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Abstract

Semantic matching is a basic problem in natural language
processing, but it is far from solved because of the differ-
ences between the pairs for matching. In question answering
(QA), answer selection (AS) is a popular semantic match-
ing task, usually reformulated as a paraphrase identification
(PI) problem. However, QA is different from PI because the
question and the answer are not synonymous sentences and
not strictly comparable. In this work, a novel knowledge and
cross-pair pattern guided semantic matching system (KCG) is
proposed, which considers both knowledge and pattern con-
ditions for QA. We apply explicit cross-pair matching based
on Graph Convolutional Network (GCN) to help KCG rec-
ognize general domain-independent Q-to-A patterns better.
And with the incorporation of domain-specific information
from knowledge bases (KB), KCG is able to capture and ex-
plore various relations within Q-A pairs. Experiments show
that KCG is robust against the diversity of Q-A pairs and out-
performs the state-of-the-art systems on different answer se-
lection tasks.

Introduction

Semantic matching is a basic problem in natural language
processing. Many tasks are essentially a semantic match-
ing problem, such as information retrieval (IR), question an-
swering (QA) and paraphrase identification (PI) (Li, Xu, and
others 2014). In QA, the matching of the question with the
most proper answer from a set of candidates, which is known
as answer selection (AS), remains challenging due to the di-
versity of Q-A pairs.

Usually, AS is reformulated as a PI problem. Methods
can be divided into three categories based on the general
model structures: Siamese networks (Feng et al. 2015; Yang,
Yih, and Meek 2015), attentive networks (Santos et al. 2016;
Yin et al. 2016) and Compare-Aggregate networks (Wang
and Jiang 2017; Bian et al. 2017). However, these methods
are all based on the comparing framework. It appears that
by optimizing the likelihood of two text sequences being a
matched pair based on their similarity, neural models assign
high probability to those with the same words, phrases or
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other patterns. For example, considering Q1 in Figure 1, it
is difficult to pick out the true answer based on Q-A similar-
ity, since the comparing framework is likely to be misled by
words with identical attributes (marked by color).

In fact, QA is different from PI because the question and
the answer are not synonymous sentences and not strictly
comparable. Instead of being semantically equivalent, Q-A
pairs usually form a continuity in meaning (and generally
fall into certain Q-to-A patterns). Therefore, the basic se-
mantic matching strategy for answer selection has room for
improvement. In this work, we study the answer selection
problem based on fundamental characteristics of QA itself.
We observe that, a sentence will be considered as a proper
answer only if it meets two basic conditions. First, the infor-
mation in the sentence must be relevant to that in the ques-
tion (knowledge condition). Second, the structure of the sen-
tence should correspond to the question structure (pattern
condition). Knowledge condition ensures that the sentence
is “telling the truth”, while pattern condition checks whether
the sentence is “responding to” the question.

There is growing interest in the study of the knowledge
condition. Some recent work leverages Wikipedia (Chen et
al. 2017), knowledge bases (Shen et al. 2018) or other ex-
ternal resources to provide background information for QA.
However, content correlation with the question is not suffi-
cient for an answer. As can be seen from Figure 1, the listed
candidate answers to Q1 are more reliable than others be-
cause they are all statements of fact, and are all about the
entity “8 track” in the question. However, among these can-
didates, A1−1 and A1−2 are giving irrelevant answers, but
are also likely to be assigned with high probability, unless
extra semantic parsing or information extraction methods
(entity linking and relation detection) are conducted as in
KBQA (Yao and Van Durme 2014).

However, if the pattern condition is followed when de-
signing AS models, irrelevant answers will be avoided with
few auxiliary tasks. As in the example, Q1 and Q2 both con-
tain what year was ... invented. Meanwhile, A1−3 shares
the same pattern ... was created in (year) ... with A2−1.
These pairs are in a common Q-to-A pattern. If the pattern
is explicitly learned to guide the answer selection process of
Q1, the correct answer will be picked out more easily.
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Figure 1: QA pairs from the WikiQA corpus. Intra-pair and cross-pair matches are denoted by colors and underlines respectively.

Taking both the pattern and knowledge conditions into
consideration, we propose a novel knowledge and cross-pair
pattern guided system (KCG) for answer selection. First, the
idea of cross-pair similarity (Zanzotto and Moschitti 2006)
is applied to learning general Q-to-A patterns. To be spe-
cific, for each candidate answer A of the question Q, in ad-
dition to the common intra-pair comparison between Q and
A, matching is conducted between this pair P = (Q,A) to
other Q-A pairs. Therefore, global information is incorpo-
rated into each single matching pair.

To explicitly model cross-pair dependencies, we regard
Q-A pairs as nodes and build a graph around the idea that
similar Q-A pairs are close to each other, and turn AS into a
node classification problem based on Graph Convolutional
Network (GCN). GCN has been demonstrated as one of
the most effective approaches for semi-supervised learn-
ing (Kipf and Welling 2017) because of its ability to exploit
connectivity patterns between labeled and unlabeled data.
Therefore, we find it a good fit for capturing global corre-
lations and learning cross-pair patterns. With the correlation
matrix which guides information propagation among nodes,
the classification process retains semantic structures in the
embedding space, where related concepts are neighbors.

In order to meet the knowledge condition, multi-view at-
tention is utilized to capture interactive features within the
Q-A pair (intra-pair matching part). To be specific, we adopt
both textual attention from words and knowledge-based at-
tention from entities to enhance the representation learn-
ing of the Q-A pair with the Compare-Aggregate network.
Therefore, the model implements comparison on word, sen-
tence and knowledge levels, thus learning more comprehen-
sive intra-pair information.

Our main contributions include:
• We propose a universal semantic matching strategy for

question answering. Different from the traditional com-
paring framework, we apply both intra-pair and cross-
pair matching, thus enabling our system to learn not only
multi-view information between the question and the an-
swer, but also global Q-to-A pattern information.

• In order to learn cross-pair patterns, we propose the Q-A

pair graph, and conduct node classification with GCN to
capture global correlations. To the best of our knowledge,
this is the first study to model the QA corpus as a graph to
perform a GCN-based post-procedure, which may expand
the application of graph neural networks on textual data.

• The proposed system considers both knowledge and pat-
tern conditions for QA, and outperforms the state-of-the-
art results on different answer selection tasks.

Related Work

Deep Semantic Matching Semantic matching is usually
solved with the score of semantic recall (similarity compu-
tation) based on the comparing framework. Deep semantic
matching starts with Siamese networks (Feng et al. 2015;
Yang, Yih, and Meek 2015). These models use the same
structure to encode the semantic sequences separately for
matching. Then more interaction between sequences has
been introduced by soft-attention (Santos et al. 2016; Yin
et al. 2016). Further, some interaction-based networks (Hu
et al. 2014; Pang et al. 2016; Wang and Jiang 2017) are pro-
posed, most of which conduct the matching process before
further representation learning.

However, these methods are all based on the intra-pair
comparing framework. Cross-pair similarity was proposed
by (Zanzotto and Moschitti 2006) in the textual entailment
task. They devised the tree kernel based on cross-pair simi-
larity for Support Vector Machines (SVM). Recently, (Ty-
moshenko and Moschitti 2018) combine the tree kernels
with word-based kernels for AS. In this paper, we introduce
GCN to model cross-pair dependencies, since GCN is natu-
rally good at exploiting connectivity patterns through incor-
porating neighborhood information.

Application of GCN on NLP GCN is a simplified
graph neural network (GNN), first introduced by (Kipf and
Welling 2017) to perform semi-supervised classification. In
NLP, GCN is mainly explored in tasks such as semantic role
labeling (Marcheggiani and Titov 2017), machine transla-
tion (Bastings et al. 2017) and relation classification (Li,
Jin, and Luo 2018) to encode syntactic structures. (Lai et al.
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Figure 2: The proposed knowledge and cross-pair pattern guided semantic matching system (KCG).

2019) introduce word lattice (a directed graph) into Chinese
QA, but the basic model relies on Siamese intra-pair match-
ing. Besides, the above applications usually require that the
data itself exhibit a natural graph structure, and mainly build
the graphs inside sentences.

(Yao, Mao, and Luo 2019) first model a whole corpus as
a graph where documents and words are regarded as nodes.
However, the graph is built on traditional features like word
co-occurrence, which may ignore word orders useful for text
classification. Our graph based on sentence pair representa-
tions and correlations is easy to build and effective to model
cross-pair dependencies. With the design and high-quality
node embeddings, the application of GCN on textual data
without pre-defined graph structures can be extended.

Knowledge and Cross-Pair Pattern Guided

Semantic Matching

In this part, we elaborate on KCG for semantic matching
in question answering, as shown in Figure 2. The cross-pair
and intra-pair parts are trained independently, and final de-
cisions are simply made based on weighted sum of the pre-
dictions to reduce dependency on parameters.

Cross-Pair Learning

Graph Convolutional Networks The essential idea of
GCN is to update node representations by propagating in-
formation among nodes. Formally, for a graph G = (V,E),
V (|V | = n) and E are sets of nodes and edges respec-
tively. Every node is assumed to be connected to itself, i.e.,
(v, v) ∈ E for any v. X ∈ R

n×m is the feature matrix con-
taining the features of all n nodes, where m is the dimen-
sion of feature vectors. A is the adjacency matrix of G and
D is the degree matrix, where Dii =

∑
j Aij . The layerwise

propagation rule is defined as:

Z(j+1) = ρ(ÃZ(j)W (j)), (1)

where j denotes the layer number and Z(0) = X . Ã =

D− 1
2AD− 1

2 is the normalized symmetric adjacency matrix
and W (j) is a trainable weight matrix. ρ is an activation
function, e.g., ReLU. Higher order neighborhood informa-
tion can be introduced by stacking multiple GCN layers.

GCN-Based Cross-Pair Learning For graph-based
learning, the key challenge is to exploit graph structures
and data features to improve learning performance. In fields
where GCN is widely used (e.g., social network, citation
network or knowledge graph), the data usually exhibits a
natural graph structure. However, there is no pre-defined
graph structure in textual QA. Thus, the building of the
graph is a crucial problem. In order to model cross-pair
dependencies, we build the graph over Q-A pairs (Figure 3),
where each node is represented by the sentence pair em-
bedding. The correlation matrix P is computed based on
cosine similarity between embedding vectors. We binarize
the matrix by a threshold τ and get:

Aij =

{
0, ifPij < τ

1, ifPij ≥ τ
, (2)

where A is the binary correlation matrix.
The built graph is fed into GCN, and the output of the

penultimate layer is passed to a softmax layer:

Z = softmax(ÃXW ), (3)

The loss function is defined as the cross-entropy error
over all labeled Q-A pairs:

L = −
∑
p∈YP

F∑
f=1

Ypf lnZpf , (4)

where YP is the indices of labeled Q-A pairs, Y is the label
indicator matrix, and F is the dimension of the output, which
is equal to the number of classes.
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Figure 3: Cross-pair learning with the Q-A pair graph and GCN. Colors denote different classes.

In order to increase flexibility and label efficiency, we ap-
ply Auto-Regressive (AR) filter to get an improved GCN
(IGCN) (Li et al. 2019), which replaces Ã with Ã′:

Z(1) = ρ(Ã′XW (0)), (5)

where Ã′ = par(L) = (I + αL)−1 is the AR filter and is
approximated with polynomial expansion:

(I + αL)−1 =
1

1 + α

+∝∑
i=0

[
α

1 + α
Ã]i, (α > 0), (6)

where L = D−A is the graph Laplacian. Ã′X = 1
1+αT

(k)

is computed iteratively with:

T (0) = O, T (1) = X, ..., T (i+1) = X +
α

1 + α
ÃT (i), (7)

and k = �4α� is enough according to (Li et al. 2019).
IGCN can achieve label efficiency by using the exponent

k to conveniently adjust the filter strength. In this way, it can
maintain a shallow structure with a reasonable number of
trainable parameters to avoid overfitting.

Intra-Pair Learning

The intra-pair matching part is under the Compare-
Aggregate framework, where vector representations of small
units (such as words) of sentences are compared to capture
interactive features, and then aggregated to calculate the fi-
nal relevance score. In order to learn more comprehensive
intra-pair information, we compute both textual attention Ec

and knowledge-based attention Ee for the model:

Ec
ij = score(Qc

i , A
c
j) = Qc

i ·Ac
j ,

Ee
ij = score(Qe

i , A
e
j) = tanh(Qe

i
�UAe

j),
(8)

where Qc and Ac are pre-trained word embedding matrixes
of the question and the answer respectively, and Qe and Ae

are knowledge embedding matrixes based on entity linking
results and knowledge graph (KG) entity embeddings. U is
a parameter matrix to be learned.

Then with the softmax computation along the dimension
j, we get Ec,q

ij and Ee,q
ij . Similarly, Ec,a

ij and Ee,a
ij are com-

puted along i. We merge textual and knowledge-based atten-

tion, and obtain the final attention vectors:

Eq
ij =

exp(Ec,q
ij + Ee,q

ij )∑la
k=1(expE

c,q
ik + Ee,q

ik )
,

Ea
ij =

exp(Ec,a
ij + Ee,a

ij )∑lq
k=1(expE

c,a
kj + Ee,a

kj )
.

(9)

Attention-weighted sums are computed as Hc,q
i =∑la

j=1 E
q
ijA

c
j and Hc,a

j =
∑lq

i=1 E
a
ijQ

c
i for textual represen-

tations. Analogously, knowledge-based representations are
He,q

i =
∑la

j=1 E
q
ijA

e
j and He,a

j =
∑lq

i=1 E
a
ijQ

e
i .

Then unit-level comparisons match each unit of one se-
quence with a weighted version of its counterpart:

T c,q
i = CMP(Qc

i , H
c,q
i ) = Qc

i ⊗Hc,q
i ,

T c,a
j = CMP(Ac

j , H
c,a
j ) = Ac

j ⊗Hc,a
j ,

(10)

where ⊗ is the element-wise multiplication. Analogously for
knowledge-based representations, we get T e,q

i and T e,a
j .

Further, the aggregation process is conducted based on
CNN as suggested in (Bian et al. 2017):
Rc,q = AGG([T c,q

1 , ..., T c,q
lq

]) = CNN([T c,q
1 , ..., T c,q

lq
]),

Rc,a = AGG([T c,a
1 , ..., T c,a

la
]) = CNN([T c,a

1 , ..., T c,a
la

]).

(11)
Similarly, we get final knowledge-based representations
Re,q and Re,a. Then outputs of the Aggregation Layer are
concatenated to predicate the probability that Q and A form
a pair by a full connection layer with sigmoid.

Experiments

Experimental Settings

Datasets We evaluate our model on two widely adopted
QA benchmark datasets: WikiQA (Yang, Yih, and Meek
2015) and TrecQA (Wang, Smith, and Mitamura 2007).
WikiQA is an open domain factoid answer selection bench-
mark. We adopt the standard setup (Yang, Yih, and Meek
2015) of only considering questions with correct answers for
evaluation. TrecQA has clean and raw versions. The clean
version removes questions that have only positive/negative
answers or no answers. We evaluate on the clean version as
noted by (Rao, He, and Lin 2016). The details of these two
datasets are shown in Table 1. Evaluation measures are mean
average precision (MAP) and mean reciprocal rank (MRR).
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Table 1: Summary statistics of datasets.
Dataset Type Question QA Pairs %Correct Nodes Edges

WikiQA
Train 873 8672 12.0

12.2K 21.9MDev 126 1130 12.4
Test 243 2351 12.5

TrecQA Train 1229/1160 53417/53313 12.0/11.8
12.5K 40.3MDev 82/65 1148/1117 19.3/18.4

(original/cleaned) Test 100/68 1517/1442 18.7/17.2

Table 2: Hyperparameters.
Hyperparameter Method

Name Definition Intra-Pair Cross-Pair
λ Learning rate 0.001 0.01
p Dropout rate 0.2 0.5
L2 L2 normalization 0 0.0005
m Batch size 4 1
w Conv. size [1,2,3,4,5] 1
h Hidden layer size 300 (64)
τ Edge threshold - 0.95
r Neg. rate - 1:1

Common Training Setup For intra-pair learning, we use
pre-trained GloVE embeddings (Pennington, Socher, and
Manning 2014) for text and TransE (Bordes et al. 2013) em-
beddings for entities with a subset of Freebase (Bollacker
et al. 2008): FB5M (4,904,397 entities, 7,523 relations and
22,441,880 facts) as KG following (Shen et al. 2018). We
adopt listwise learning and use KL-divergence as the loss
function as suggested in (Bian et al. 2017).

For the cross-pair part, graph node features are
BERT (Devlin et al. 2019) embeddings of Q-A pairs, and
the threshold τ is tuned to balance between quantity and
quality of edges. A graph is built on a whole QA corpus
(under-sampled on TrecQA) to capture cross-pair patterns
(summarized in Table 1) with labels of the validation and
testing sets masked following (Yao, Mao, and Luo 2019).
Since negative answers are less useful for learning explicit
Q-A patterns, and may introduce noise during propagation
(if not randomly selected, typical wrong Q-A patterns may
also help), we also apply sample masks on training data to
tune the negative sampling rate r. We set the filter parame-
ter α = 10 for WikiQA and α = 1 for TrecQA according
to label rates (Li et al. 2019). GCN applies the first-order
convolutional filter to integrate graph and feature informa-
tion. For stacked GCN, the hidden layer size is set to 64.
Adam (Kingma and Ba 2014) is adopted for training and
the model with the lowest training loss in 400 steps is se-
lected (Li et al. 2019). Other hyperparameters are shown in
Table 2.

Results and Analysis

Comparison with the State of the Art Experimental
results are summarized in Table 3 and nine baselines
are adopted. Among which, CNN-Cnt (Yang, Yih, and
Meek 2015) and HyperQA (Tay, Tuan, and Hui 2018a)
are under the Siamese framework, AP-CNN (Santos et al.
2016), IWAN (Shen, Yang, and Deng 2017) and MCAN-
FM (Tay, Tuan, and Hui 2018b) are attentive networks.
KABLSTM (Shen et al. 2018) is a knowledge-aware atten-
tive network. BiMPM (Wang, Hamza, and Florian 2017) and
DCA (Bian et al. 2017) are built on the Compare-Aggregate
architecture. SUM (Tymoshenko and Moschitti 2018) also

applies both intra-pair and cross-pair learning, but in a more
traditional way. It computes cross-pair relations with scalar
products and ensembles different kernels-based SVM clas-
sifiers. For KCG, we implement it by using learned knowl-
edge representations for aggregation (KCGeca), or only ap-
plying knowledge to the Attention Layer and Comparison
Layer (KCGec) to enhance Q-A pair representations.

We observe that KCG demonstrates significant gains over
the baselines based on the intra-pair comparing frame-
works, and outperforms the state-of-the-art systems on both
WikiQA and TrecQA. The improvement on WikiQA is
much more obvious than TrecQA. TrecQA includes editor-
generated questions and candidate answer sentences se-
lected by word matching (Wang, Smith, and Mitamura
2007), while WikiQA is constructed in a natural and realis-
tic manner based on query logs and Wikipedia pages (Yang,
Yih, and Meek 2015). Therefore, WikiQA is more lexically
diverse and closer to real-world scenarios.

Ablation Study In order to analyze the effectiveness of
different factors, we also report the ablation tests in terms of
discarding cross-pair matching part (w/o IGCN) and knowl-
edge graph information (w/o KG) respectively. The bottom
of Table 3 shows ablation results on KCGec.

First, leaving out cross-pair matching (w/o IGCN) im-
pacts the performance, and the drop is more significant on
WikiQA (0.784 to 0.768 for MAP). It suggests that cross-
pair matching helps to improve the performance on com-
plex cases where intra-pair models may be insufficient. In
fact, (Yih et al. 2013) found that simple word matching out-
performs many sophisticated approaches on TrecQA. There-
fore, intra-pair matching alone performs well on the dataset.

Second, note that KG is also a main contributor to the
performance, which indicates the importance of background
information for QA tasks. Knowledge-aware models en-
rich the representation learning of Q-A pairs with external
knowledge. Aggregating learned knowledge representations
with sentence representations in the end (KCGeca), how-
ever, does not ensure further improvement. This may depend
on the entity distributions in specific datasets.

Third, we have the hypothesis that KCG manages to
meet both knowledge and pattern conditions, thus han-
dling the AS problem based on the nature of QA. Exper-
iments suggest that KCG substantially outperforms some
well-designed models under PI comparing frameworks, and
models only focusing on one condition (Shen et al. 2018;
Tymoshenko and Moschitti 2018).

Comparison between Different Graph-Based Methods
We also conduct experiments to compare effects of differ-
ent graph-based methods for cross-pair learning. Results are
presented in Table 4. The classic label propagation (Zhou et
al. 2004) contributes little to the raw model. This method
only makes predictions based on the graph structure, which
is inadequate without representation learning of Q-A pairs.
The model with GCN has achieved better results because of
the first-order convolutional filter which integrates graph and
feature information. However, GCN usually needs stacked
layers to increase smoothness, and thus it is difficult to train
with fewer labels due to high model complexity.
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Table 3: Results on WikiQA and TrecQA datasets.
Framework Method WikiQA TrecQA

MAP MRR MAP MRR

Siamese CNN-Cnt (Yang, Yih, and Meek 2015) 0.652 0.665 0.695 0.763
HyperQA (Tay, Tuan, and Hui 2018a) 0.712 0.727 0.784 0.865

Attentive

AP-CNN (Santos et al. 2016) 0.689 0.696 0.753 0.851
KABLSTM (Shen et al. 2018) 0.732 0.749 0.804 0.885
IWAN (Shen, Yang, and Deng 2017) 0.733 0.750 0.822 0.889
MCAN-FM (Tay, Tuan, and Hui 2018b) - - 0.838 0.904

Compare-Aggregate BiMPM (Wang, Hamza, and Florian 2017) 0.718 0.731 0.802 0.875
DCA (Bian et al. 2017) 0.754 0.764 0.821 0.899

Intra-Cross
SUM (Tymoshenko and Moschitti 2018) 0.762 0.776 0.777 0.869
KCGeca 0.772 0.786 0.857 0.908
KCGec 0.784 0.802 0.841 0.902

w/o IGCN 0.768 0.782 0.832 0.900
w/o KG 0.763 0.778 0.828 0.889

Table 4: Results of replacing cross-pair learning part by dif-
ferent graph-based methods on WikiQA.

Cross-Pair Part Layer MAP MRR
- - 0.768 0.782

LP (Zhou et al. 2004) 1 0.770 0.785
2 0.771 0.785

GCN (Kipf and Welling 2017) 1 0.774 0.787
2 0.773 0.788

IGCN (Li et al. 2019) 1 0.784 0.802
2 0.774 0.787

Table 5: The facilitation of cross-pair learning to various
matching or binary classification models on WikiQA.

Intra-Pair Cross-Pair MAP MRR
TextCNN (Kim 2014) - 0.528 0.542
TextCNN IGCN 0.664 0.683
Transformer (Vaswani et al. 2017) - 0.641 0.644
Transformer IGCN 0.668 0.681
Dilated CNN (Yu and Koltun 2016) - 0.658 0.659
Dilated CNN IGCN 0.677 0.690
ABCNN (Yin et al. 2016), - 0.692 0.713
ABCNN IGCN 0.721 0.742
ABCNN Transformer 0.693 0.714

KCG with IGCN has achieved the best performance.
IGCN improves GCN with low-pass graph convolutional fil-
ters to generate smooth and representative features for sub-
sequent classification. Through flexibly adjusting the filter
strength, it can significantly reduce trainable parameters and
effectively prevent overfitting.

Note that two-layer models do not show better perfor-
mance. Two layers allow exchange of information among
nodes that are at maximum two steps away. However, noise
can be introduced from some randomly selected negative
samples. Constraints may be put on the negative-sampling
of answers to further improve the performance, which we
leave for future work.

Additional Analysis on GCN-Based Post-Procedure To
further analyze the effectiveness and potential of the GCN-
based post-procedure, we reimplement several classic intra-
pair matching or binary classification models with the pro-
cedure on WikiQA, as shown in Table 5. Generally, it makes
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Figure 4: Test MAP results on WikiQA by varying training
data proportions on ABCNN and IGCN.

performance boost to apply GCN-based cross-pair learning.
In particular, the typical attentive network ABCNN (Yin
et al. 2016) achieves competitive results with some strong
baselines (Table 3). The attentive pooling mechanism in
ABCNN considers local relations within pairs, but it does
not cover global correlations as in cross-pair learning.

Considering that deep neural networks themselves may
implicitly capture cross-pair similarity during training, we
replace the cross-pair part with a classification model based
on Transformer (Vaswani et al. 2017) (the last line). How-
ever, the change leads to a drop in the results, which further
demonstrates the effectiveness of the immediate cross-pair
modeling approach. The results also suggest that model in-
tegration is not the key factor of good performance here.

Further, in order to evaluate the label efficiency of the
procedure, we test it alone with different proportions of
training data. Figure 4 compares IGCN cross-pair learn-
ing with ABCNN on 6%, 12%, 18% and 24% of the Wik-
iQA training set. Note that IGCN can achieve better MAP
with limited training data, which is similar to the result in
(Kipf and Welling 2017), where GCN performs well with
low label rate. The results again suggest that our graph
preserves global Q-to-A pattern information, and GCN can
make better use of the corpus through propagating informa-
tion among nodes.

The GCN-based post-procedure incorporates global infor-
mation and brings progress over different basic models. In
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Table 6: Examples of answer selection results.
ID Question KCG DCA

1 What is the color puce?
Puce (often misspelled as “puse”, “peuse” or
“peuce”) is defined in the United States as a
brownish-purple color.

The colors in the boxes at right are two of the
various shades and varieties of puce.

2 Who set the world record
for women for high jump?

Stefka Kostadinova (Bulgaria) has held the
women’s world record since 1987, also the
longest-held record in the event.

The high jump is a track and field athletics event
in which competitors must jump over a
horizontal bar placed at measured heights...

3
How many numbers are on
a credit card?

An ISO/IEC 7812 card number is typically 16
digits in length.

Bank card numbers are allocated in accordance
with isoiec 7812.

4 What is the formula for
calcium nitrate?

Calcium nitrate, also called Norgessalpeter
(Norwegian saltpeter), is an inorganic
compound with the formula Ca(NO3)2.

Nitrocalcite is the name for a mineral which is a
hydrated calcium nitrate that forms as an
efflorescence...

5 Who are the members of the
climax blues band?

The original members were guitarist/vocalist
Peter Haycock, guitarist Derek Holt; keyboardist
Arthur Wood; bassist Richard Jones...

The Climax Blues Band (originally known as
the Climax Chicago Blues Band) were formed in
Stafford, England in 1968.

the full-batch setup, the adjacency matrix in the sparse form
has a linear relationship with non-zero elements, and the fea-
ture matrix grows linearly with the dataset size. To expand
to large datasets, graph partitioning (Abbas et al. 2018) is
usually adopted. Simple trade-off methods like adjusting the
edge threshold and using fewer training samples are also ef-
fective due to the label efficiency of the method.

Case Study Considering the variety of Q-A pairs, some
top ranked answers are demonstrated in Table 6 for further
analysis. We reimplement DCA (Bian et al. 2017), a baseline
model with the Compare-Aggregate architecture, to support
comparisons in the case study. We use bold fonts to denote
intra-pair matches and underlines to mark cross-pair ones.

We can see that DCA does not handle some cases well
because of its sensitiveness to intra-pair key words, while
KCG is generally more robust against the diversity of Q-
A pairs. KCG considers both pattern and knowledge condi-
tions. With the incorporation of global Q-to-A pattern infor-
mation, KCG works more effectively on different question
structures. Besides, knowledge information helps KCG to
capture various relations within Q-A pairs, and prevents it
from over-learning of some uncommon Q-to-A patterns.

Conclusion and Future Work

Answer selection is a basic semantic matching problem in
QA. In this paper, we propose a novel system named KCG
for AS, which considers both knowledge and pattern con-
ditions. KCG applies both intra-pair and cross-pair learning.
For intra-pair matching, it makes comparison on both textual
and knowledge information within the Q-A pair. For cross-
pair matching, it explores global information with the QA-
pair graph and GCN, thus incorporating more general Q-to-
A patterns and making better use of the corpus. Compared
with multiple baselines, QURRD achieves state-of-the-art
results on both WikiQA and TrecQA. For future work, we
will construct heterogeneous graphs with both sentences and
entities to better model cross-pair dependencies, and extend
KCG to more general semantic matching scenarios.
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