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Abstract

Language model pre-training has achieved success in many
natural language processing tasks. Existing methods for
cross-lingual pre-training adopt Translation Language Model
to predict masked words with the concatenation of the source
sentence and its target equivalent. In this work, we intro-
duce a novel cross-lingual pre-training method, called Al-
ternating Language Modeling (ALM). It code-switches sen-
tences of different languages rather than simple concatena-
tion, hoping to capture the rich cross-lingual context of words
and phrases. More specifically, we randomly substitute source
phrases with target translations to create code-switched sen-
tences. Then, we use these code-switched data to train ALM
model to learn to predict words of different languages. We
evaluate our pre-training ALM on the downstream tasks of
machine translation and cross-lingual classification. Exper-
iments show that ALM can outperform the previous pre-
training methods on three benchmarks.1

Introduction

Recently language model pre-training methods, including
ELMo (Peters et al. 2018), GPT (Radford et al. 2018),
GPT2 (Radford et al. 2019), BERT (Devlin et al. 2019),
and UniLM (Dong et al. 2019), have achieved impres-
sive results on various natural language processing tasks
such as question-answering (Min, Seo, and Hajishirzi 2017;
Yang et al. 2019a), machine reading comprehension (Salant
and Berant 2018; Yu et al. 2018) and natural language infer-
ence (Tay, Luu, and Hui 2018). More recently, XLM (Lam-
ple and Conneau 2019) has extended this approach to cross-
lingual pre-training, and proven successful in applying lan-
guage model pre-training in the cross-lingual setting.

Existing methods for supervised cross-lingual pre-
training adopt a cross-lingual language model objective,
called Translation Language Model (TLM). It makes use of
parallel data by predicting the masked words with concate-
nation of the sentence and its translation. In this way, the
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1Code can be found at https://github.com/zddfunseeker/ALM.

Figure 1: Example of Translation Language Model and Al-
ternating Language Model.

cross-lingual pre-training model can learn the relationship
between languages.

In this work, we propose a novel cross-lingual language
model, which alternately predicts words of different lan-
guages. Figure 1 shows an example of the proposed Alter-
nating Language Model (ALM). Different from XLM, the
input sequence of ALM is mixed with different languages,
so it can capture the rich cross-lingual context of words and
phrases. Moreover, it forces the language model to predict
one language conditioned on the context of the other lan-
guage. Therefore, it can minor the gap between the embed-
dings of the source language and the target languages, which
is beneficial for the cross-lingual setting.

Based on Alternating Language Model, we introduce a
new cross-lingual pre-training method. More specifically,
we take the Transformer model (Vaswani et al. 2017) as
the backbone model. Then, we construct the training ex-
amples for pre-training by replacing the phrases with their
translation of the other language. Finally, we pre-train the
Transformer model with the constructed examples using the
masked language model objective. The pre-trained model
can be used to further fine-tune the downstream cross-
lingual tasks.

To verify the effectiveness of the proposed method, we
evaluate our pre-training method on machine translation and
cross-lingual classification. Experiments show that ALM
can outperform the previous pre-training methods on three
benchmark datasets.

The contributions of this work are as follows:
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Figure 2: Overview of our ALM cross-lingual pre-training method. Given a pair of bilingual sentences, we yield a set of cross-
lingual sentences. These sentences are used to pre-train the Transformer encoder which predicts an English masked word or a
Chinese one.

• We propose a novel cross-lingual language model, which
alternately predicts words of different languages.

• We introduce a new cross-lingual pre-training method
based on the proposed cross-lingual language model,
which can be further fine-tuned on downstream tasks.

• Experiments show that ALM outperforms the previous
pre-training methods on the benchmark datasets for ma-
chine translation and cross-lingual text classification.

Cross-Lingual Pre-Training

Cross-lingual pre-training trains a model that can be fur-
ther fine-tuned to improve downstream tasks by making use
of monolingual data and bilingual data. XLM is a recently
proposed model that achieves success in cross-lingual pre-
training. It consists of two unsupervised models that relies
on monolingual data, and a supervised model that relies on
bilingual data. These three models of XLM are Causal Lan-
guage Model (CLM), Masked Language Model (MLM), and
Translation Language Model (TLM), respectively.

Unsupervised Language Modeling

CLM recurrently predicts the next word given the previous
context, which is the typical objective of language modeling.
GPT (Radford et al. 2018) is the first pre-training model to
adopt CLM, and GPT-2 (Radford et al. 2019) further proves
the success of CLM for pre-training.

CLM only makes use of the uni-directional context. Dif-
ferent from CLM, MLM uses bidirectional contextual infor-
mation. It randomly masks some tokens during training and
predicts the identity of the masked word. BERT (Devlin et
al. 2019) is the first to propose this model and use it for pre-
training. Different from the BERT, XLM (Lample and Con-
neau 2019) uses an arbitrary number of sentences (truncated
at 256 tokens) instead of pairs of sentences, and it samples
the masked tokens according to a multinomial distribution,
whose weights are proportional to the square root of their
invert frequencies.

Supervised Language Modeling

XLM also proposes an additional objective that can make
use of bilingual data called TLM. TLM concatenates paral-
lel sentences as training samples. Similar to MLM, it ran-
domly masks words of concatenated sentences, so that it can
leverage both words in source language and target language
translation by predicting the masked words. Moreover, TLM
leverages target sentences to predict source words when the
source context is insufficient to predict these words.

TLM makes use of bilingual data by concatenating sen-
tences of two languages, so it can learn the relationship be-
tween languages. In this work, we mainly focus on improv-
ing the supervised pre-training model. We also show that the
proposed model can be applied to unsupervised settings in
the following section.

Alternating Language Model

We propose Alternating Language Model (ALM) to alter-
nately predict words of different languages. In this section,
we present the details of ALM.

Code-Switched Sequence

Given a bilingual sentence pair (X,Y ) with the source
sentence X = {x1, x2, ..., xN} and the target translation
Y = {y1, y2, ..., yM}, where N and M are the lengths of
the source and target sentences, we create the code-switched
sequence U by composing the phrases of X and Y , where
U={u1, u2, .., uL} with the length L.

In details, for each phrase U[i,j], it comes from either
source phrase X[a,b] or target phrase Y[c,d] where the con-
straint is that these two phrases are the linguistic translation
counterpart in the parallel sentence (X , Y ), 1 ≤ a ≤ b ≤ N
and 1 ≤ c ≤ d ≤ M . We denote the proportion of the source
words in the alternating language sequence U as α.

Specifically, the constituent of U can be illustrated into
four categories:

• Monolingual source language: that is α = 0.

• Monolingual target language: that is α = 1.
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Figure 3: The model architecture of ALM when α = 0 and
α = 1.

• Major source language: that means most of U is derived
from X where some source phrases X[a,b] are substituted
by their target counterpart phrases Y[c,d] (α ≥ 0.5).

• Major target language: that means most of U is derived
from Y where some target phrases Y[c,d] are substituted
by their source counterpart phrases X[a,b] (α < 0.5).

Constructing Training Samples

Since there are few natural code-switched sentences, we
should construct them from bilingual sentence pairs. First,
we perform word alignment with the GIZA toolkit (Och
and Ney 2003) between the parallel sentence X and Y ,
and extract a bilingual phrase table using statistical ma-
chine translation techniques (Koehn, Och, and Marcu 2003).
Then, for each sentence pair in training corpus, we cre-
ate the major-source-language samples by substituting some
phrases in source sentence with the corresponding target
phrases with highest probabilities in phrase table. A similar
method creates major-target-language samples by substitut-
ing some phrases in target sentence with the corresponding
source phrases.

The details of the construction for a sentence pair are:
• Each phrase is limited to less than 5 words for both source

language and target language.
• The substituted words are less than 30% of the total words

in the sentence. Therefore, the source words dominate the
sentence in the major source language, while the target
words dominate the sentence in the major target language.

• Each bilingual sentence pair is used to create multiple al-
ternating language sentences by randomly choosing the
substituted phrases.

Figure 2 shows an example of constructing code-switched
sentences. Given the Chinese sentence and its translation,
multiple training samples can be derived from one sentence
pair by choosing different phrases to substitute.

Model Architecture and Pre-Training

Figure 2 also shows the overall architecture of our proposed
model. Given a parallel sentence pair, we combine two sen-
tences from different languages into a single code-switched
sequence as described above. Then we mask out a certain
percentage of words in the sequences. We feed the masked
sentences into Transformer model to learn to predict the
words being masked out.

In details, we sample randomly 15% of the tokens, replace
them by a [MASK] token 80% of the time, by a random
token 10% of the time, and keep them unchanged 10% of
the time.

Figure 3 shows two special cases of ALM. When α = 0,
the input sequence is purely from source language. It be-
comes the masked language model for source language.
When α = 1, the input sequence is purely from target lan-
guage, so it becomes the masked language model for target
language. In this way, the model becomes unsupervised be-
cause it only relies on monolingual data.

In practice, we have 10% of training samples with α = 0,
10% of samples with α = 1, and the rest with 0 < α < 1.
We manually choose a proper value of α which ensures some
phrases are replaced with their counterparts by alignment
instead of sweeping all values of α (0 ≤ α ≤ 1). In order
to ensure the value of α is in a reasonable range, we set max
length and max number for phrase substitution.

Applying to Downstream Tasks

After pre-training, we further fine-tune ALM in order to
adapt the parameters for the downstream tasks, which are
machine translation and cross-lingual classification.

Machine Translation After pre-training, we use ALM
as the encoder of machine translation, and construct a
Transformer-based decoder conditioned on ALM. We fine-
tune the parameters of the total encoder-decoder model on
parallel training dataset of machine translation.

Cross-Lingual Classification XNLI (Conneau et al.
2018) is a significant dataset which is similar to the English
MultiNLI including several languages. Taking the task of
NLI as an example, we concatenate premise and hypothe-
sis as input, and feed them into ALM. On top of ALM, we
add a linear classifier and a dropout layer after the first hid-
den state for last layer. Then, we fine-tune the parameters of
ALM on training dataset of cross-lingual classification.

Experiments

We evaluate our proposed method on machine translation
and cross-lingual text classification. In this section, we pro-
vide the details, results, and analysis of the experiments.

Datasets

Following previous work (Lample and Conneau 2019), we
use Wikipedia data by using WikiExtractor and WMT data
as monolingual data. For bilingual data, French, Spanish,
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Russian, Arabic, and Chinese data are from MultiUN (Ziem-
ski, Junczys-Dowmunt, and Pouliquen 2016). Hindi data is
from the IIT Bombay corpus (Kunchukuttan, Mehta, and
Bhattacharyya 2018). German and Greek are from the EU-
bookshop corpus. Turkish, Vietnamese and Thai are from
OpenSubtitles 2018. Urdu and Swahili data are from Tanzil.
Swahili data is from GlobalVoices. For most languages, we
use the tokenizer provided by Moses (Koehn et al. 2007).

Pre-Training Details

We use byte pair encoding (BPE) (Sennrich, Haddow, and
Birch 2016). The vocabulary contains 95K byte pair encod-
ing tokens. We pre-train our model with both 1024 embed-
ding and hidden units, 8 heads, a dropout rate of 0.1 and
learned positional embeddings. We use an Adam optimizer
with parameters of β1 = 0.9 and β2 = 0.98. We set the in-
verse sqrt learning rate schedule with a linear warmup where
the number of warmup step is 4000 and a learning rate of
0.0005.

For pre-training data, we use source language monolin-
gual data (α = 0) and target language monolingual data
(α = 1). Besides, we also split parallel data to expand mono-
lingual data. For the monolingual data, we regard source
language mono-lingual data as α = 0 and target language
mono-lingual data as α = 1, which could be classified
into a special situation of ALM. To construct monolingual
dataset, we use Wikipedia data as monolingual data by us-
ing WikiExtractor. Our pre-training samples includes mono-
lingual data and parallel data, we use original parallel data
to generate 20 times code-switched sentences than original
parallel data. More specifically, we separately obtain the al-
ternating language sentences of source language and target
language, which are 40 times than original parallel data in
total. Considering that there exist some bad cases in alter-
nating language sentences, we filter some low-quality code-
switched sentences of which length is too long or too short,
and randomly drop some sentences. At last, nearly 1.5 bil-
lion code-switched sentences are used for pre-training.

Fine-Tuning on Machine Translation

We fine-tune the pre-trained ALM on two datasets: WMT14
English-German machine translation and IWSLT14
German-English machine translation. WMT14 English-
German machine translation dataset has 4.5 million sentence
pairs for training. newsdev2014 is used as the validation
set, while the newstest2014 is the testing set. IWSLT14
German-English machine translation dataset contains 160
thousand sentence pairs. They are collected from TED talks.
We use iwslt14 devset as the validation set and the iwslt14
testset as the testing set.

We build a Transformer decoder conditioned on ALM en-
coder. We feed the source language into ALM, and generate
the target language with decoder. We reload the parameters
of word embedding and encoder parameters which are also
used to initialize the decoder for our in-house NMT code
from pre-trained model. We evaluate the performance of the
translated sentences. The evaluation metric is BLEU (Pap-
ineni et al. 2002).

Baselines We compare our methods with state-of-the-art
supervised methods and the pre-training methods, which are
described as follows:

• Transformer (Vaswani et al. 2017): We implement
Transformer model with our in-house tensorflow code,
and the experimental settings are the same as Transformer
(Vaswani et al. 2017)

• ConvS2S (Gehring et al. 2017): We report the results re-
ferring to the paper of convolutional sequence to sequence
model(ConvS2S).

• Weighted Transformer (Ahmed, Keskar, and Socher
2017): It uses self-attention branches in place of multi-
head attention. The branches replace multiple heads in at-
tention mechanism of the original Transformer network.

• Layer-wise Transformer (He et al. 2018): It explicitly
coordinates the learning of hidden representations of the
encoder and decoder, gradually from low level to high
level.

• RNMT+ (Chen et al. 2018): It combines the advantages
of both the recurrent structure and Transformer architec-
ture.

• LightConv and DynamicConv (Wu et al. 2019): Light-
Conv uses a lightweight convolution which can perform
competitively to the best reported self-attention results.
Furthermore, they introduce dynamic convolutions (Dy-
namicConv) which are simpler and more efficient than
self-attention.

• Multilingual BERT (Devlin et al. 2019): Multilingual
BERT (mBERT) extends the BERT model to different
languages. We download the pre-trained model provided
by the authors, and fine-tune on the machine translation
datasets.

• XLM (Lample and Conneau 2019): We use the released
code2 and the pre-trained data provided by XLM, and fur-
ther fine-tune the pre-trained model on the corresponding
data.

• MASS (Song et al. 2019): We conduct experiments with
the codes provided by the authors. We set the fragment
length k as 50% of the total number of masked tokens in
the sentence.

Details We fine-tune our ALM with the Adam optimizer
(Kingma and Ba 2015) with a linear warmup (Vaswani et al.
2017). We tune the learning rates based on the performance
on the validation set, and the learning rates are 5× 10−4 for
IWSLT14 German-English and 10−3 for WMT14 English-
German. We use the averaged perplexity over all languages
as a criterion for early stopping. The batch size is set to
8192 tokens for all experiments. During decoding, we set
the beam size to 8.

Results To prove the effectiveness of ALM, we perform
experiments on the English-German and German-English

2https://github.com/facebookresearch/XLM
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En → De BLEU(%)

Transformer (Vaswani et al. 2017) 28.40
ConvS2S (Gehring et al. 2017) 25.16
Weighted Transformer (Ahmed, Keskar, and Socher 2017) 28.90
Layer-wise Transformer (He et al. 2018) 29.01
RNMT+ (Chen et al. 2018) 28.50

mBERT (Devlin et al. 2019) 28.64
MASS (Song et al. 2019) 28.92
XLM (Lample and Conneau 2019) 28.88

ALM (this work) 29.22

Table 1: Results on WMT14 English-German machine
translation task.

De → En BLEU(%)

Transformer (Vaswani et al. 2017) 34.49
LightConv (Wu et al. 2019) 34.80
DynamicConv (Wu et al. 2019) 35.20
Advsoft (Wang, Gong, and Liu 2019) 35.18
Layer-wise Transformer (He et al. 2018) 35.07

mBERT (Devlin et al. 2019) 34.82
MASS (Song et al. 2019) 35.14
XLM (Lample and Conneau 2019) 35.22

ALM (this work) 35.53

Table 2: Results on IWSLT14 German-English machine
translation task.

translation tasks. Table 1 and Table 2 show that our ALM
has significant improvements over baselines without pre-
training or with pre-training methods.

In Table 1, we report the performance of ALM and the
baseline models in the WMT14 English-German machine
translation dataset. Transformer is an important baseline,
and it obtains 28.40 in BLEU score. We also compare ALM
with the convolutional baseline ConvS2S, which achieves
25.16. Weighted Transformer and Layer-wise Transformer
are two methods to improve the Transformer model, and
they get 28.90 and 29.01 in terms of BLEU score. RNMT+
combines the recurrent structure and the multi-head atten-
tion components, which yields an improvement to 28.50
BLEU score. Our ALM significantly outperforms these
baseline models. We also compare our model with three
state-of-the-art pre-training models. mBERT and MASS
are unsupervised pre-training models. They achieve 28.64
BLEU score and 28.92 BLEU score, respectively. XLM is
a mixture of unsupervised and supervised pre-training mod-
els, achieving 28.88 BLEU score. Our ALM reaches 29.22
BLEU score, yielding an improvement of +0.58, +0.30, and
+0.34 BLEU scores.

In Table 2, we report the performance of ALM and
the baseline models in IWSLT14 German-English machine
translation dataset. We first compare our ALM with the su-
pervised models without pre-training. Transformer and its
variant Layer-wise Transformer achieves 34.49 and 35.07
in terms of BLEU score. The convolution-based models,
LightConv and DynamicConv, achieve 34.80 and 35.20, re-
spectively. Advsoft gets a BLEU score of 35.18. ALM out-
performs these baselines, achieving 35.53 in BLEU score.

We also compare ALM with three pre-training baselines.
It shows that our ALM obtains the best performance and
reaches 35.53 BLEU score in this task, outperforming the
previous baseline mBERT, MASS, and XLM by +0.71 and
+0.39, and +0.31 in terms of BLEU score.

In general, our ALM could achieve significant improve-
ments over all baseline models on two translation tasks. As
our method pre-trains the encoder on a large scale cross-
lingual corpus, the word representations and encoder could
acquire sufficient cross-lingual information. For example,
the target phrase can see both its source and target context.
This cross-lingual context is helpful for target word genera-
tion and understanding the source sentence in a cross-lingual
way.

Fine-Tuning on Cross-Lingual Classification

We fine-tune the pre-trained ALM model on XNLI dataset
to evaluate the effectiveness of our model. We build a lin-
ear classifier on the top of the pre-trained ALM to project
the first hidden state of ALM output into the probabili-
ties of each class. We concatenate premise and hypothe-
sis, and feed them into ALM. We evaluate the performance
of the fine-tuned model in 15 XNLI languages. Follow-
ing previous work (Lample and Conneau 2019), we eval-
uate the model in three different settings: “TRANSLATE-
TRAIN”, “TRANSLATE-TEST”, and “CROSS-LINGUAL
TEST”. The evaluation metric is the accuracy of the pre-
dicted NLI class.

Baselines We compare our methods with three strong
baselines, including a supervised method without pre-
training, and two pre-training methods:
• Conneau: Conneau (Conneau et al. 2018) proposes a

BiLSTM model to set up a baseline for XNLI. We report
the scores directly from their paper.

• Multilingual BERT (Devlin et al. 2019): Multilingual
BERT (mBERT) extends the BERT model to different
languages, which is also a strong baseline.

• XLM (Lample and Conneau 2019): XLM is the state-of-
the-art model for cross-lingual pre-training. We report the
results of XLM directly from their paper.

Details We fine-tune our ALM with the Adam optimizer
(Kingma and Ba 2015) with β1 = 0.9 and β2 = 0.997.
We tune the learning rates based on the performance on the
validation set, and the learning rates are set to 5× 10−6. We
set the batch size to 24, and we limit the sentences up to
256 tokens. We set a rate of dropout 0.15 of last layer. We
evaluate our model for every 1000 sentences.

Results Table 3 shows the experimental results of our
proposed ALM and the baseline models. Following the
work of XNLI (Conneau et al. 2018), we evaluate these
models in three different settings: “TRANSLATE-TRAIN”,
“TRANSLATE-TEST”, and “CROSS-LINGUAL TEST”.
In the setting “TRANSLATE-TRAIN”, we translate the
training set of the English MultiNLI dataset into each XNLI
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en fr es de el bg ru tr ar vi th zh hi sw ur avg.

Machine translation baselines (TRANSLATE-TRAIN)

Conneau (Conneau et al. 2018) 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6 65.4
mBERT (Devlin et al. 2019) 81.9 - 77.8 75.9 - - - - 70.7 - - 76.6 - - 61.6 -
XLM (Lample and Conneau 2019) 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7
ALM (this work) 85.2 81.1 82.0 82.3 78.3 79.8 78.4 74.9 76.7 76.8 75.6 78.7 72.5 71.5 63.4 77.2

Machine translation baselines (TRANSLATE-TEST)

Conneau (Conneau et al. 2018) 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3 67.2
mBERT (Devlin et al. 2019) 81.4 - 74.9 74.4 - - - - 70.4 - - 70.1 - - 62.1 -
XLM (Lample and Conneau 2019) 85.0 79.0 79.5 78.1 77.8 77.6 75.5 73.7 73.7 70.8 70.4 73.6 69.0 64.7 65.1 74.2
ALM (this work) 85.2 79.1 80.0 78.4 78.0 77.8 77.1 73.9 74.2 71.2 70.5 73.8 69.2 64.8 65.3 74.6

Evaluation of cross-lingual sentence encoders (CROSS-LINGUAL TEST)

Conneau (Conneau et al. 2018) 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT (Devlin et al. 2019) 81.4 - 74.3 70.5 - - - - 62.1 - - 63.8 - - 58.3 -
XLM (Lample and Conneau 2019) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
ALM (this work) 85.2 79.3 79.2 78.0 76.7 78.1 76.5 73.0 73.2 76.4 73.5 78.6 69.8 69.0 66.8 75.6

Table 3: Cross-lingual natural language inference (XNLI) test accuracy for the 15 languages.

languages (except English), and fine-tune the models on the
translated training set. In the setting “TRANSLATE-TEST”,
we translate the testing set of each XNLI language to En-
glish, and evaluate the performance of the models in each
translated testing set. In the setting “CROSS-LINGUAL
TEST”, we fine-tune the models on the English XNLI train-
ing set, and evaluate the performance directly in each testing
set. We compare our model with Conneau’s baseline model,
mBERT, and XLM in these three settings.

In the “CROSS-LINGUAL TEST” setting, our ALM sig-
nificantly outperforms the baseline models. More precisely,
ALM obtains 75.6% accuracy on average, while Conneau’s
baseline achieves 65.6% accuracy, and XLM gets 75.1%. On
the Russian and Turkish languages, we outperform the base-
lines by 1.2% and 0.5% respectively. ALM gets 85.2% accu-
racy in English testing set, outperforming Conneau’s base-
line model by 11.5%, BERT by 3.8%, and XLM by 0.2% in
terms of accuracy.

In the “TRANSLATE-TRAIN” setting, our ALM reaches
77.2% accuracy in average across different languages, which
indicates that ALM can be fine-tuned for any languages to
achieve good performance. On the German and French lan-
guages, we outperform the baselines by 2.0% and 1.9% re-
spectively. Besides, our ALM achieves higher accuracy than
XLM in 15 languages.

In the “TRANSLATE-TEST” setting, our ALM obtains
74.6% average accuracy, while Conneau’s baseline achieves
67.2% accuracy, and XLM gets 74.2%. In general, our ALM
can outperform these three baselines across different exper-
iment settings.

Discussions and Analysis

We further analyze the advantages of our pre-trained model.
We visualize the distribution of our model’s word embed-
ding, and compare it with that of Transformer baseline
model. We evaluate the performance of our ALM given dif-
ferent parallel data, in order to analyze the benefits of pre-
training in the low-resource setting.

Word Embedding Distribution Figure 4 shows the
word embedding distributions of Transformer (without pre-
training) and ALM (with pre-training). We project the
learned word embeddings from high dimension to 2 dimen-
sion with the PCA method. We plot both the Chinese word
embeddings and the English word embeddings in the same
space. The hollow cycles denote Chinese words, while the
solid cycles denote English words.

As for the Transformer baseline, the distribution of the
Chinese word embeddings is very different from that of the
English word embeddings. We draw a dashed line to illus-
trate the separation of the Chinese word embeddings and the
English word embeddings.

As for the pre-trained ALM, the distribution of Chinese
word embeddings is similar to that of the English word em-
beddings. The reason is that we mix Chinese words and
English words during training, so the embeddings of both
source language and target language can distribute in the
same space.

According to Figure 4, it also indicates that the source
words and its translated target words have closer distance
than that of the Transformer baseline model. There are some
cases which are very close to each other in ALM’s embed-
ding space but far from each other in the Transformer’s em-
bedding space.

It concludes that ALM pre-training method can minor the
gap between the embeddings of source language and target
language, which is beneficial for the cross-lingual setting.

Low Resource Setting We would like to further analyze
the performance of our pre-trained ALM given different
sizes of parallel data. Therefore, we randomly shuffle the
full parallel training set in the task of IWSLT14 German-
to-English translation dataset. Then, we extract the random
K% samples as the fine-tuned parallel data. We set K =
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
100%}, and compare our ALM with Transformer baseline
model. We randomly extract specific data from the whole
sentence pairs. Figure 5 shows the BLEU scores of our mod-
els and the baseline. When the parallel data size is small,
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Figure 4: Visualization of word embedding in Transformer
and ALM.

ALM can outperform Transformer model by a large margin.
With the increase of parallel data, the margin gets narrow
because of the upper bound of the model capacity. It con-
cludes that ALM pre-training can benefit the performance
of Transformer model especially when the training samples
are not sufficient.

Related Work

Pre-training and transfer learning are widely used in many
tasks of natural language processing. ELMo (Peters et al.
2018) is proposed as a kind of deep contextualized word
representation that is pre-trained in the large scale corpus
and can be transferred to other tasks. Universal Language
Model Fine-tuning (ULMFiT) (Howard and Ruder 2018)
is an effective transfer learning method that can be ap-
plied to any task in NLP, and includes techniques that are
key for fine-tuning a language model. BERT (Devlin et al.
2019) achieves state-of-the-art performance among various
pre-training approaches to monolingual NLP tasks. Further-
more, XLM and MASS (Song et al. 2019) obtain more
great success in language understanding by pre-training. Un-
like BERT that pre-trains only the encoder or the decoder,
MASS is carefully designed to pre-train the encoder and de-
coder jointly by predicting the fragment of the sentence that
is masked on the encoder side and predict the masked to-
kens in the decoder side. By masking the input tokens of
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Figure 5: Results of ALM vs Transformer fine-tuning on
low-resource data.

the decoder that are unmasked in the source side, MASS
can force the decoder to rely more on the source repre-
sentation other than the previous tokens in the target side
for the next token prediction by pre-training with monolin-
gual data. More recently, XLNet (Yang et al. 2019b) pro-
poses a generalized auto-aggressive pre-training method that
enables learning bidirectional contexts by maximizing the
expected likelihood over all permutations of the factoriza-
tion order. RoBERTa (Liu et al. 2019) presents a replication
study of BERT pre-training that carefully measures the im-
pact of many key hyperparameters and training data size.

Conclusions

In this work, we propose a novel cross-lingual pre-training
method, called Alternating Language Modeling (ALM).
First, we randomly substitute the source phrases with the tar-
get equivalents to create code-switched sentences. Then, we
use these code-switched data to train ALM model to learn to
predict words of different languages. We evaluate our pre-
training ALM on the downstreams tasks of machine transla-
tion and cross-lingual classification. Experiments show that
ALM can outperform the previous pre-training methods on
three benchmark datasets. In the future work, we will ex-
plore the effect of code-switched sentences being used for
MASS-like pre-training method.
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