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Abstract

Pre-training and fine-tuning have achieved great success in
natural language process field. The standard paradigm of ex-
ploiting them includes two steps: first, pre-training a model,
e.g. BERT, with a large scale unlabeled monolingual data.
Then, fine-tuning the pre-trained model with labeled data
from downstream tasks. However, in neural machine trans-
lation (NMT), we address the problem that the training ob-
jective of the bilingual task is far different from the monolin-
gual pre-trained model. This gap leads that only using fine-
tuning in NMT can not fully utilize prior language knowl-
edge. In this paper, we propose an APT framework for ac-
quiring knowledge from pre-trained model to NMT. The pro-
posed approach includes two modules: 1). a dynamic fusion
mechanism to fuse task-specific features adapted from gen-
eral knowledge into NMT network, 2). a knowledge distil-
lation paradigm to learn language knowledge continuously
during the NMT training process. The proposed approach
could integrate suitable knowledge from pre-trained mod-
els to improve the NMT. Experimental results on WMT En-
glish to German, German to English and Chinese to English
machine translation tasks show that our model outperforms
strong baselines and the fine-tuning counterparts.

1 Introduction

Neural machine translation (NMT) based on the encoder-
decoder framework (Sutskever, Vinyals, and Le 2014; Cho
et al. 2014; Bahdanau, Cho, and Bengio 2014; Luong, Pham,
and Manning 2015) has obtained state-of-the-art perfor-
mance on many language pairs (Deng et al. 2018). Vari-
ous advanced neural architectures have been explored for
NMT under this framework, such as recurrent neural net-
work (RNN) (Bahdanau, Cho, and Bengio 2014; Luong,
Pham, and Manning 2015, RNNSearch), convolutional neu-
ral network (CNN) (Gehring et al. 2016, Conv-S2S) and
self-attention network (Vaswani et al. 2017, Transformer).

Currently, most NMT systems only utilize the sentence-
aligned parallel corpus for model training. Monolingual
data, which is larger and easier to collect, is not fully uti-
lized limiting the capacity of NMT models. Previously, sev-
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eral successful attempts have been made to improve NMT
by incorporating monolingual data (Gulcehre et al. 2015;
Sennrich, Haddow, and Birch 2016; Zhang and Zong 2016;
Poncelas et al. 2018). However, these studies only focus on
the usage of word-level information, e.g. extracting informa-
tion from word embedding. The rich contextual information
from large scale monolingual data does not be fully utilized.
Meanwhile, fine-tuning the parameters from unsupervised
pre-trained models, like GPT (Radford et al. 2018) or BERT
(Devlin et al. 2018), in which downstream tasks could ex-
ploit the contextual knowledge from large scale monolin-
gual data, has gained tremendous success in a variety of nat-
ural language process tasks. Thus, the upcoming question is
whether the contextual knowledge from pre-trained models
are useful in NMT.

Due to the limited amount of high-quality parallel data,
NMT as a complex text generation task, can not generate
appropriate representation. The contextual knowledge from
pre-trained models could naturally be a good complement
for NMT. Nevertheless, how to integrate the knowledge
from pre-trained models into NMT is another challenge: the
improvement in NMT with the standard fine-tuning opera-
tion is relatively less (Sun et al. 2019). The main reason is
that the training objective of the bilingual task is far differ-
ent from the monolingual task. For example, even with a
multi-lingual setting, the objective of BERT or GPT is also
predicting the words from the same language, while trans-
lation requires the conversion of one language to another.
Especially in languages having large differences in morphol-
ogy and syntax, this gap will lead to that general knowledge
from pre-trained models will be erased in the training pro-
cess of NMT (Yang et al. 2019a). When using the fine-tuning
method directly can not work well, how to explore the po-
tential abilities of pre-trained models in NMT is an urgent
problem to be solved.

In this paper, to address this appealing challenge, we de-
sign an APT framework for acquiring the knowledge from
pre-trained models to NMT. Specifically, our APT frame-
work has two modules. First, we propose a dynamic fusion
mechanism which can learn a task-specific representation by
adapting the general representation from pre-trained models,
and adopt two controlling methods based on different granu-
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larities to fuse the task-specific representation into NMT dy-
namically. This method could provide rich contextual infor-
mation for NMT to model sentence better. Second, we intro-
duce a knowledge distillation paradigm to distill the knowl-
edge from pre-trained models to NMT continuously. With
this method, NMT could learn the knowledge about how to
translate sources sentence to target sentences from parallel
data and how to generate a better target sentence from mono-
lingual data in the training process. Furthermore, accord-
ing to our analysis and empirical results, we conclude that
the best strategy for using the two methods in the encoder-
decoder framework to improve translation quality.

To demonstrate the effectiveness of our APT approach,
we implement the proposed approach based on the advanced
pre-trained models and Transformer model (Vaswani et al.
2017). It is worth to mention that this framework could be
applied to various neural structures based on the encoder-
decoder framework (Bahdanau, Cho, and Bengio 2014;
Gehring et al. 2016; Vaswani et al. 2017). Experimental re-
sults on WMT English to German, German to English and
Chinese to English machine translation tasks show that our
approach with BERT (Devlin et al. 2018) or GPT (Radford
et al. 2018) outperforms the Transformer baseline and the
fine-tuning counterparts.

2 Background

2.1 Neural Machine Translation

Here, we will introduce neural machine translation based on
the Transformer network (Vaswani et al. 2017), which has
achieved state-of-the-art performance in several language
pairs (Deng et al. 2018).

Denoting a source-target parallel sentence pair as {x, y}
from the training set, where x is the source sequence
(x1, x2, · · · , xi, · · · , xI) and y is the target sequence
(y1, y2, · · · , yj , · · · , yJ), I and J are the length of x and
y, respectively.

In the encoding stage, a multiple layer encoder based
on the self-attention architecture is used to encode x
into RE

N , which is composed by a sequence of vectors
(rEN,1, rEN,2, · · · , rEN,i, · · · , rEN,I), N is the depth of the en-
coder. The representation RE

N is calculated by:

RE
N = LN(HE

N + FFN(RE
N−1)), (1)

where the LN(·) and FFN(·) are layer normalization (Ba,
Kiros, and Hinton 2016) and feed forward network, respec-
tively. The RE

N−1 is from the (N − 1)th layer. The HE
N is

computed by:

HE
N = Att(QE

N ,KE
N−1,VE

N−1), (2)

where the Att(·) is a self-attention network and the QE
N ,

KE
N−1, VE

N−1 are query, key and value matrix, respectively.
In this stage, they are equal to RE

N−1.
Typically, we define that RE

0 is composed by emb(xi),
which is the word embedding of xi.

In the decoding stage, the decoder maximizes the condi-
tional probability of generating the jth target word, which
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Figure 1: Overview of the structure of the Transformer net-
work (Vaswani et al. 2017).

is defined as:

P (yj |y<j , x) = softmax(FFN(rDM,j)), (3)

rDM,j is a vector from the target representation matrix RD
M ,

M is the depth of the decoder. The RD
M is

RD
M = LN(FFN(SD

M + CD
M )), (4)

SD
M is computed by Eq. 1-2, where the query, key and value

are equal to RD
M−1. CD

M is computed by:

CD
M = Att(QD

M ,KE
N ,VE

N ), (5)

where QD
M is equal to SD

M , KE
N and VE

N are equal to RE
N .

Finally, Transformer is optimized by maximizing the like-
lihood, denoted by:

LT =
1

J

J∑

i=1

logP (yj |y<j , x; θT), (6)

where the θT is the parameters of NMT. The overview of the
structure of Transformer is shown in Figure 1.

2.2 Pre-training Model

Recently, a variety of pre-training models (PT), like
ELMo (Peters et al. 2018), GPT (Radford et al. 2018),
BERT (Devlin et al. 2018), etc, are proposed to obtain lan-
guage knowledge from large scale monolingual data.

Formally, given a sentence z = (z1, z2, · · · , zk, · · · , zK),
K is the length of z, the pre-trained model is adopted to get
the contextual representation: R

p
L = PT(z; θP), where L is

the depth of the pre-trained model and θP is the parameters
of the pre-training model. The PT(·) could be implemented
by a variety of structures like Bi-LSTM (Peters et al. 2018)
or self-attention network (Radford et al. 2018; Devlin et al.
2018).
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There are two main objectives to train the pre-trained
model (Yang et al. 2019b). The first kind is using an auto-
regressive language model objective, which predicts the next
word P (zk|z<k; θP) by the kth representation r

p
L,k from

R
p
L. Another popular method is similar to the auto-encoder,

which needs to pre-process the sentence z to get a processed
one ẑ by masking several words zm. Then, the pre-trained
model predicts the masked words to re-construct the z by
P (zm|ẑ; θP) in the training process.

3 Approach

Owing to the limited amount of parallel data, it is hard
for NMT to generate appropriate contextual representation.
The pre-trained models are an useful complement to pro-
vide NMT models with proper language knowledge. How-
ever, previous integration methods like fine-tuning: initial-
izing parameters from pre-trained models, may not suit for
machine translation which is a bilingual generation task. The
general contextual information from pre-trained models is
quite different from the task-specific representation of NMT
model.

Thus, we propose a novel APT framework including
a dynamic fusion mechanism and a knowledge distillation
paradigm, to fully utilize pre-trained contextual knowledge
in NMT models. We will introduce the two methods in de-
tails and discuss the different integration strategies in the
encoder and decoder of NMT models. For convenience, we
will present the dynamic fusion mechanism on the encoder
and the knowledge distillation paradigm on the decoder, re-
spectively.

3.1 Dynamic Fusion Mechanism

We propose a dynamic fusion mechanism to obtain the task-
specific representation by transforming general pre-trained
representations in pre-trained models. Specifically, we use
an adapter for transforming general knowledge to more ap-
propriate features of NMT during the training process. Fur-
thermore, previous work (Peters et al. 2018; Dou et al. 2018;
Wang et al. 2018) shows that representations from each layer
in a deep model have different aspect of meaning. Following
this intuition, we expand our idea by employing the adapter
on all layers’ representation from pre-trained models to get
different kinds of knowledge, from concrete to abstract.

Formally, the general representations from pre-trained
models are RP = (RP

1 , · · · ,RP
l , · · · ,RP

L ). For the lth
layer’s representation RP

l , the task-specific representation is
computed by:

RT
l = Gl(R

P
l ), (7)

where the proposed adapter Gl(·) is a simple MLP. Mikolov,
Le, and Sutskever (2013) and Wu et al. (2019) pointed out
the representation space of similar languages can be trans-
ferred by a linear mapping. In our scenario, which is in same
language, the mapping function can transfer the general rep-
resentation to task-specific representation effectively.

Subsequently, we propose two methods based on different
granularity to control how much the task-specific represen-
tation should be fused into Transformer dynamically. First,
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Figure 2: Overview of the dynamic fusion mechanism em-
ployed on the encoder of Transformer.

the demand of external information from each layer is dif-
ferent. Thus, compared with using layer coordination (He et
al. 2018) directly, we further propose a layer-aware atten-
tion mechanism to capture compound contextual informa-
tion. Formally, given the nth layer’s vanilla representation
RE

n computed by Equation 1-2, the corresponding external
representation is computed by:

CT
n =

L∑

l=1

αlR
T
l , αl =

exp(el)∑L
t=1 exp(et)

, (8)

el = FFN(
1

I

I∑

i=1

rTl,i ·
1

I

I∑

i=1

rEn,i). (9)

The layer-aware attention mechanism can determine which
representation from pre-trained model is more important for
current layer. The composite representation CT

n can capture
more suitable information by considering a larger context.

Following above intuition, the demand of each hidden
state from same layer is also different. A fine-grained
method is necessary to control the fusion ratio of each
hidden state. We adopt a simple contextual gating mecha-
nism (Kuang et al. 2018) to implement it.

Formally, the representation cTn,i from CT
n is fused into the

corresponding state rEn,i from RE
n by:

rEn,i = rEn,i + γn,i ∗ cTn,i, (10)

where the gate γn,i is computed by:

γn,i = sigmoid(FFN(rEn,i · cTn,i)) (11)

The overview is illustrated in Figure 2. Different from pre-
vious works (Ramachandran, Liu, and Le 2017; Peters et
al. 2018; Radford et al. 2018), the proposed feature-based
method can make a deep fusion which could incorporate ap-
propriate information into each layer, that is, Transformer
can access specific surface information in lower layers and
the latent one in higher layers.

9268



… …rP
L,1

rP
L,2

rP
L,3

rD
M,1

rD
M,2

rD
M,3

The Mth layer of DecoderThe Lth layer of PT model

Learning Output Distribution

Learning Contextual Representation

Figure 3: Overview of the knowledge distillation paradigm
employed on the decoder of Transformer.

3.2 Knowledge Distillation Paradigm

Besides the dynamic fusion mechanism, we also propose a
knowledge distillation paradigm to learn pre-trained repre-
sentation in the training process. We introduce two auxiliary
learning objectives distilling the knowledge from pre-trained
models to NMT in word and sentence levels, respectively.

Firstly, the word level knowledge distillation objective is
defined as:

LW =
1

J

J∑

j=1

V∑

k=1

P (yj = k|y; θP)

·log(P (yj = k|x, y<j ; θT)) (12)

where the J is the length of the given target sentence y, the
V is vocabulary size. The P (yj |y<j , x; θT) is computed by
Equation 3. Compared with only minimizing the one-hot
label from reference, this word level training function can
learn the output distribution from pre-trained models, which
is more diverse.

Then, different from previous sentence level knowledge
distillation methods (Chen et al. 2017), our objective learns
the sentence level information by fitting contextual represen-
tation directly:

LS =
1

J
||RD

M − RP
L ||22

=
1

J

J∑

j=1

||rDM,j − rPL,j ||22, (13)

where the M is output layer of the decoder. The rDM,j and
rPL,j are from the decoder and pre-trained model, respec-
tively. The vanilla sentence level training objective need
to sample output sentence in the training process, which
may cause a bias and decrease efficiency, while our method
could learn contextual information from the hidden state di-
rectly. The overview of the proposed knowledge distillation
paradigm is shown in Figure 3.

Finally, the loss function of our APT is:

L = LT + η · LS + β · LW, (14)

where η and β are used to balance the preference among the
two losses, which we are set to 0.5 individually.

3.3 Integration Strategy

The duties of encoder and decoder in NMT are different.
And the decoder has two states in the training and inference
stages. Thus, different integration strategies are needed for
our proposed approach.

The encoder needs to capture contextual information by
modeling input sentence. The goal of exploiting external
contextual information in the encoder is for modeling in-
put sentence better. Thus, even the knowledge distillation
method with sentence level objective could be used in the
encoder, the dynamic fusion mechanism is more suitable.

However, compared with the encoder, the decoder is diffi-
cult to exploit pre-trained knowledge for two reasons. First,
the main role of the decoder is generating a target sentence
by feeding source representation, which involves the trans-
formation of semantic space. So, the representation from
the decoder is far different from the pre-trained model.
Then, the exposure bias (Lee, Mansimov, and Cho 2018;
Wu et al. 2018) leads to that the ground-truth representa-
tion which is generated by reference is not available in the
inference stage. So, we think using the knowledge distilla-
tion to learn language knowledge is a better solution, which
will not influence the original goal of translation, and help
to generate a better sentence.

In general, we integrate the APT framework by employ-
ing the dynamic fusion mechanism on the encoder and the
knowledge distillation paradigm on the decoder. We also re-
port the comparison of other strategies in the experiment.

4 Experiment

4.1 Implementation Detail

Data-sets We conduct experiments on the WMT data-
sets1, including WMT17 Chinese to English (ZH→EN),
WMT 14 English to German (EN→DE) and German to En-
glish (DE→EN) and the corresponding monolingual data.

On the ZH→EN, we use WMT17 as training set which
consists of about 7.5 million sentence pairs (only CWMT
part). We use newsdev2017 as validation set which has
2002 sentence pairs, and newstest2017 as test set which
have 2001 sentence pairs. On the EN→DE and DE→EN, we
use WMT14 as training set which consists of about 4.5 mil-
lion sentence pairs. We use newstest2013 as validation
set which has 3000 sentence pairs, and newstest2014 as
test set which have 3003 sentence pairs.

Following Song et al. (2019) , on the English and Ger-
man, we use the monolingual data from WMT News Crawl.
We select 50M sentence from year 2007 to 2017 for English
and German respectively. Then, we choose 50M sentence
from Common Crawl for Chinese.

Settings We apply byte pair encoding (BPE) (Sennrich,
Haddow, and Birch 2015) to all language pairs and limit the
vocabulary size to 32K.

For Transformer, we set the dimension of the input and
output of all layers as 512, and that of the feed-forward layer
to 2048. We employ 8 parallel attention heads. The number

1http://www.statmt.org/wmt17/translation-task.html
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Model Pre-trained Model EN→DE DE→EN ZH→EN
Encoder Decoder BLEU Δ BLEU Δ BLEU Δ

Transformer (Vaswani et al. 2017) N/A N/A 27.3 − N/A − N/A −
Transformer (Zheng et al. 2019) N/A N/A 27.14 − N/A − N/A −
Transformer (Dou et al. 2018) N/A N/A 27.31 − N/A − 24.13 −
Transformer N/A N/A 27.31 − 32.51 − 24.47 −

w/ Fine-tuning

GPT N/A 27.82 +0.51 33.17 +0.66 25.11 +0.64
N/A GPT 27.45 +0.14 32.87 +0.36 24.59 +0.12
GPT GPT 27.85 +0.54 32.79 +0.28 25.21 +0.74

BERT N/A 28.22 +0.91 33.64 +1.13 25.33 +0.86
N/A BERT 27.42 +0.11 33.13 +0.62 24.78 +0.31

BERT BERT 28.32 +1.01 33.57 +1.06 25.45 +0.98
GPT BERT 28.29 +0.98 33.33 +0.82 25.42 +0.95

BERT GPT 28.32 +1.01 33.57 +1.05 25.46 +0.99
MASS 28.07 +0.76 33.29 +0.78 25.11 +0.64
DAE 27.63 +0.33 33.03 +0.52 24.67 +0.20

w/ APT Framework

GPT BERT 28.89 +1.58 34.32 +1.81 25.98 +1.51
BERT GPT 29.23 +1.92 34.84 +2.33 26.21 +1.74
GPT GPT 28.97 +1.66 34.26 +1.75 26.01 +1.54

BERT BERT 29.02 +1.71 34.67 +2.16 26.46 +1.99

Table 1: Translation qualities on the EN→DE, DE→EN and ZH→EN experiments.

of layers for the encoder and decoder are 6. Sentence pairs
are batched together by approximate sentence length. Each
batch has 50 sentence and the maximum length of a sentence
is limited to 100. We use label smoothing with value 0.1
and dropout with a rate of 0.1. We use the Adam (Kingma
and Ba 2014) to update the parameters, and the learning rate
was varied under a warm-up strategy with 4000 steps. Other
settings of Transformer follow Vaswani et al. (2017) .

we also implement GPT (Radford et al. 2018), BERT (De-
vlin et al. 2018) and MASS (Song et al. 2019) in our Trans-
former system. The implementation details are as follows:

• GPT: Radford et al. (2018) proposed a pre-trained self-
attention language model. We implement it on both source
and target languages based on the aforementioned Trans-
former decoder.

• BERT: Devlin et al. (2018) proposed a pre-trained bi-
directional encoder optimized by the masked token and
next sentence objectives. Following Lample and Con-
neau (2019) , we implement it only using the masked to-
ken objective, which doesn’t require monolingual data has
document boundary.

• MASS: Song et al. (2019) proposed a masked sequence
to sequence pre-training model for text generation tasks.
It masks a continuous segment from a sentence as the la-
bel, and the rest of the sentence as the input of encoder.
We implement it in our Transformer system without any
modification.

After the training stage, we use beam search for heuris-
tic decoding, and the beam size is set to 4. We measure
the translation quality with the NIST-BLEU (Papineni et al.
2002). We implement our approach with the in-house imple-
mentation of Transformer derived from the tensor2tensor2.

2https://github.com/tensorflow/tensor2tensor

4.2 Main Results

Translation Quality The results on the EN→DE,
DE→EN and ZH→EN are shown in Table 1. For a fair com-
parison, we also report several Transformer baseline from
previous work (Vaswani et al. 2017; Zheng et al. 2019;
Dou et al. 2018). Our Transformer baseline achieves simi-
lar or better results comparing with them. Compared with
our baseline, Transformer with the APT framework based
on different pre-trained models improves 1.92, 2.33 and 1.99
BLEU scores on the EN→DE, DE→EN and ZH→EN, re-
spectively (bold font). It’s worth to mention that the per-
centage improvement on the ZH→EN, whose difference of
syntax and morphology is bigger than German and English,
is more than other language pairs.

Compared with Fine-tuning We also implement the fine-
tuning method with different pre-trained models. When the
encoder is initialized by BERT and the decoder is initialized
by BERT or GPT, the BLEU score improves about 1 point
on three translation tasks. Our APT framework outperforms
the fine-tuning method on all tasks whenever using BERT or
GPT. This results demonstrate that the proposed approach is
more effective for obtaining the knowledge from pre-trained
model than fine-tuning in neural machine translation.

GPT Vs. BERT Although our work combining with GPT
or BERT achieves remarkable improvements, there are sev-
eral differences when employing them on encoder or de-
coder. First, BERT is better than GPT on the encoder when
using the proposed APT framework (+0.13 to +0.48). We
think the reason is that compared with the uni-directional
language model of GPT, the masked language model could
obtain more contextual information. While on the decoder
side, GPT gets better performance than BERT due to it can
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Model BLEU
Transformer-Big (Vaswani et al. 2017) 28.46
w/ Fine-tuning (Lample and Conneau 2019) 27.70
w/ Feature (Lample and Conneau 2019) 28.70
w/ CTNMT (Yang et al. 2019a) 30.10

Transformer-Base 27.31
w/ APT framework 29.23

Table 2: The comparison of the proposed method and previ-
ous work on the EN→DE task.

Model BLEU Δ
Transformer 27.31 −

w/o Knowledge Distillation 28.77 +1.46
w/o Contextual Gating 28.44 +1.13
w/o Layer-aware Attention 28.39 +1.08
w/o Contextual Gating

w/o Layer-aware Attention 28.03 +0.72

w/ Knowledge Distillation 29.23 +1.92
w/o Contextual Gating 28.91 +1.60
w/o Layer-aware Attention 28.68 +1.37
w/o Contextual Gating

w/o Layer-aware Attention 28.43 +1.12

w/o Dynamic Fusion 28.68 +1.37
w/o Word Distillation 28.31 +1.02
w/o Sent Distillation 28.56 +1.15

w Dynamic Fusion 29.23 +1.92
w/o Word Distillation 28.76 +1.45
w/o Sent Distillation 28.87 +1.56

Table 3: Ablation study on the EN→DE task.

model sequential information which is an important factor
for the decoding process.

Compared with Previous Work We also report several
recent work related to use pre-trained model in NMT. The
results are summarized in Table 2. When using the pub-
lic BERT3 to fine-tune the Transformer-big (Vaswani et al.
2017), BLEU score decreases 0.76. However, in our im-
plementation, the fine-tuning method improves 1.01 BLEU
based on the Transformer-base. Furthermore, the feature-
based approach is better than fine-tuning which contrasts
other tasks (Devlin et al. 2018). This result also verified the
fine-tuning doesn’t fit NMT. Our approach with base setting
could outperform their whose parameter size is far larger
than us4.

4.3 Ablation Study

To show the effectiveness of each module from the proposed
framework, we do a detailed ablation study here. On the one
hand, we show the effectiveness of the context gating and

3https://github.com/google-research/bert
4CTNMT uses the big setting and beam size is 8. Furthermore,

the size of monolingual data they used is far larger than us. So, it’s
unfair to compare us with them directly.

Model Method BLEU

Transformer N/A 27.31

Encoder
w/ Dynamic Fusion 28.77

w/ Knowledge Distillation 28.21

w/ Dynamic Fusion
Knowledge Distillation 28.69

Decoder
w/ Dynamic Fusion 27.41

w/ Knowledge Distillation 28.68

w/ Dynamic Fusion
Knowledge Distillation 27.71

Table 4: The comparison of translation qualities for using
the dynamic fusion mechanism and knowledge distillation
paradigm with different strategies on the EN→DE task.

layer-aware attention from the dynamic fusion in the first
two parts. Whether using knowledge distillation or not, the
layer-aware attention is a bit more important than context
gating. The fine-grained method of context gating could pro-
vide further improvement based on the layer-aware atten-
tion. When ablating both of them, which like a layer coordi-
nation method, the BLEU score drops about 0.7 point.

On the other hand, the word level and sentence level dis-
tillation objectives could be used individually. We also eval-
uate them with or without dynamic fusion mechanism. Com-
pared with word level distillation, without sentence level dis-
tillation will have more negative influence, which reveal that
learning contextual knowledge is important than only learn-
ing the output distribution.

4.4 Impact of Different Integration Strategies

In this section, we analyze the different integration strate-
gies for our APT framework. Specifically, we employ three
integration settings on the encoder and decoder, respectively.
The results are summarized in Table 4.

Encoder side The different strategies employed on the en-
coder are shown in the first part of Table 4. Here, we only
use sentence level knowledge distillation. The knowledge
distillation can help the encoder to model input sentence
better, while the effect is not as good as using the dynamic
fusion mechanism. Moreover, the performance doesn’t im-
prove when adopting both the knowledge distillation and the
dynamic fusion. It shows that the effectiveness of knowledge
distillation is covered by dynamic fusion in this scenario.

Decoder side We make a comparison on the decoder side
under the same settings above mentioned. The dynamic fu-
sion doesn’t work on the decoder side, in which pre-trained
models can’t get the ground truth as a input in the decoding
stage, so the task-specific representation generated by the
dynamic fusion is incomplete and contains noisy. Accord-
ing to this experiment, the knowledge distillation is better
than feature-based or fine-tuning methods in the decoder.
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Model Layers BLEU
Transformer N/A 27.31

w/ Dynamic Fusion

Embedding 27.94
1st-5th 28.42
Output 28.34

All 28.77

w/ Knowledge Distillation

Embedding 28.21
1st-5th 28.01
Output 28.68

All 28.22

Table 5: The comparison of employing dynamic fusion
mechanism and knowledge distillation paradigm on differ-
ent layers on the EN→DE task.

4.5 Effectiveness on Different Layers

We compare the effectiveness of employing the APT on dif-
ferent layers. The results are shown in Table 5. The phenom-
ena from the encoder and decoder sides are different. On the
encoder side, more layers fuse external knowledge, better
performance the model achieve. Moreover, high layers can
get more gain comparing with low layers. These results indi-
cate that the dynamic fusion can improve the ability of mod-
eling input sentence at all layers. High layers of the encoder
need external contextual knowledge more than low layers to
get the semantic from the input sentence.

On the decoder side, adopting knowledge distillation on
the output layer obtains the best performance. And only
adopting it on the embedding is better than others. We think
the middle layers focus on transforming the source represen-
tation from the encoder to the target, so the external contex-
tual knowledge doesn’t help them much. On the embedding
layer, the pre-trained embedding is better than the embed-
ding of NMT. So, only fitting embedding can get a consid-
erable improvement. The representation from output layer is
used to generate the target sentence, the contextual represen-
tation learned from the pre-trained model could give it more
language information to generate a better sentence.

5 Related Work

Pre-trained Model In NLP field, there are many pre-
trained models have been proposed to learn the contextual
information from large scale monolingual data. Peters et
al. (2018) introduced Embedding learned from Bi-LSTM
based Language Models (ELMo) and successfully apply it
in question answering, textual entailment, etc. Inspired by
them, Radford et al. (2018) proposed to use self-attention
network based language model (GPT) to replace the Bi-
LSTM structure, which further improves the performance of
the pre-trained model. Then, Devlin et al. (2018) proposed
to use the bi-directional encoder representation from Trans-
former (BERT) with a masked token objective and a next
sentence objective to capture global contextual information.
After that, several varieties are proposed, like MASS (Song
et al. 2019), XLNet (Yang et al. 2019b), etc.

These pre-training methods attended the state-of-the-art
in several tasks by fine-tuning the pre-trained parameters

with labeled data from downstream tasks. However, fine-
tuning these advanced model by parallel data can not work
well in NMT, because of the gap between the bilingual and
monolingual tasks. Our APT framework can erase this gap
and fully release the potential of these model in NMT filed.

Exploiting Monolingual Data for NMT Several success-
ful attempts have been made to utilize monolingual data
in NMT directly. Sennrich, Haddow, and Birch (2016)
proposed to use back-translation to generate synthetic par-
allel data from monolingual data. Currey, Barone, and
Heafield (2017) proposed a copy mechanism to copy frag-
ments of sentences from monolingual data to translated out-
puts directly. Zhang et al. (2018) proposed to jointly train
the source-to-target and target-to-source NMT models with
the pseudo parallel data from monolingual data. However,
these studies only focus on the usage of word or surface in-
formation, the rich contextual information from large scale
monolingual data does not be fully utilized.

Then, some researchers also pay attention to apply the
pre-trained model for NMT. Di Gangi and Federico (2017)
use source side pre-trained embedding and integrate it into
NMT with a mix-sum/gating mechanism. They only focus
on utilizing the pre-trained embedding, leaving the underly-
ing linguistic information ignored. Ramachandran, Liu, and
Le (2017) firstly proposed the fine-tuning method in NMT.
However, the general information can not be used in NMT
directly leading to the information from pre-trained models
is less exploited. Our approach can fuse the adapted task-
specific representation into NMT and distill knowledge from
pre-trained model to NMT in the training process, exploiting
the pre-trained knowledge effectively.

6 Conclusion

In this paper, we first address the problem that the contex-
tual knowledge from pre-trained models can not be used
well with the fine-tuning method in NMT, due to the large
gap between the bilingual machine translation task and
monolingual pre-trained models. Then, we propose an APT
framework, which could fuse the task-specific representa-
tion adapted from general representation by a dynamic fu-
sion mechanism and learn the contextual knowledge from
pre-trained models by a knowledge distillation paradigm.
Moreover, we conclude the best strategy for using the two
methods in the encoder-decoder framework. Experiments on
three machine translation tasks show that the proposed APT
framework achieves prominent improvements by fully ac-
quiring the knowledge from pre-trained models to NMT.
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