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Abstract

Robust language processing systems are becoming increas-
ingly important given the recent awareness of dangerous sit-
uations where brittle machine learning models can be eas-
ily broken with the presence of noises. In this paper, we in-
troduce a robust word recognition framework that captures
multi-level sequential dependencies in noised sentences. The
proposed framework employs a sequence-to-sequence model
over characters of each word, whose output is given to a
word-level bi-directional recurrent neural network. We con-
duct extensive experiments to verify the effectiveness of the
framework. The results show that the proposed framework
outperforms state-of-the-art methods by a large margin and
they also suggest that character-level dependencies can play
an important role in word recognition. The code of the pro-
posed framework and the major experiments are publicly
available1.

Introduction

Most of the widely used language processing systems have
been built on neural networks that are highly effective,
achieving the performance comparable to humans (Devlin
et al. 2018; Yang et al. 2019; Yu et al. 2018). They are
also very brittle, however, as they could be easily bro-
ken with the presence of noises (Belinkov and Bisk 2017;
Zhao, Dua, and Singh 2017; Ebrahimi et al. 2017). How-
ever, the language processing mechanism of humans are
very robust. One representative example is the following
Cambridge sentence:

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it
deosn’t mttaer in waht oredr the ltteers in a wrod are,
the olny iprmoetnt tihng is taht the frist and lsat ltteer
be at the rghit pclae. The rset can be a toatl mses and
you can sitll raed it wouthit porbelm. Tihs is bcuseae
the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.

∗Work was done when interned at TAL AI Lab
†The corresponding author

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/DSE-MSU/MUDE

In spite of the fact that a human can read the above sen-
tence with little difficulty, it can cause a complete failure to
existing natural language processing systems such as Google
Translation Engine 2. Building robust natural language pro-
cessing systems is becoming increasingly important nowa-
days given severe consequences that can be made by ad-
versarial samples (Xu et al. 2019c): carefully misspelled
spam emails that fool spam detection systems (Fumera, Pil-
lai, and Roli 2006) deliberately designed input sentences that
force chatbot to emit offensive language (Wolf, Miller, and
Grodzinsky 2017; Dinan et al. 2019; Liu et al. 2019), etc.
Thus, in this work, we focus on building a word recognition
framework which can denoise the misspellings such as those
shown in the Cambridge sentence. As suggested by psy-
cholinguistic studies (Rayner, White, and Liversedge 2006;
Davis 2012), the humans can comprehend text that is noised
by jumbling internal characters while leaving the first and
last characters of a word unchanged. Thus, an ideal word
recognition model is expected to emulate robustness of hu-
man language processing mechanism.

The benefits of such framework are two-folds. The first
is its recognition ability can be straightforwardly used to
correct misspellings. The second is its contribution to the
robustness of other natural language processing systems.
By serving as a denoising component, the word recogni-
tion framework can firstly clean the noised sentences before
they are inputted into other natural language processing sys-
tems (Pruthi, Dhingra, and Lipton 2019; Zhou et al. 2019).

From the human perspective, there are two types of in-
formation that play an essential role for us to recognize the
noised words (Perea et al. 2015). The first is the character-
level dependencies. Take the word ‘wlohe’ in the Cambridge
sentences as an example, it is extremely rare to see a ‘w’ sits
next to an ‘l’ in an English word. Instead, it is more natural
with ‘wh’. Thus, it is quite easy for humans to narrow down
possible correct forms of ‘wlohe’ to be ‘whole’ or ‘whelo’.
To ensure that it should be ‘whole’, we often need the sec-
ond type of information: context information such as ‘but the
wrod as a wlohe.’, which is denoted as word-level depen-
dencies in this paper. Intuitively, an effective word recog-
nition framework should capture these multi-level depen-

2https://translate.google.com/
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Figure 1: The graphical illustration of the proposed framework: MUDE.

dencies. However, multi-level dependencies are rarely ex-
ploited by the exiting works such as scRNN (Sakaguchi et al.
2017). Hence, we propose a framework MUDE that is able
to fully utilize multi-level dependencies for the robust word
recognition task. It integrates a character-level sequence-to-
sequence model and a word-level sequential learning model
into a coherent framework. The major contributions of our
work are summarized as follows:

• We identify importance of character-level dependencies
for recognizing a noised word;

• We propose a novel framework, MUDE, that utilizes both
character-level and word-level dependencies for robust
word recognition task;

• We conduct extensive experiments on various types of
noises to verify the effectiveness of MUDE.

For the rest of the paper, we firstly give a detailed de-
scription of MUDE. Then we conduct experiments to verify
its effectiveness. We will also show that MUDE is able to
achieve the state-of-the-art performance no matter what type
of noise presents and outperforms the widely used baselines
by a large margin. Next, we introduce the relevant litera-
ture in the related work section, followed by a conclusion
of current work and discussion of possible future research
directions.

The Proposed Framework: MUDE

In this section, we describe MUDE that is able to cap-
ture both character-level and word-level dependencies. The
overall architecture is illustrated in Figure 1. It consists of
3 major components: a sequence-to-sequence model, a bi-
directional recurrent neural network and a prediction layer.
Next we will detail each component.

Learning Character-level Dependencies

As mentioned previously, there exist sequential patterns in
the characters of a word. For example, vocabulary roots such
as cur and bio can be found in many words. In this sub-
section, we propose a sequence-to-sequence model to learn
a better representation of a given word by incorporating

character-level dependencies. The model consists of an en-
coder and a decoder, which we will describe next.

Encoder Let ŵ = c1, c2, · · · cm be a sequence of charac-
ters of a given noised word ŵ. We firstly map each character
ci to a dc-dimensional character embedding as follows:

xi = Eoi (1)

where E ∈ R
C×dc is the embedding matrix given that the

total number of unique characters is C. oi ∈ R
C is the one-

hot representation of ci. Since there could some noise in
ŵ, the sequential order of ci can be misleading. Thus, in-
stead of using a sequential learning model such as recurrent
neural network, we choose the multi-head attention mecha-
nism (Vaswani et al. 2017) to model the dependencies be-
tween characters without considering their order. To do so,
we add a special character c0 whose final representation will
be used as the representation of the word.

Specifically, the multi-head attention mechanism will ob-
tain a refined representation for each character in ŵ. Next,
without the loss of generality, we will use ci as an exam-
ple to illustrate. To obtain the refined representation of ci,
xi will firstly be projected into query space and xj ∀j ∈
{0, 1, · · · ,m} will be projected into key and value spaces as
follows:

xq
i = Qxi

xk
j = Kxj ∀j ∈ {0, 1, · · · ,m} (2)

xv
j = Vxj ∀j ∈ {0, 1, · · · ,m}

where Q, K, V are the projection matrices for query, key,
and value spaces, respectively. With xq

i , xk
j and xv

j , the
refined representation ei of ci can be calculated as the
weighted sum of xv

j :

ei =
∑

αjx
v
j (3)

where αj is the attention score that is obtained by the fol-
lowing equation:

α0, α1, · · · , αm = σs(
xq
i
T
xk
0√

d
,
xq
i
T
xk
1√

d
, · · · , x

q
i
T
xk
m√

d
)
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Where σs is the softmax function. To capture the depen-
dencies of characters from different aspects, multiple sets
of projection matrices are usually used, which will result
in multiple sets of xq

i , xk
j and xv

j , and thus ei. To be con-
crete, assume that there are h sets of projection matrices,
from Eq. (2) and Eq. (3), we can obtain h eis, which are
denoted as {e1i , e2i , · · · , ehi }. With this, the refined represen-
tation of ci is obtained by the concatenation operation:

zi = concatenation(e1i , e
2
i , · · · , ehi ) (4)

where zi is the new representation of ci and contains de-
pendency information of ci to other characters in ŵ from h
aspects.

Following (Vaswani et al. 2017), we also add a positional-
wise feedforward layer to zi as follows:

pi = W2ReLU(W1zi) (5)

where W1 and W2 are the learnable parameters. pi is the fi-
nal representation of ci. Note that we can have several above
mentioned layers stacked together to form a deep structure.

At this point, we have obtained the refined representation
vector for each character and we use that of the special char-
acter c0 as the representation of given noised word, which is
denoted as wc

Decoder To capture the sequential dependency in the cor-
rect words, the Gated Recurrent Unit (GRU) which has
achieved great performance in many sequence learning
tasks (Xu et al. 2019b; Andermatt, Pezold, and Cattin 2016;
Xu et al. 2019a) is used as the decoder. To be specific, in the
decoding process, the initial hidden state h0 of GRU is ini-
tialized with the noised word presentation ŵ. Then at each
time stamp t, GRU will recursively output a hidden state ht

given the hidden state ht−1 at the previous time stamp. Due
to the page limitation, we do not show the details of GRU,
which is well described in (Cho et al. 2014). In addition,
each hidden state will emit a predicted character cpt . The de-
coding process will end when the special character denoting
the end of word is emitted. Concretely, the whole decoding
process is formally formulated as follows:

h0 = wc (6)
ht = GRU(ht−1)

pt = σs(Wpht)

cpt = argmax
i

(pt[i])

where Wp ∈ R
C×d is a trainable parameter. pt ∈ R

C gives
the emission probability of each character and pt[i] denotes
the ith entry of vector pt.

Sequence-to-sequence Loss To train the previously de-
scribed character-level sequence-to-sequence model, we de-
fine the loss function as follows:

Lseq2seq = −
m∑

i

pi[yi] (7)

where yi is the index of the ground truth at position i of
the correct word w. By minimizing Lseq2seq , the designed

sequence-to-sequence model can learn a meaningful rep-
resentation that incorporates character-level sequential de-
pendencies for the noised word. Next, we will describe the
framework component that captures the word-level depen-
dencies.

Capturing Word-level Dependencies

From the human perspective, it is vitally important to con-
sider the context of the whole sentences in order to un-
derstand a noised word. For example, it would be very
hard to know ‘frist’ means ‘first’ until a context ‘the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the
rghit pclae.’ is given. Thus, to utilize the context informa-
tion and word-level dependencies, we design a recurrent
neural network (RNN) to incorporate them in the noised
word representation. Specifically, the word presentations
obtained from character-level encoder will be passed into
a bi-directional long short-term memory (LSTM). Con-
cretely, given a sequence of word presentations S =
{wc

1, w
c
2, · · · , wc

n} obtained from character-level dependen-
cies, we calculate a sequence of refined word representation
vectors {w1, w2, · · · , wn} as follows:

wf
1 , w

f
2 , · · · , wf

n = LSTMforward(w
c
1, w

c
2, · · · , wc

n)

wb
1, w

b
2, · · · , wb

n = LSTMbackward(w
c
1, w

c
2, · · · , wc

n) (8)

w1, w2, · · · , wn = wf
1 ||wb

1, w
f
2 ||wb

2, · · · , wf
n||wb

n

where ‖ denotes concatenation. LSTMforward indi-
cates that wcs are processed from wc

1 to wc
n, while

LSTMbackward processes word presentations in an oppo-
site direction, namely, from wc

n to wc
1. Comparing to original

LSTM where only forward pass is performed, bi-directional
LSTM can include both ‘past’ and ‘future’ information in
the representation of wi.

With the aforementioned procedure, the representation of
each word now incorporates both character-level and word-
level dependencies. Thus, the correct word is predicted as
follows:

pwi = σs(Wwwi) (9)

wp
i = argmax

i
(pwt [i])

where Ww ∈ R
V×dw is a trainable matrix and V is the size

of the vocabulary that contains all possible words. Moreover,
pwi ∈ R

V is the probability distribution over the vocabulary
for the ith word in a sentence.

Word Prediction Loss To effectively train MUDE for cor-
rect word prediction, similar to character-level sequence-to-
sequence model, we define the following objective function:

Lpred = −
n∑

i

pwi [y
w
i ] (10)

where ywi is the index of the ith correct word.
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Training Procedure

So far we have described MUDE which includes a character-
level sequence-to-sequence model and a word-level sequen-
tial learning model. To train both models simultaneously, we
design a loss function for the whole framework as follows:

L = Lpred + βLseq2seq (11)

where β is a hyperparameter that controls the contribution of
the character-level sequence-to-sequence model. Since the
major goal of the framework is to predict the correct word
given the noised word, we decrease the value of β gradually
as the training proceeds to allow the optimizer increasingly
focus on improving the word prediction performance.

Test Stage As shown in Figure 1, in the test stage, we sim-
ply remove the decoder of the sequence-to-sequence model
and only keep the encoder in the framework.

Experiment

In this section, we conduct extensive experiments on the
spell correction task to verify the effectiveness of MUDE.
Next, we firstly introduce the experimental settings, fol-
lowed by the analysis of the experimental results.

Experimental Settings

Data We use the publicly available Penn Treebank (Mar-
cus, Santorini, and Marcinkiewicz 1993) as the dataset. Fol-
lowing the previous work (Sakaguchi et al. 2017), we firstly
experiment on 4 different types of noise: Permutation (PER),
Deletion (DEL), Insertion (DEL), and Substitution (SUB),
which only operate on the internal characters of words, leav-
ing the first and last characters unchanged. Table 1 shows a
toy example of a noised sentence. These 4 types of noise can
cover most of the realistic cases of misspellings and com-
monly tested in previous works (Belinkov and Bisk 2017;
Pruthi, Dhingra, and Lipton 2019). For each type of noise,
we construct a noised dataset from the original dataset by
altering all the words that have more than 3 characters with
corresponding noise. We use the same training, validation
and testing split in (Sakaguchi et al. 2017), which contains
39,832, 1,700 and 2,416 sentences, respectively.

Table 1: Toy examples of noised text

Noise Type Sentence

Correct An example of noised text
PER An epaxmle of nsieod txet
DEL An examle of nosed tet
INS An edxample of nmoised texut
SUB An exsmple of npised test

Baselines To show the effectiveness of MUDE, we com-
pare it with two strong and widely used baselines. The first is
Enchant 3 spell checker which is based on dictionaries. The

3https://abiword.github.io/enchant/

second one is scRNN (Sakaguchi et al. 2017). It is a recur-
rent neural network based word recognition model and has
achieved previous state-of-the-art results on spell correction
tasks. This baseline only considers the sequential dependen-
cies in the word level with a recurrent neural network and
ignores that of character level. Note that other baselines in-
cluding CharCNN (Sutskever, Martens, and Hinton 2011)
have been significantly outperformed by scRNN. Thus, we
do not include them in the experiments.

Implementation Details Both scRNN and MUDE are im-
plemented with Pytorch. The number of hidden units of
word representations is set to be 650 as suggested by pre-
vious work (Sakaguchi et al. 2017). The learning rate is
chosen from {0.1, 0.01, 0.001, 0.0001} and β in Eq (11) is
chosen from {1, 0.1, 0.001} according to the model perfor-
mance on the validation datasets. The parameters of MUDE
are learned with stochastic gradient decent algorithm and
we choose RMSprop (Tieleman and Hinton 2012) to be the
optimizer as it did in (Sakaguchi et al. 2017). To make the
comparison fair, scRNN is trained with the same settings as
MUDE.

Comparison Results

The comparison results are shown in Table 2. There are
several observations can be made from the table. The first
is that model based methods (scRNN and MUDE) achieve
much better performance than dictionary based one (En-
chant). This is not surprising as model based methods can
effectively utilize the sequential dependencies of words in
the sentences. Moreover, MUDE consistently outperforms
scRNN in all cases, which we believe attributes to the ef-
fective design of MUDE to capture both character and word
level dependencies. More detailed analysis of contribution
brought by the character-level dependencies will be shown
later in this section. In addition, we observe that the diffi-
culty brought by different types of noise varies significantly.
Generally, for model based methods, permutation and inser-
tion noises are relatively easier to deal with comparing to
deletion and substitution noises. We argue this is because
the former ones do not lose any character information. In
other words, the original character information is largely
preserved with permutation and insertion. On the contrary,
both deletion and substitution can cause information loss,
which makes it harder to recognize the original words. This
again demonstrate how important the character-level infor-
mation is. Finally, the results also show that in more difficult
situations where deletion or substitution noises present, the
advantages of the MUDE become even more obvious. This
clearly suggests the effectiveness of the MUDE.

Next, we take one step further by removing the constraint
that the noise will not affect the first and last characters of
each word. More specifically, we define 4 new types of noise
that are W-PER, W-DEL, W-INS, and W-SUB, which stand
for altering a word by permuting the whole word, deleting,
inserting, and substituting characters in any position of the
word. Similarly, for each type of new noise, we construct a
noised dataset. The results are shown in Table 3.

From the table, we observe that firstly, the performance of
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Table 2: Performance comparison with different types of
noise in terms of accuracy (%). Best results are highlighted
with bold numbers.

Method INT DEL INS SUB
Enchant 72.33 71.23 93.93 79.77
scRNN 98.23 91.55 95.95 87.09
MUDE 98.81 95.86 97.16 90.52

(a) Prediction loss. (b) Seq2Seq loss.

Figure 2: Learning curve of MUDE in the training procedure
with different β values.

nearly all methods decreases comparing to that of Table 2.
This suggests the new types of noise are more difficult to
handle, which is expected as they cause more variations of
noised words. In fact, without keeping first and last charac-
ters of each words, it also becomes a difficult task for human
to comprehend the noised sentences (Rayner, White, and Li-
versedge 2006). Secondly, MUDE still achieves higher ac-
curacy than other baselines, which is consistent with obser-
vations from Table 2. More importantly, as the difficulty of
the task increases, the advantages of MUDE over scRNN
also become more obvious. Take the noise of substitution
for example, in Table 2, MUDE has around 3.5% absolute
accuracy gain over scRNN. When more difficult noise (W-
SUB) comes, the performance gain of MUDE becomes 4%
as shown in Table 3. Such observation is also consistent with
previous findings.

In summary, both Table 2 and 3 clearly demonstrate the
robustness of MUDE and its advantages over scRNN which
can not utilize the character-level dependencies. Thus, in the
next subsection, we conduct analysis on the contribution of
character-level dependencies to gain better understanding of
MUDE.

Table 3: Performance comparison different type of noise in
terms of accuracy (%). Best results are highlighted with bold
numbers.

Method W-PER W-DEL W-INS W-SUB
Enchant 59.08 69.84 93.77 77.23
scRNN 97.36 89.99 95.96 81.12
MUDE 98.75 93.29 97.10 85.17

Parameter Analysis

In this subsection, we analyze the contribution of character-
level dependencies to better word representations by show-
ing the model performance with different β values, which
controls the contribution of character-level sequence-to-
sequence loss. Specifically, we let the β be 0 and 1. When
β is 0, MUDE will totally ignore the character-level depen-
dencies; When β equals to 1, MUDE achieve best accuracy
in validation set. The prediction loss and seq2seq loss dur-
ing the training stage with different β values are shown in
Fig 2. Note that the trends in Fig 2 are similar in all of the
cases with the different types noise and we only show that
of W-PER case due to the page limitation.

As the upper sub-figure shows, when β = 1 the prediction
loss converges faster and at a lower value comparing to that
of case when β = 0. For the seq2seq loss, it remains con-
stant value when β = 0 as the model does not learn anything
regarding seq2seq task. On the other hand, when β = 1, the
seq2seq loss stably decreases, suggesting that the MUDE is
trained to obtain better representation of each word. The ob-
vious positive correlation between these two losses clearly
demonstrates the importance of learning character-level de-
pendencies in misspelling correction tasks.

Generalization Analysis

In this subsection, we conduct experiments to understand
generalization ability of MUDE. Concretely, we train the
framework on one type of noise and test it with a dataset
that presents another type of noise. The results are shown in
Table 4.

From results, we have the following two observations.
Firstly, between datasets with similar type of noise, MUDE
generalizes quite well (e.g. trained on W-PER and tested on
PER), which is not surprising. However, the MUDE trained
on one type of noise performs much worse on other types of
noise that are very different. These observations suggest that
it is hard for MUDE to generalize between noises, which
we argue is possibly because of the small overlap between
distributions of each type of noise.

Thus, in the next, we apply the commonly used adversar-
ial training method by augmenting all types of noise to train
MUDE and test it on each type noise individually. As W-*
(*∈ {PER, DEL, INS, SUB}) includes the *, in this experi-
ment, we only combine W-* instead of all types of noise. We
denote the new constructed training dataset as W-ALL. The
results are shown in Table 5. It can be observed from table
that the MUDE trained on W-ALL has much better general-
ization ability (i.e., the mean value is much higher). In addi-
tion, it is interesting to see that performance of the MUDE
decreases slightly in relatively easy cases where permutation
or insertion noise presents while increasing a lot in difficult
cases where deletion or substitution noise presents.

Case Study

In this subsection, we take the Cambridge sentences which
are not the training set as an example to give a qualitative
illustration of MUDE’s misspelling correction performance.
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Table 4: Generalization analysis results. The best result are highlighted. MEAN shows the average value of each row.

Test Noise
PER W-PER DEL W-DEL INS W-INS SUB W-SUB MEAN

Train
Noise

PER – 98.81 82.55 79.61 92.21 92.37 71.39 69.88 85.70
W-PER 98.75 – 81.31 78.3 91.32 91.25 69.55 67.91 84.64
DEL 90.83 90.83 – 86.02 79.96 79.97 81.99 76.02 85.18
W-DEL 86.75 86.75 94.08 – 78.83 78.87 80.35 79.07 84.74
INS 94.79 94.79 77.3 74.81 – 97.15 82.86 80.42 87.41
W-INS 95.67 95.67 78.34 75.95 97.01 – 82.96 80.78 87.91
SUB 91.71 91.71 88.34 81.49 81.19 81.21 – 83.65 86.22
W-SUB 87.05 87.05 83.42 82.42 79.27 79.17 85.67 – 83.65

Table 5: Data augmentation results. The values that are higher than these of Table 4 are bold.

Test Noise
Per W-PER DEL W-DEL INS W-INS SUB W-SUB MEAN

Train Noise W-ALL 96.45 96.45 94.26 93.34 95.3 95.28 91.51 90.48 94.13

Note that due to the constraint of space, we only show the re-
sults of the two types of noise: W-PER and W-INS. The ex-
ample is shown in Table 6. We can see from the table that it
is quite difficult for even humans to comprehend the noised
sentence when first and last characters are also changed.
However, MUDE can still recognize almost all of the words.
In addition, for both cases, the MUDE has much less errors
in the corrected sentence than scRNN, which is consistent
with previous quantitative results.

Related Work

In this section, we briefly review the related literature that is
grouped into two categories. The first category includes the
exiting works on similar tasks and the second one contains
previous works that have applied word recognition model to
improve the robustness of other NLP systems.

Grammatical Error Correction

Since the CoNLL-2014 shared task (Ng et al. 2014), Gram-
matical Error Correction (GEC) has gained great attention
from NLP communities (Zhao et al. 2019; Grundkiewicz
and Junczys-Dowmunt 2018; Junczys-Dowmunt et al. 2018;
Chollampatt and Ng 2017; Ji et al. 2017). Currently the
most effective approaches regard GEC as machine transla-
tion problem that translates erroneous sentences to correct
sentences. Thus, many methods that are based on statistical
or neural machine translation architectures have been pro-
posed. However, most of the existing GEC systems have
focused on correction of grammar errors instead of noised
spellings. For example, most of words in a wrong sentence
in CoNLL-2014 shared task (Ng et al. 2014) are correct such
as ‘Nothing is absolute right or wrong’, where the only error
comes from the specific form ‘absolute’. One of the existing
works that are most similar to this paper is scRNN (Sak-
aguchi et al. 2017), where each word is represented in a

fixed ‘bag of characters’ way. It only consists of a word-level
RNN and focused on very easy noise. On the contrary, our
proposed framework is more flexible and can obtain mean-
ingful representations that incorporate both character and
word-level dependencies. In addition, we have experimented
on more difficult types of noise than these in (Sakaguchi et
al. 2017) and achieved much better performance.

Denoising text for downstream tasks

Robust NLP systems are becoming increasingly impor-
tant given the severe consequences adversarial samples can
cause (Grosse et al. 2017; Iyyer et al. 2018; Xu et al. 2019c).
However, previous works have shown that neural machine
translation models can be easily broken with words whose
characters are permuted (Belinkov and Bisk 2017). To solve
this problem, researchers have found that misspelling cor-
rection models can play an extremely effective role (Pruthi,
Dhingra, and Lipton 2019; Zhou et al. 2019) in improv-
ing the robustness of the systems. For example, Pruthi et
al (Pruthi, Dhingra, and Lipton 2019) firstly applied the pre-
trained scRNN model to source sentence to remove noise
and then the denoised source sentence was input into the
neural translation model to obtain the correctly translated
sentence. In addition, Zhou et al (Zhou et al. 2019) directly
integrated such denoising models into the machine transla-
tion system that was trained in an end-to-end approach. In
either way, these works suggest that the proposed frame-
work which has demonstrated strong performance can have
great potentials in improving the robustness of other NLP
systems.

Conclusion

As most of the current NLP systems are very brittle, it is
extremely important to develop robust neural models. In
this paper, we have presented a word recognition frame-
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.

Correct According to a researcher at Cambridge University , it does n’t matter in what order the letters
in a word are , the only important thing is that the first and last letter be at the right place .
The rest can be a total mess and you can still read it without problem . This is because the
human mind does not read every letter by itself , but the word as a whole .

W-PER

Noised iodrcAngc ot a reeachsr at meigaCdbr srtiinUyve , it seod tn’ amrtte in wtah rerdo het tserelt
in a rdwo rae , the onyl onmtiaptr ingth si tath hte itfrs dan stla treelt be ta het tgrhi place .
hTe rset nca be a aotlt mess dan ouy anc lsilt drae ti tthwuoi lorbmpe . hTsi is aubeecs the
huamn dmni edos nto erad evrye lteter by etfisl , but het rdwo sa a eholw .

scRNN According to a research at Cambridge University , it does n’t matter in what order the letters
in a word are , the only important thing is that the first and last letter be at the right place .
The rest can be a total mess and you can still read it without problem . This is because the
human mind does not read very letter by itself , but the word as a whole .

MUDE According to a research at Cambridge University , it does n’t matter in what order the letters
in a word are , the only important thing is that the first and last letter be at the right place .
The rest can be a total mess and you can still read it without problem . This is because the
human mind does not read every letter by itself , but the word as a whole .

W-INS

Noised Acxcording to a reysearch at Cazmbridge Univversity , it doesw n’t msatter in whmat orderh
the letteros in a fword are , the oynly wimportant tghing is tyhat the fircst and ldast legtter
be at the rightv placeu . The resty can be a totalp mesus and you can stillb rnead it withougt
promblem . Txhis is bebcause the humgan minnd doess not reabd everyb lettfer by itslelf ,
but the whord as a whvole .

scRNN according to a research at Cambridge University , it does n’t matter in what order the letters
in a word are , the only important thing is that the first and last better be at the right place
. The rest can be a total less and you can still read it without problem . This is because the
human mind does not rated every better by itself , but the word a a whole .

MUDE According to a research at Cambridge University , it does n’t matter in what order the letters
in a word are , the only important thing is that the first and last letter be at the right place .
The rest can be a total uses and you can still read it without problem . This is because the
human mind does not bear every letter by itself , but the word as a whole .

Table 6: An illustrative example of spelling correction outputs for the Cambridge sentence. Words that the models fail to correct
are underlined and bold.

work, MUDE, that achieves very strong and robust perfor-
mance with different types of noise presenting. The pro-
posed framework is able to capture both character and word-
level dependencies to obtain effective word representations.
Extensive experiments on datasets with various types of
noise have demonstrated its superior performance over the
exiting popular models.

There are several meaningful future research directions
that are worthy exploring. The first is to extend MUDE to
deal with sentences where word-level noise presents. For ex-
ample, in the noised sentences, some of the words might be
swapped, dropped, inserted or replaced, etc. In addition, it is
also meaningful to improve the generality of MUDE such
that it can achieve strong performance with the presence

of various types of noise not seen in the training dataset.
Another possible future direction is to utilize MUDE to im-
prove the robustness other NLP systems including machine
translation, reading comprehension, text classification, etc.
Lastly, as this work primarily focuses on English, it would
be very meaningful to experiment the proposed framework
on other languages.
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Perea, M.; Jiménez, M.; Talero, F.; and López-Cañada, S.
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