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Abstract

Answer selection is an important subtask of question answer-
ing (QA), in which deep models usually achieve better per-
formance than non-deep models. Most deep models adopt
question-answer interaction mechanisms, such as attention,
to get vector representations for answers. When these inter-
action based deep models are deployed for online prediction,
the representations of all answers need to be recalculated for
each question. This procedure is time-consuming for deep
models with complex encoders like BERT which usually have
better accuracy than simple encoders. One possible solution
is to store the matrix representation (encoder output) of each
answer in memory to avoid recalculation. But this will bring
large memory cost. In this paper, we propose a novel method,
called hashing based answer selection (HAS), to tackle this
problem. HAS adopts a hashing strategy to learn a binary ma-
trix representation for each answer, which can dramatically
reduce the memory cost for storing the matrix representa-
tions of answers. Hence, HAS can adopt complex encoders
like BERT in the model, but the online prediction of HAS
is still fast with a low memory cost. Experimental results on
three popular answer selection datasets show that HAS can
outperform existing models to achieve state-of-the-art perfor-
mance.

Introduction

Question answering (QA) is an important but challenging
task in natural language processing (NLP) area. Answer
selection (answer ranking), which aims to select the cor-
responding answer from a pool of candidate answers for
a given question, is one of the key components in many
kinds of QA applications. For example, in community-based
question answering (CQA) tasks, all answers need to be
ranked according to the quality. In frequently asked ques-
tions (FAQ) tasks, the most related answers need to be re-
turned back for answering the users’ questions.

One main challenge of answer selection is that both ques-
tions and answers are not long enough in most cases. As a
result, questions and answers usually lack background infor-
mation and knowledge about the context (Deng et al. 2018).
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This phenomenon limits the performance of answer selec-
tion models. Deep neural networks (DNN) based models,
also simply called deep models, can partly tackle this prob-
lem by using pre-trained word embeddings. Word embed-
dings pre-trained on language corpus contain some common
knowledge and linguistic phenomena, which are helpful for
selecting answers. Deep models have achieved promising
performance for answer selection in recent years (Tan et
al. 2016b; Santos et al. 2016; Tay, Tuan, and Hui 2018a;
Tran and Niederée 2018; Deng et al. 2018).

Most deep models for answer selection are constructed
with similar frameworks which contain an encoding
layer (also called encoder) and a composition layer (also
called composition module). Traditional models usually
adopt convolutional neural networks (CNN) (Feng et al.
2015) or recurrent neural networks (RNN) (Tan et al. 2016b;
Tran and Niederée 2018) as encoders. Recently, complex
pre-trained models such as BERT (Devlin et al. 2018) and
GPT-2 (Radford et al. 2019), are proposed for NLP tasks.
BERT and GPT-2 adopt Transformer (Vaswani et al. 2017)
as the key building block, which discards CNN and RNN en-
tirely. BERT and GPT-2 are typically pre-trained on a large-
scale language corpus, which can encode abundant common
knowledge into model parameters. This common knowledge
is helpful when BERT or GPT-2 is fine-tuned on other tasks.

The output of the encoder for each sentence of either
question or answer is usually represented as a matrix and
each column or row of the matrix corresponds to a vec-
tor representation for a word in the sentence. Composition
modules are used to generate vector representations for sen-
tences from the corresponding matrices. Composition mod-
ules mainly include pooling and question-answer interaction
mechanisms. Question-answer interaction mechanisms in-
clude attention (Tan et al. 2016b), attentive pooling (Santos
et al. 2016), multihop-attention (Tran and Niederée 2018)
and so on. In general, question-answer interaction mecha-
nisms have better performance than pooling. However, in-
teraction mechanisms bring a problem that the vector repre-
sentations of an answer are different with respect to different
questions. When deep models with interaction mechanisms
are deployed for online prediction, the representations of all
answers need to be recalculated for each question. This pro-
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cedure is time-consuming for deep models with complex en-
coders like BERT which usually have better accuracy than
simple encoders. One possible solution is to store the matrix
representation (with float or double values) of each answer
in memory to avoid recalculation. But this will bring large
memory cost.

In this paper, we propose a novel method, called hashing
based answer selection (HAS), to tackle this problem. The
main contributions of HAS are briefly outlined as follows:

• HAS adopts a hashing strategy to learn a binary matrix
representation for each answer, which can dramatically
reduce the memory cost for storing the matrix represen-
tations of answers. To the best of our knowledge, this is
the first time to use hashing for memory reduction in an-
swer selection.

• By storing the (binary) matrix representations of an-
swers in the memory, HAS can avoid recalculation for
answer representations during online prediction. Subse-
quently, HAS can adopt complex encoders like BERT in
the model, but the online prediction of HAS is still fast
with a low memory cost.

• Experimental results on three popular answer selection
datasets show that HAS can outperform existing models
to achieve state-of-the-art performance.

Related Work

Answer Selection Most early models for answer selection
are shallow (non-deep) models, which usually use bag-of-
words (BOW) (Yih et al. 2013), term frequency (Robert-
son et al. 1994), manually designed rules (Téllez-Valero
et al. 2011), syntactic trees (Wang and Manning 2010;
Cui et al. 2005) as features. Different upper structures are de-
signed for modeling the similarity of questions and answers
based on these features. The main drawback of shallow mod-
els are the lacking of semantic information by using only
surface features. Deep models can capture more semantic in-
formation by distributed representations, which lead to bet-
ter results than shallow models. Early deep models use pool-
ing (Feng et al. 2015) as the composition module to get vec-
tor representations for sentences from the encoder outputs
which are represented as matrices. Pooling cannot model the
interaction between questions and answers, which has been
outperformed by new composition modules with question-
answer interaction mechanisms. Attention (Bahdanau, Cho,
and Bengio 2015) can generate a better representation of an-
swers (Tan et al. 2016b) than pooling, by introducing the in-
formation flow between questions and answers into models.
(Santos et al. 2016) proposes attentive pooling for bidirec-
tional attention. (Tran and Niederée 2018) proposes a strat-
egy of multihop attention which captures the complex rela-
tions between question-answer pairs. (Wan et al. 2016) fo-
cuses on the word by word similarity between questions and
answers. (Wang, Liu, and Zhao 2016) and (Chen et al. 2018)
propose inner attention which introduces the representation
of question to the answer encoder through gates. (Tay, Tuan,
and Hui 2018a) designs a cross temporal recurrent cell to
model the interaction between questions and answers.

BERT and Transfer Learning To tackle the problem of
insufficient background information and knowledge in an-
swer selection, some methods introduce extra knowledge
from other data. (Deng et al. 2018; Min, Seo, and Ha-
jishirzi 2017; Wiese, Weissenborn, and Neves 2017) em-
ploy supervised transfer learning frameworks to pre-train
a model from a source dataset. There are also some un-
supervised transfer learning techniques (Yu et al. 2018;
Chung, Lee, and Glass 2018). BERT (Devlin et al. 2018)
is a recently proposed model for language understanding.
By training on a large language corpus, abundant common
knowledge and linguistic phenomena can be encoded into
the parameters. As a result, BERT can be transferred to a
wide range of NLP tasks and has shown promising results.

Hashing Hashing (Li, Wang, and Kang 2016) tries to
learn binary codes for data representations. Based on the
binary code, hashing can be used to speedup retrieval and
reduce memory cost. In this paper, we take hashing to
reduce memory cost, by learning binary matrix represen-
tations for answers. There have already appeared many
hashing techniques for learning binary representation (Li,
Wang, and Kang 2016; Cao et al. 2017; Hubara et al. 2016;
Fan et al. 2019). To the best of our knowledge, there have
not existed works to use hashing for memory reduction in
answer selection.

Hashing based Answer Selection

In this section, we present the details of hashing based
answer selection (HAS), which can be used to solve the
problem faced by existing deep models with question-
answer interaction mechanisms.

The framework of most existing deep models is shown
in Figure 1(a). Compared with this framework, HAS has
an additional hashing layer, which is shown in Figure 1(b).
More specifically, HAS consists of an embedding layer, an
encoding layer, a hashing layer, a composition layer and a
similarity layer. With different choices of encoders (encod-
ing layer) and composition modules (composition layer) in
HAS, several different models can be constructed. Hence,
HAS provides a flexible framework for modeling.

Embedding Layer and Encoding Layer

HAS is designed for modeling the similarity of question-
answer pairs. Hence, the inputs to HAS are two sequences
of words, corresponding to the question text and answer
text respectively. Firstly, these sequences of words are rep-
resented by word embeddings through a word embedding
layer. Suppose the dimension of word embedding is E, and
the sequence length is L. The embeddings of question q
and answer a are represented by matrices Qq ∈ R

E×L and
Aa ∈ R

E×L respectively. We use the same sequence length
L for simplicity. Then, these two embedding matrices Qq

and Aa are fed into an encoding layer to get the contextual
word representations. Different choices of embedding layers
and encoders can be adopted in HAS. Here, we directly use
the embedding layer and encoding layer in BERT to utilize
the common knowledge and linguistic phenomena encoded
in BERT. Hence, the formulation of encoding layer is as fol-
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Figure 1: (a) Framework of traditional deep models for answer selection; (b) Framework of HAS.

lows:

Uq = BERT (Qq),

Va = BERT (Aa),

where Uq,Va ∈ R
D×L are the contextual semantic features

of words extracted by BERT for question q and answer a
respectively, and D is the output dimension of BERT.

Hashing Layer

The outputs of the encoding layer for question q and answer
a are Uq and Va, which are two real-valued (float or double)
matrices. When deep models with question-answer interac-
tion mechanisms store the output of encoding layer (Va)
in memory to avoid recalculation, they will meet the high
memory cost problem. For example, if we take float values
for Va, the memory cost for only one answer is over 600 KB
when L = 200 and D = 768. Here, D = 768 is the output
dimension of BERT. If the number of answers in candidate
set is large, excessive memory cost will lead to impractica-
bility, especially for mobile or embedded devices.

In this paper, we adopt hashing to reduce memory cost
by learning binary matrix representations for answers. More
specifically, we take the sign function y = sgn(x) to bina-
rize the output of the encoding layer. But the gradient of the
sign function is zero for all nonzero inputs, which leads to a
problem that the gradients cannot back-propagate correctly.
y = tanh(x) is a commonly used approximate function for
y = sgn(x), which can make the training process end-to-
end with back-propagation (BP). Here, we use a more flex-
ible variant y = tanh(βx) with a hyper-parameter β ≥ 1.
The derivative of y = tanh(βx) is

∂y

∂x
= β(1− y2).

By using this function, the formulation of hashing layer
is as follows:

Ba = tanh(βVa), (1)

where Ba ∈ R
D×L is the output of hashing layer.

To make sure that the elements in Ba can concentrate to
binary values B = {±1}, we add an extra constraint for this

layer as that in (Li, Wang, and Kang 2016):
J c(a) = ||Ba −Ba||2F , (2)

where Ba ∈ B
D×L is the binary matrix representation for

answer a, || · ||F is the Frobenius norm of a matrix. Here, Ba

is also a parameter to learn in HAS model.
When the learned model is deployed for online predic-

tion, the learned binary matrices for answers will be stored in
memory to avoid recalculation. With binary representation,
each element in the matrices only costs one bit of memory.
Hence, the memory cost can be dramatically reduced.

Composition Layer

The outputs of encoding layer and hashing layer are matri-
ces of size D × L. Composition layers are used to compose
these matrix representations into vectors. Pooling, atten-
tion (Tan et al. 2016b), attentive pooling (Santos et al. 2016)
and other interaction mechanisms (Tran and Niederée 2018;
Wan et al. 2016) can be adopted in HAS. Interaction based
modules usually have better performance than pooling based
modules which have no question-answer interaction. Here,
we take attention as an example to illustrate the advantage
of HAS. More specifically, we adopt pooling for compos-
ing matrix representations of questions into question vec-
tors, and adopt attention for composing matrix representa-
tions of answers into answer vectors. The formulation of the
composition layer is as follows:

uq = max pooling(Uq),

v(q)
a = attention(Ba,uq) =

L∑

i=1

αi · b(a)i ,

αi ∝ exp(m� · tanh(W1 · b(a)i +W2 · uq)),

where uq,v
(q)
a ∈ R

D are the composed vectors of questions
and answers respectively, b(a)i is the i-th word representation
in Ba = [b

(a)
1 , ..., b

(a)
L ], αi is the attention weight for the i-th

word which is calculated by a softmax function, W1,W2 ∈
R

M×D, m ∈ R
M are attention parameters with M being

the hidden size of attention.
The above formulation is for training. During test proce-

dure, we just need to replace Ba by Ba.
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Similarity Layer and Loss Function

The similarity layer measures the similarity between
question-answer pairs based on their vector representations
uq and v

(q)
a . Here, we choose cosine function as the simi-

larity function, which is usually adopted in answer selection
tasks:

s(q, a) = cos(uq,v
(q)
a ),

where s(q, a) ∈ R is the similarity between question q and
answer a.

Based on the similarity between questions and answers,
we can define the loss function. The most commonly used
loss function for ranking is the triplet-based hinge loss (Tan
et al. 2016b; Tran and Niederée 2018). To combine the hinge
loss and the binary constraint in hashing together, we can get
the following optimization problem:

min
θ,B�

J =
∑

(q,p,n)

[Jm(q, p, n) + δ · J c(p) + δ · J c(n)]

=
∑

(q,p,n)

[max(0, 0.1− s(q, p) + s(q, n))+

δ · ||Bp −Bp||2F + δ · ||Bn −Bn||2F ],
where Jm(q, p, n) = max(0, 0.1− s(q, p) + s(q, n)) is the
hinge loss for a triplet (q, p, n) from the training set, p is a
positive answer corresponding to q, n is a randomly selected
negative answer, δ is the coefficient of the binary constraint
J c(p) and J c(n) for the positive answer p and the nega-
tive answer n respectively. B� denotes a set of binary matrix
representations for all answers. θ donates the parameters in
HAS except B�.

These two sets of parameters θ and B� can be optimized
alternately (Li, Wang, and Kang 2016). More specifically,
Ba ∈ B� corresponding to answer a can be optimized as
follows when θ is fixed:

Ba = sgn(Ba).

And θ can be updated by utilizing back propagation (BP)
when B� is fixed.

Experiment

Datasets

We evaluate HAS on three popular answer selection
datasets. The statistics about the datasets are presented in
Table 1.

insuranceQA (Feng et al. 2015) is a FAQ dataset from
insurance domain. We use the first version of this dataset,
which has been widely used in existing works (Tan et
al. 2016b; Wang, Liu, and Zhao 2016; Tan et al. 2016a;
Deng et al. 2018; Tran and Niederée 2018). This dataset has
already been partitioned into four subsets: Train, Dev, Test1
and Test2. The total size of candidate answers is 24981. To
reduce the complexity, the dataset has provided a candidate
set of 500 answers for each question, including positive and
negative answers. There is more than one positive answer
to some questions. As in existing works (Feng et al. 2015;
Tran and Niederée 2018; Deng et al. 2018), we adopt Preci-
sion@1 (P@1) as the evaluation metric.

Table 1: Statistics of the datasets. “#questions” and “#C.A.”
denote the number of questions and candidate answers re-
spectively.

insuranceQA yahooQA wikiQA
#questions (Train) 12887 50112 873
#questions (Dev) 1000 6289 126
#questions (Test1) 1800 6283 243
#questions (Test2) 1800 — —
#C.A. per question 500 5 9

yahooQA 1 is a large CQA corpus collected from Ya-
hoo! Answers. We adopt the dataset splits as those in (Tay
et al. 2017; Tay, Tuan, and Hui 2018a; Deng et al. 2018) for
fair comparison. Questions and answers are filtered by their
length, and only sentences with length among the range of
5 - 50 are preserved. The number of candidate answers for
each question is five, in which only one answer is positive.
The other four negative answers are sampled from the top
1000 hits using Lucene search for each question. As in ex-
isting works (Tay et al. 2017; Tay, Tuan, and Hui 2018a;
Deng et al. 2018), P@1 and Mean Reciprocal Rank (MRR)
are adopted as evaluation metrics.

wikiQA (Yang, Yih, and Meek 2015) is a benchmark for
open-domain answer selection. The questions of wikiQA are
factual questions which are collected from Bing search logs.
Each question is linked to a Wikipedia page, and the sen-
tences in the summary section are collected as the candidate
answers. The size of candidate answer set for each question
is different and there may be more than one positive answer
to some questions. We filter out the questions which have no
positive answers as previous works (Yang, Yih, and Meek
2015; Deng et al. 2018; Wang, Liu, and Zhao 2016). Mean
Average Precision (MAP) and MRR are adopted as evalua-
tion metrics as in existing works.

Hyperparameters and Baselines

We use base BERT as the encoder in our experiments. Large
BERT may have better performance, but the encoding layer
is not the focus of this paper. More specifically, the embed-
ding size E and output dimension D of BERT are 768. The
probability of dropout is 0.1. Weight decay coefficient is
0.01. Batch size is 64 for yahooQA, and 32 for insuranceQA
and wikiQA. The attention hidden size M for insuranceQA
is 768. M is 128 for yahooQA and wikiQA. Learning rate is
5e−6 for all models. The numbers of training epoches are 60
for insuranceQA, 18 for wikiQA and 9 for yahooQA. More
epoches cannot bring apparent performance gain on the val-
idation set. We evaluate all models on the validation set af-
ter each epoch and choose the parameters which achieve the
best results on the validation set for final test. All reported
results are the average of five runs.

There are also two other important parameters, β in
tanh(βx) and the coefficient δ of the binary constraint.
β is tuned among {1, 2, 5,10, 20}, and δ is tuned among
{0, 1e−7, 1e−6, 1e−5, 1e−4}.

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=
l&guccounter=1
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Table 2: Results on insuranceQA. The results of models
marked with � are reported from (Tran and Niederée 2018).
Other results marked with � are reported from their origi-
nal paper. P@1 is adopted as evaluation metric by following
previous works. ‘our impl.’ denotes our implementation.

Model P@1 (Test1) P@1 (Test2)
CNN � 62.80 59.20
CNN with GESD � 65.30 61.00
QA-LSTM (our impl.) 66.08 62.63
AP-LSTM � 69.00 64.80
IARNN-GATE � 70.10 62.80
Multihop-Sequential-LSTM � 70.50 66.90
AP-CNN � 69.80 66.30
AP-BiLSTM � 71.70 66.40
MULT � 75.20 73.40
KAN (Tgt-Only) � 71.50 68.80
KAN � 75.20 72.50
HAS 76.38 73.71

The state-of-the-art baselines on three datasets are dif-
ferent. Hence, we adopt different baselines for compar-
ison on different datasets according to previous works.
Baselines using single model without extra knowledge in-
clude: CNN, CNN with GESD (Feng et al. 2015), QA-
LSTM (Tan et al. 2016b), AP-LSTM (Tran and Niederée
2018), Multihop-Sequential-LSTM (Tran and Niederée
2018), IARNN-GATE (Wang, Liu, and Zhao 2016), NTN-
LSTM, HD-LSTM (Tay et al. 2017), HyperQA (Tay,
Tuan, and Hui 2018b), AP-CNN (Santos et al. 2016), AP-
BiLSTM (Santos et al. 2016), CTRN (Tay, Tuan, and Hui
2018a), CA-RNN (Chen et al. 2018), RNN-POA (Chen et
al. 2017), MULT (Wang and Jiang 2017), MV-FNN (Sha
et al. 2018). Single models with external knowledge in-
clude: KAN (Deng et al. 2018). Ensemble models include:
LRXNET (Narayan et al. 2018), SUMBASE,PTK (Ty-
moshenko and Moschitti 2018).

Because HAS adopts BERT as encoder, we also construct
two BERT-based baselines for comparison. BERT-pooling is
a model in which both questions and answers are composed
into vectors by pooling. BERT-attention is a model which
adopts attention as the composition module. Both BERT-
pooling and BERT-attention use BERT as the encoder, and
hashing is not adopted in them.

Experimental Results

Results on insuranceQA We compare HAS with base-
lines on insuranceQA dataset. The results are shown in Ta-
ble 2. MULT (Wang and Jiang 2017) and KAN (Deng et
al. 2018) are two strong baselines which represent the state-
of-the-art results on this dataset. Here, KAN adopts exter-
nal knowledge for performance improvement. KAN (Tgt-
Only) denotes the KAN variant without external knowledge.
We can find that HAS outperforms all the baselines, which
proves the effectiveness of HAS.

Results on yahooQA We also evaluate HAS and baselines
on yahooQA. Table 3 shows the results. KAN (Deng et al.
2018), which utilizes external knowledge, is the state-of-the-

Table 3: Results on yahooQA. The results of models marked
with � are reported from (Tay, Tuan, and Hui 2018a). Other
results marked with � are reported from their original paper.
P@1 and MRR are adopted as evaluation metrics by follow-
ing previous works.

Model P@1 MRR
Random Guess 20.00 45.86
NTN-LSTM � 54.50 73.10
HD-LSTM � 55.70 73.50
AP-CNN � 56.00 72.60
AP-BiLSTM � 56.80 73.10
CTRN � 60.10 75.50
HyperQA � 68.30 80.10
KAN (Tgt-Only) � 67.20 80.30
KAN � 74.40 84.00

HAS 73.89 82.10

Table 4: Results on wikiQA. The results marked with �
are reported from their original paper. MAP and MRR are
adopted as evaluation metrics by following previous works.

Model MAP MRR
AP-CNN � 68.86 69.57
AP-BiLSTM � 67.05 68.42
RNN-POA � 72.12 73.12
Multihop-Sequential-LSTM � 72.20 73.80
IARNN-GATE � 72.58 73.94
CA-RNN � 73.58 74.50
MULT � 74.33 75.45
MV-FNN � 74.62 75.76
SUMBASE,PTK � 75.59 77.00
LRXNET � 76.57 75.10
HAS 81.01 82.22

art model on this dataset. HAS outperforms all baselines
except KAN. The performance gain of KAN mainly owes
to the external knowledge, by pre-training on a source QA
dataset SQuAD-T. Please note that HAS does not adopt ex-
ternal QA dataset for pre-training. HAS can outperform the
target-only version of KAN, denoted as KAN (Tgt-Only),
which is only trained on yahooQA without SQuAD-T. Once
again, the result on yahooQA verifies the effectiveness of
HAS.

Results on wikiQA Table 4 shows the results on wik-
iQA dataset. SUMBASE,PTK (Tymoshenko and Moschitti
2018) and LRXNET (Narayan et al. 2018) are two ensemble
models which represent the state-of-the-art results on this
dataset. HAS outperforms all the baselines again, which fur-
ther proves the effectiveness of our HAS.

Comparison with BERT-based Models We compare
HAS with BERT-pooling and BERT-attention on three
datasets. As shown in Table 5, BERT-attention and HAS
outperform BERT-pooling on all three datasets, which veri-
fies that question-answer interaction mechanisms have bet-
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Table 5: Comparison with BERT-based models.

insuranceQA yahooQA wikiQA
Model P@1 (Test1) P@1 (Test2) P@1 MRR MAP MRR
BERT-pooling 74.52 71.97 73.49 81.93 77.22 78.27
BERT-attention 76.12 74.12 74.78 82.68 80.65 81.83
HAS 76.38 73.71 73.89 82.10 81.01 82.22

Table 6: Comparison of accuracy, time cost and memory cost on insuranceQA. Each question has 500 candidate answers.
“Memory Cost � ” is the memory cost for storing representations of answers.

Model P@1 (Test1) P@1 (Test2) Time Cost per Question Memory Cost �
BERT-pooling 74.52 71.97 0.03s 0.07 GB
BERT-attention (recal.) 76.12 74.12 4.19s 0.02 GB
BERT-attention (store) 76.12 74.12 0.28s 14.29 GB
HAS 76.38 73.71 0.28s 0.45 GB
Multihop-Sequential-LSTM 70.50 66.90 0.13s 5.25 GB
AP-CNN 69.80 66.30 — 7.44 GB
AP-BiLSTM 71.70 66.40 — 5.25 GB

ter performance than pooling. Furthermore, we can find that
HAS can achieve comparable accuracy as BERT-attention.
But BERT-attention has either speed (time cost) problem or
memory cost problem, which will be shown in the following
subsection.

We also find that HAS can improve the results of BERT-
attention on insuranceQA and wikiQA. One reason might be
that hashing can act as a regularization (constrained to be bi-
nary) for feature representation learning, and hence reduce
the model complexity and increase the generalization ability
when the model already has enough capacity. The wikiQA
dataset is a relatively small dataset on which deep models are
easy to overfit. HAS outperforms BERT-attention on wik-
iQA in terms of both MAP and MRR, which is consistent
with our view about generalization.

Time Cost and Memory Cost To further prove the effec-
tiveness of HAS, we compare HAS with baselines on in-
suranceQA in terms of time cost and memory cost when
the model is deployed for prediction. The results are shown
in Table 6. All experiments are run on a TitanXP GPU.
BERT-pooling can directly store the vector representations
of answers with a low memory cost, which doesn’t have the
time cost and memory cost problem. But the accuracy of
BERT-pooling is much lower than BERT-attention and HAS.
BERT-attention (recal.) denotes a BERT-attention variant
which recalculates the matrix representations of answers for
each question, and BERT-attention (store) denotes a BERT-
attention variant which stores the matrix representations of
answers in memory. BERT-attention (recal.) does not need to
store the matrix representations of answers in memory, and
BERT-attention (store) does not need recalculation. The time
cost is 4.19 seconds per question for BERT-attention (recal.),
which is about 15 times slower than HAS. Although BERT-
attention (store) has low time cost as that of HAS, the mem-
ory cost of it is 14.29 GB, which is about 32 times larger
than that of HAS.

We also compare HAS with other baselines in existing
works. KAN and MULT do question-answer interaction be-

fore encoding layer or during encoding layer, and the out-
puts of the encoding layer for an answer are different for
different questions. Thus, these two models cannot store rep-
resentations for reusing. We compare HAS with Multihop-
Sequential-LSTM, AP-CNN, and AP-BiLSTM. The mem-
ory cost of these three models is 5.25 GB, 7.44 GB, and 5.25
GB, respectively, which are 11.75, 16.67, 11.75 times larger
than that of HAS. Other baselines are not adopted for com-
parison, but almost all baselines with question-answer inter-
action mechanisms have either time cost problem or memory
cost problem as that in BERT-attention.

We can find that our HAS is fast with a low memory cost,
which also makes HAS have promising potential for embed-
ded or mobile applications.

Sensitivity Analysis of δ and β In this section, we study
the sensitivity of the two important hyper-parameters in
HAS, which are the coefficient δ of J c(a) and the value
of β in tanh(βx). We design a sensitivity study of these two
hyper-parameters on insuranceQA and wikiQA. As shown
in Figure 2(a) and Figure 3(a), the performance can be im-
proved by increasing β to 5. We can find that HAS is not
sensitive to β in the range of [5, 10]. When β is fixed to 5, the
performance of different choices of δ is shown in Figure 2(b)
and Figure 3(b). We can find that HAS is not sensitive to δ
in the range of [1e−7, 1e−5].

Conclusion

In this paper, we propose a novel answer selection method
called hashing based answer selection (HAS). HAS adopts
hashing to learn binary matrix representations for answers,
which can dramatically reduce memory cost for storing the
matrix outputs of encoders in answer selection. When de-
ployed for prediction, HAS is fast with a low memory cost.
This is particularly meaningful when the model needs to
be deployed at embedded or mobile systems. Experimental
results on three popular datasets show that HAS can out-
perform existing methods to achieve state-of-the-art perfor-
mance.
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Figure 2: Sensitivity analysis on insuranceQA.
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Figure 3: Sensitivity analysis on wikiQA.

HAS is flexible to integrate other encoders and question-
answer interaction mechanisms. Furthermore, the idea to
adopt hashing for binary representation learning in HAS can
also be used for other NLP tasks. All these possible exten-
sions will be pursued in our future work.
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