. Our study demonstrates the necessity of explicitly mod-

eling the transformation from the general to the particular
for multi-domain translation.

2. We exploit two supervision signals to simultaneously
and incrementally encourage transformation of domain
knowledge.

3. We construct several multi-domain data across lan-
guages, on which we empirically validate a variety of ex-
isting approaches.

Background
Neural Machine Translation A standard NMT model di-
rectly optimizes the conditional probability of a target sen-
tence y = y1, . . . , yJ given its corresponding source sen-
tence x = x1, . . . , xI :

P (y|x; θ) =
J∏
j=1

P (yj |y<j ,x; θ) (1)

where θ is a set of model parameters and y<j denotes
the partial translation. The probability P (y|x; θ) is de-
fined on the neural network based encoder-decoder frame-
work (Sutskever et al. 2014; Cho et al. 2014), where the en-
coder summarizes the source sentence into a sequence of
representations H = H1, . . . ,HI with H ∈ R

I×d, and
the decoder generates target words based on the represen-
tations. Typically, this framework can be implemented as re-
current neural network (RNN) (Bahdanau et al. 2015), con-
volutional neural network (CNN) (Gehring et al. 2017) and
Transformer (Vaswani et al. 2017). The parameters of the
NMT model are trained to maximize the likelihood of a set
of training examples D = {[xm,ym]}Mm=1:

L(θ) = argmax
θ

M∑
m=1

logP (ym|xm; θ) (2)

The training corpus generally consists of data from various
domains, which are not distinguished by the NMT model.
This may pose difficulties to multi-domain translation.

Multi-Domain Translation This task aims to build a uni-
fied model on the mixed-domain data by maximizing per-
formances across all domains. Formally, there areN subsets
D1, ..., DN from different domains, where the n-th domain
of subset Dn = {[xmn ,ymn ]}Mn

m=1. Accordingly, the training
objective is

J (θ) = argmax
θ

1

N

N∑
n=1

Ln(θ) (3)

which maximizes the likelihood over training examples in
each domain (i.e., Ln(θ)). As seen, there is no explicit sig-
nals to guide the model to learn domain-aware information
in the learning objective function. As a result, the parame-
ters in a standard NMT model generally capture the general
knowledge while ignoring the domain-specific knowledge.

Approach

Our goal is to build a unified model, which can achieve
good performance on all domains. As shown in Figure 1,
we augment the standard NMT model with the introduced
Domain Transformation networks, which transform the gen-
eral encoding representations to the domain-specific repre-
sentations. To guarantee the knowledge transformation ef-
fectively, we also propose two complementary supervision
signals: Domain Distillation and Domain Discrimination,
leveraging the power of knowledge distillation and adver-
sarial learning.

Domain Transformation

Residual Transformation Networks The basic idea of
domain transformation is to separate the specific features
of each domain from the general features across multiple
domains. First, we learn a shared encoder that maps in-
put sentences to general representations that preserve com-
mon knowledge regardless of domains. Simultaneously, we
learn a transformation component that explicitly transforms
the general representations to domain-specific representa-
tion spaces, each of which represents distinctive characteris-
tics of one single domain. The residual connection on trans-
formation networks implicitly serves as an interpolation of
the general and domain specific representations.

Formally, the transformation module reads a sequence of
hidden states and outputs transformed ones. The source sen-
tence x is first summarized into general representations H
by a shared encoder of the standard NMT model. Condi-
tioned on the input latent representations H, we then employ
a residual model (He et al. 2016) to generate domain-specific
representations H′ by:

H′ = F(H,Wn) +H (4)

where Wn is the parameters related to the n-th domain and
F(·) is the functional mapping which can be implemented
by different types of neural networks such as feed-forward
network (FNN), CNN and self-attention network (SAN).
Subsequently, the output representations H′, which encode
both the general knowledge H and the domain-specific
knowledge F(H,Wn), are fed to a shared decoder for gen-
erating the target sentence y.

The differences between domains are usually uncertain
and tiny, which leads to inefficiency of directly fitting a de-
sired underlying mapping. Recently, “residual” – a concept
in deep neural networks (He et al. 2016; Sohn et al. 2019)
has been successfully applied to extract feature differences
in fields of image classification (Sohn et al. 2019) and speech
recognition (Van Den Oord et al. 2016) and achieves re-
markable improvements of performance. In our preliminary
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Figure 1: Architecture of the proposed multi-domain translation model, which consists of two key components: 1) domain
transformation that transforms from the general representations to domain-specific representations, and we maintain a distinct
transformation network for each domain; 2) domain supervision that contains two sub-components: domain distillation and
domain discrimination. Domain distillation learns domain-specific model guided by domain teachers, which are fine-tuned on
corresponding training corpora. Domain discrimination guides the two types of representations to embed the required content.
In this example, the data of Domain 1 (“D1”) are used to train the model, and solid line denotes the information flow.

experiments, we have investigated two different implemen-
tations of transformation networks including stacked feed-
forward networks and multi-head attention networks. We
found that the multi-head attention mechanism performs bet-
ter in respect of capturing such domain-aware characteristics
for the multi-domain translation task. In this study, we also
parameterized F(·) based on domain symbols, where each
transformation module is able to maintain its own domain-
aware parameters.

Domain-Aware Batch Learning To train distinct param-
eters of each domain, we propose a domain-aware learning
strategy, in which one batch only contains training exam-
ples in a certain domain. One straightforward implementa-
tion is to alternately or randomly feed domain-aware batches
into our proposed model. However, in the preliminary ex-
periments, we found severe overfitting problems when using
unbalanced multi-domain data. To overcome this, we pro-
pose a more balanced method, which heuristically selects a
certain domain-batch by considering its distribution over the
entire training corpus. Formally, domain-batches are sam-
pled according to a multinomial distribution with probabili-
ties {qi}i=1,...,N :

qi =
pαi∑N
j=1 p

α
j

pi =
ni∑N
k=1 nk

(5)

where ni is the number of batches of the i-th domain and
α = 0.7 is the balance factor, which aims to increase the
number of tokens associated with low-resource domains and
alleviates the bias towards high-resource domains.

Domain Supervision

Domain Distillation The generalization ability of the
teacher model can be transferred to the student by using
the class probabilities produced by the cumbersome model
for training the small model (Hinton et al. 2014). Recent
studies on speech recognition show that training student net-
works with multiple teachers achieves promising empirical
results (You et al. 2019).

Inspired by these observations, we propose to teach a uni-
fied model with multiple teachers trained on different do-
mains. Specifically, we employ the soft targets produced by
fine-tuned models as the supervision signal to train our uni-
fied model with the benefits of exploiting more data infor-
mation and simultaneously reducing the interference across
domains.

For the learning objective, we linearly interpolate soft
target distribution produced by the corresponding domain
teacher with hard labels:

L(θ) = argmax
θ

∑
(x,y)∈D

{
(1− λ) logP (y|x; θ)

+λ

J∑
j=1

|V |∑
k=1

P̂ (yj = k|y<j ,x; θ̂)

× logP (yj = k|y<j ,x; θ)
}

(6)

where λ is a hyper-parameter that is shared across multiple
domains, |V | is the vocabulary size of the target language,
and P̂ (·) is the soft target.
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Domain Discrimination Adversarial and discriminative
learning can effectively distinguish between different types
of features (Ganin and Lempitsky 2015; Chen et al. 2017b;
Sun et al. 2018; Adams et al. 2019). In this work, we aug-
ment the transformation networks with the ability of domain
discrimination. Specifically, the adversarial domain classi-
fier is deployed at the input of DTNs, namely:

P (d|x;ψ) = softmax(W�
D H̃) (7)

where d is the domain symbol,WD is the weights of softmax
classifier and H̃ is the weighted representations of the en-
coding representations (H), which is calculated as follows:

H̃ =
I∑
i=1

αiHi (8)

where the computation of αi is similar to self-attention (Lin
et al. 2017), in which the query is a trainable vector. Further-
more, we conduct a domain classifier on the output of DTNs
H̃′ to guide it to embed domain-specific knowledge:

P (d|x; γ) = softmax(W ′�
D H̃′) (9)

where γ is a set of parameters of the domain classifier and
H̃′ can be obtained according to Equation (8).

Overall, the training objective is a linear interpolation of
the likelihood and the domain discrimination:

L(θ, γ, ψ) = argmax
θ,γ,ψ

∑
(x,y,d)∈D{

logP (y|x; θ)︸ ︷︷ ︸
likelihood

+ logP (d|x; γ)︸ ︷︷ ︸
domain classifier

+ logP (d|x;ψ) + δ ×H(P (d|x;ψ))︸ ︷︷ ︸
domain adversarial

}
(10)

where δ is the balance factor, and H(P (·)) is the entropy of
the probability distribution of the adversarial domain classi-
fier with N domain labels. Following Zeng et al. (2018) and
Chen et al. (2017c), we also employed the two-phase train-
ing strategy, where we alternatively optimized L(θ, γ, ψ)
with {θ, γ} and ψ. Besides, we discarded the component
logP (d|x;ψ) when training the {θ, γ} parameter set.

Discussion While these two supervisions have their own
characteristics, domain distillation and discrimination are
complementary to each other. Domain distillation exploits
more information of data, including shared and domain-
aware knowledge across domains. As a strong supervision
signal, domain discrimination is used to guide the transfor-
mation model to learn the distinct information between gen-
eral and domain-specific representations.

Experiments

Setup

Data We conducted experiments on four different corpora,
as listed in Table 1. For Chinese⇒English (Zh⇒En) trans-
lation, we used both a small-scale and a large-scale cor-
pus. The small one is the same as that used by Zeng et

Corpus D |S| Corpus D |S|
Law 0.22

De⇒En

Law 0.59
Zh⇒En Oral 0.22 Med. 0.87
(small) Thesis 0.30 IT 0.31

News 0.30 Koran 0.53
Law 1.46

Zh⇒En News 1.54 En⇒Fr Med. 0.89
(large) Patent 2.90 Parl. 2.04

Sub. 1.77

Table 1: Statistics of training corpora: “D” and “|S|” indi-
cate the domain and the number of sentences (in millions).
As seen, Zh⇒En can be regarded as “balanced data” as the
number of training samples is similar across domains while
De⇒En and En⇒Fr are “unbalanced data” as the numbers
of sentence pairs are very different.

al. (2018), and consists of four evenly distributed domains:
law, oral, thesis and news. The large corpus is collected
from CWMT2017 Lingosail, TVSub (Wang et al. 2018)
and LDC, which consists of four balanced domains: law,
news, patent and subtitle. For German⇒English (De⇒En)
and English⇒French (En⇒Fr) translation tasks, we used a
large amount of training data extracted from OPUS. They re-
spectively contain four and two unevenly-distributed (unbal-
anced) domains including law, medical, information tech-
nology and Koran and European Parliament. The validation
and test sets are officially-provided, otherwise randomly se-
lected from the corresponding training corpora.

All the data were tokenized and then segmented into
subword symbols using byte-pair encoding (Sennrich et al.
2016b) with 30K merge operations to alleviate the out-of-
vocabulary problem. We used 4-gram BLEU score (Papineni
et al. 2002) as the evaluation metric, and bootstrap resam-
pling (Koehn 2004) for statistical significance.

Model For fair comparison, we implemented all pro-
posed and other approaches on the advanced Transformer
model (Vaswani et al. 2017) using the open-source toolkit
Fairseq (Ott et al. 2019). We followed Vaswani et al. (2017)
to set the configurations of the NMT model, which consists
of 6 stacked encoder/decoder layers with the layer size being
512. All the models were trained on 8 NVIDIA P40 GPUs
where each was allocated with a batch size of 4,096 tokens.
We trained the baseline model for 100K updates using Adam
optimizer (Kingma and Ba 2015), and the proposed models
were further trained with corresponding parameters initial-
ized by the pre-trained baseline model. We fixed the hyper-
parameters λ and δ as 0.1.

Baseline Comparisons To make the evaluation convinc-
ing, we re-implemented and compared with five previous
models on multi-domain adaptation, which can be divided
into two categories with respect to the number of models.
The multiple-model approaches require to maintain a dedi-
cated NMT model for each domain:
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# Architecture #M #Para.
BLEU

Law Oral Thesis News Avg. �
RNN-based NMT (Zeng et al. 2018)

1 RNNSearch 1 – 45.82 9.15 13.93 19.73 22.16 –
2 + Domain Context – 55.03 10.20 18.04 22.29 26.39 –

Transformer-based NMT (this work)
3 Transformer 1 95.2M 65.72 10.28 20.38 27.22 30.90 –
4 + Fine-tune (Luong and Manning 2015) 4 95.2M 70.34↑ 8.15 25.03↑ 36.17↑ 34.92 +4.02
5 + Mixed Fine-tune (Chu et al. 2017) 95.2M 66.81 9.42 18.28 34.53↑ 32.26 +1.36
6 + Domain Control (Kobus et al. 2016)

1
95.2M 66.18 10.06 20.45 28.10 31.20 +0.30

7 + Domain Discriminate (Britz et al. 2017) 95.2M 65.81 8.99 21.20 28.54↑ 31.15 +0.25
8 + Domain Context (Zeng et al. 2018) 97.3M 66.81 9.75 22.74↑ 28.90↑ 32.05 +1.15
9 + Domain Transformation 1 107.8M 67.70↑ 8.88 21.72↑ 31.07↑ 32.34 +1.44
10 + Domain Supervision 108.4M 66.63 8.23 28.43↑ 33.72↑ 34.25 +3.35

Table 2: Translation results on small-scale balanced Zh⇒En multi-domain data used by Zeng et al. (2018). We also list the
results of Zeng et al. (2018) on RNN-based NMT. “#M” denotes the number of required models and “#Para.” denotes the
number of parameters. “+” denotes appending new features to the above row. “↑” indicates statistically significant difference
(p < 0.01) from “Transformer” in the corresponding domains.

• Fine-tune (Luong and Manning 2015) that first trained
a model on the entire data, and then fine-tuned multiple
models separately using in-domain datasets.

• Mixed Fine-tune (Chu et al. 2017) that extended the fine-
tune approach by training on out-of-domain data, then
fine-tuning on in-domain and out-of-domain data.

The unified model methods handle adaptation to multiple
domains within a unified NMT model:
• Domain Control (Kobus et al. 2016) that introduced do-

main tag to the source sentence.
• Domain Discrimination (Britz et al. 2017) that adopted

domain classification via multitask learning.
• Domain Context (Zeng et al. 2018) that incorporated the

word-level context for domain discrimination.
Our work falls into the unified model, where the above three
related approaches are comparable to ours. Our work is not
directly comparable to the fine-tuning approaches due to the
different numbers of required models.

Results

Table 2 and Table 3 respectively show results on the small-
scale balanced Zh⇒En data used by Zeng et al. (2018) and
our newly-built large-scale corpus. Besides, Table 4 shows
results on Zh⇒En and Zh⇒En multi-domain data. As seen,
the proposed models significantly and incrementally im-
prove the translation quality in all cases, although there are
considerable differences among different scenarios.

Baselines In Table 2, the Transformer model (Row 3)
greatly outperforms the results of RNN-based models re-
ported by Zeng et al. (2018) on the same data (Rows 1-2),
which makes the evaluation convincing in this work. The
fine-tuning approaches (Rows 4-5) achieve significant im-
provements over the Transformer baseline. We attribute this
to the facts that 1) the fine-tuning maintains a distinct model

for each domain; and 2) there are sufficient data in each tar-
get domain. The unified models (Rows 6-8 in Table 2) con-
sistently improve translation performance, and the “+Do-
main Context” method achieves the best performance at the
cost of introducing additional parameters. The unified mod-
els are directly comparable to our approach.

Our Models As shown in Table 2, the proposed models
(Row 9-10) outperform not only the Transformer baseline
(Row 3) but also comparable approaches (Rows 6-8). Intro-
ducing transformation networks (Row 9) improves transla-
tion performance over Transformer baseline by +1.44 BLEU
point, indicating that DTNs can effectively capture domain-
aware knowledge. Besides, adding two supervision signals
(Row 10) can outperform the baseline by +3.35 BLEU. Sur-
prisingly, the performance of our unified model is on par
with fine-tuning which requires four separate models (34.25
vs. 34.92 BLEU). This is encouraging, since the fine-tune
approach catastrophically increases the overhead of deploy-
ment in practice, while our approach avoids this problem
without a significant decrease of translation performance.

Translation Quality on Other Scenarios To validate the
robustness of our approach, we also conducted experiments
on a large-scale Zh⇒En corpus (as shown in Table 3) and
other language pairs (as shown in Table 4). As seen, the su-
periority of our approach holds across different data sizes
and language pairs, demonstrating the effectiveness and uni-
versality of the proposed approach. Furthermore, our unified
model surprisingly outperforms the fine-tuning (multiple-
model) on the unbalanced De⇒En corpus.

Analysis

We conducted extensive analyses on the small-scale Zh⇒En
data to better understand our model in terms of effectiveness
of domain transformation and supervision.
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# Architecture
Zh⇒En

Law News Patent Tvsub Avg. �
1 Transformer 38.77 49.05 47.68 30.30 41.45 –
2 + Fine-tune (Luong and Manning 2015) 42.32↑ 50.34↑ 49.16↑ 30.54 43.09 +1.64
3 + Mixed Fine-tune (Chu et al. 2017) 40.84↑ 49.53 46.45 30.95 41.91 +0.49
4 + Domain Control (Kobus et al. 2016) 39.27 49.30 48.02 30.55 41.79 +0.34
5 + Domain Discriminate (Britz et al. 2017) 39.21 49.07 47.76 30.16 41.55 +0.10
6 + Domain Context (Zeng et al. 2018) 39.35 49.77 47.71 30.31 41.79 +0.34
7 + Domain Transformation 40.04↑ 50.35↑ 48.35↑ 30.96 42.43 +0.98
8 + Domain Supervision 41.01↑ 50.55↑ 48.61↑ 31.55↑ 42.93 +1.48

Table 3: Translation results on large-scale balanced Zh⇒En multi-domain data built in this work. “+” denotes appending new
features to the above row. “↑” indicates statistically significant difference (p < 0.01) from “Transformer” on different domains.

# Architecture
De⇒En En⇒Fr

Law Med. IT Koran Avg. � Med. Par. Avg. �
1 Transformer 62.72 66.26 40.95 24.82 48.68 – 65.91 35.58 50.75 –
2 + Fine-tune 65.10↑ 68.03↑ 42.76↑ 21.49 49.35 +0.67 68.56↑ 35.98 52.27 +1.52
3 + Mixed Fine-tune 63.48↑ 66.08 41.88 26.95↑ 49.60 +0.92 67.87↑ 35.29 51.58 +0.83
4 + Domain Contr. 63.04 66.69 41.13 24.27 48.78 +0.10 67.01↑ 35.70 51.36 +0.61
5 + Domain Discr. 62.74 66.31 41.04 23.93 48.51 -0.17 65.98 35.74 50.86 +0.11
6 + Domain Conte. 63.29 66.95 41.66 23.12 48.76 +0.08 66.57 35.67 51.12 +0.37
7 + Domain Trans. 63.33 66.95 42.32↑ 24.00 49.15 +0.47 67.23↑ 35.80 51.52 +0.77
8 + Domain Super. 64.59↑ 67.95↑ 42.16↑ 24.09 49.70 +1.02 67.85↑ 35.80 51.83 +1.08

Table 4: Translation results on unbalanced De⇒En and En⇒Fr multi-domain data. “+” denotes appending new features to the
above row. “↑” indicates statistically significant difference (p < 0.01) from “Transformer” on different domains.

Encoder 
Representations

Transformed 
Representations

Figure 2: Visualization of encoder (left) and transformed
(right) representations. Dots in different colors denote sen-
tences in different domains.

Effects of Domain Transformation

Domain Transformation With the dimension reduction
technique of t-SNE (Maaten and Hinton 2008), we visu-
alized the general and domain-specific representations of
source sentences in test set. As shown in Figure 2, the rep-
resentation vectors in different domains are centered in dif-
ferent regions. Furthermore, the distribution of encoder rep-
resentations is concentrated to preserve shared knowledge,
while the transformed representations are diverse to keep
domain-specific characteristics. This confirms that our ap-
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Law Oral Thesis News

Law Transformation
Oral Transformation
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News Transformation

Figure 3: Translation results of test set in each domain de-
coded by four domain-specific transformation modules. As
seen, each specialized transformation model performs best
on its corresponding domain.

proach is able to distinctively transform the source-side do-
main knowledge from the general to the particular.

Domain-Specific Translation We further examined
whether each specialized transformation module acquires
its specific domain knowledge. Figure 3 shows the trans-
lation results of test set in each domain decoded by four
different domain-specific transformation modules. As
seen, the each transformation module performs best on its
corresponding domain. Some domains with more distinctive
characteristics (e.g., Law) can achieve more significant
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# Model BLEU

1 Transformer 30.90
2 + Distillation (sequence) 31.45
3 + Distillation (word) 31.51
4 + Domain Transformation 32.34
5 + Domain Distillation (sequence) 32.70
6 + Domain Distillation (word) 33.05
7 + Domain Discrimination 33.18
8 + Both 34.25

Table 5: Translation results when different supervision sig-
nals are used for training our multi-domain model. “Dis-
tillation (sequence)” and “Distillation (word)” denote ap-
plying distillation at sequence and word level, respectively.
“Both” denotes applying “Discrimination” and “Distilla-
tion (word)”.

performances. In contrast, in less-distinctive domains
(e.g., Oral), different transformation modules have similar
performances. This is consistent with our expectation that
each transformation component is specialized to maintain
particular knowledge in one domain.

Effects of Domain Supervision

Contribution Analysis Table 5 lists translation results
when baseline or our model uses either domain distillation
or domain discrimination, or both signals. As seen, adding
supervision signal consistently improves the performance
over the “Domain Transformation” model (Rows 6-7), and
combining both signals accumulatively achieves the best
performance (+1.9 BLEU, Row 8). This confirms the hy-
pothesis in the section of domain supervision that the effects
are reflected in three aspects: 1) weak supervision encour-
ages model to exploit both shared and domain-aware knowl-
edge across domains; 2) strong supervision guides model to
learn distinct features; 3) combination makes them comple-
mentary to each other. It is also interesting to investigate
the effect of domain supervision without transformation net-
works (Rows 1-3), which still improves performance (31.45
vs. 30.90), demonstrating the effectiveness and universality
of domain supervision.

Concerning the distillation approach (Rows 2-3 and 5-
6), we revisited word-level and sequence-level distillation
methods for Transformer-based NMT. Different from the re-
sults reported by Kim and Rush (2016) on RNN-based mod-
els, we found that word-level distillation marginally out-
performed its sequence-level counterpart (31.51 vs. 31.45
on top of “Transformer”, and 33.05 vs. 32.70 on top of “+
Domain Transformation”). Through case studies, we found
that word-level distillation produced more fluent outputs,
possibly due to providing smoother target labels. This ex-
plains why word-level distillation is a widely-used imple-
mentation in multi-lingual and multi-domain tasks on top of
Transformer-based models (Tan et al. 2019; You et al. 2019).
Therefore, we applied word-level distillation in our work.

Case Study Table 6 shows a translation example ran-
domly selected from the test set in Thesis domain. As seen,

Input 143 li yuan wai xin bo zhou ting huan
zhe jing song lai yi yuan, fu su cun huo
jin 2 li (1.4%).

Reference In the other 143 patients occurring sud-
den arrest of heart beat outside hospi-
tal, only 2 survived (1.4%).

Baseline In the other 143 patients who received
cardiac arrest, only 2 survived (1.4%).

+Trans. In the 143 patients admitted to hospital,
only 2 (1.4%) survived for resuscitation.

+Distill. In the other 143 patients who suffered a
sudden arrest of heart beat outside hos-
pital, only 2 (1.4%) survived.

+Discri. In the other 143 patients who suffered
sudden arrest of heart beat outside hos-
pital, only 2 survived (1.4%).

Table 6: An example of Zh⇒En translation sampled from
Thesis test set. Domain-specific words, phrases and pat-
terns are highlighted with text formatting (i.e. italic, bold or
underline). Our “+Trans.”, “+Distill.” and “+Discri” mod-
els are consistent with Table 5. As seen, augmenting trans-
formation networks into NMT can generate more domain-
specific words but with low fluency. Adding supervision sig-
nals can incrementally generate more fluent domain-specific
phrases and patterns.

augmenting transformation module into NMT can generate
more domain-specific words but with relatively lower flu-
ency. Adding supervision signals can incrementally gener-
ate more fluent domain-specific phrases and patterns. For in-
stance, the Chinese word “yuan wai” is ignored by baseline
and mis-translated by “+Trans.” model, while the “+Super-
vison” models correctly translate it into “outside hospital”.
This demonstrates that our model can comprehensively cap-
ture domain-specific knowledge in terms of words, phrases
and patterns.

Related Work

Domain Adaptation From conventional statistical ma-
chine translation (SMT) to state-of-the-art NMT, domain
adaptation techniques have been widely investigated to
adapt models trained on one or more source domains to out-
side target domain (Chu and Wang 2018; Wang et al. 2017a;
van der Wees et al. 2017; Chen et al. 2017a; Wang et al.
2017b). Although domain adaptation techniques boost trans-
lation quality on in-domain data, translation quality for out-
of-domain data tends to degrade.

Fine-tune is the conventional way for domain adapta-
tion (Luong and Manning 2015; Sennrich et al. 2016a;
Freitag and Al-Onaizan 2016). Chu et al. (2017) extended
the fine-tune strategy by training the model on out-of-
domain data, which is then fine-tuned on a mix of in-domain
and out-of-domain data. The two approaches can be easily
applied to multi-domain translation by separately maintain-
ing a fine-tuned model for each domain. In this study, we
empirically compare with the fine-tune strategies, and find
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that our unified model achieves comparable results with the
fine-tuning approaches.

Multi-Domain Translation Multi-domain machine trans-
lation aims to construct the NMT model with the ability
of translating sentences across different domains. Kobus et
al. (2016) introduced embeddings of source domain tag to
the encoder, which can perform domain-adapted translations
in multiple domains. Britz et al. (2017) presented various
mixing paradigms for multi-domain settings, and demon-
strated their efficacy across multiple language pairs. Zeng
et al. (2018) explored utilizing word-level domain contexts
and jointly modeled multi-domain NMT and domain classi-
fication tasks. Our work is different in that 1) we learn the
domain-specific knowledge by transforming from the gen-
eral knowledge, while Zeng et al. (2018) split the encoder
representation into general and domain-specific representa-
tions with two separate gates; and 2) we maintain a distinct
transformation network with its own parameters for each do-
main, while Zeng et al. (2018) used a shared set of param-
eters across domains. In addition, we exploit more domain
supervision techniques (e.g., domain distillation) to further
improve multi-domain translation performance.

Furthermore, Gu et al. (2019) maintained a distinct set of
encoder-decoder for each domain. This is analogous to the
fine-tuning strategy, which maintains multiple models rather
than a unified model for multi-domain translation. In addi-
tion, our approach also benefits from capturing the correla-
tions between the general and domain-specific knowledge
with the introduced transformation networks.

Conclusion and Future Work

In this paper, we propose to explicitly transform domain
knowledge from the general to the particular for a multi-
domain NMT model. In order to guarantee knowledge trans-
formation, we also exploit two kinds of supervision signal to
further improve the translation quality. Empirical results on
a variety of language pairs demonstrate the effectiveness and
universality of the proposed approach. We also conducted
extensive analyses to demonstrate the necessity of explic-
itly modelling the transformation of domain knowledge for
multi-domain translation.

The proposed approach significantly improves translation
performance at the cost of increased computational com-
plexity. Network compression would be a promising direc-
tion to alleviate this problem. In future work we plan to ex-
ploit different model compacting techniques such as knowl-
edge distillation (Hinton et al. 2014) and network prun-
ing (Han et al. 2016), to make deployment of our approach
more practical.
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