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Abstract

In this paper, we propose Self Inference Neural Network
(SINN), a simple yet efficient sentence encoder which lever-
ages knowledge from recurrent and convolutional neural net-
works. SINN gathers semantic evidence in an interaction
space which is subsequently fused by a shared vector gate to
determine the most relevant mixture of contextual informa-
tion. We evaluate the proposed method on four benchmarks
among three NLP tasks. Experimental results demonstrate
that our model sets a new state-of-the-art on MultiNLI, Sc-
itail and is competitive on the remaining two datasets over
all sentence encoding methods. The encoding and inference
process in our model is highly interpretable. Through visual-
izations of the fusion component, we open the black box of
our network and explore the applicability of the base encod-
ing methods case by case.

Introduction
Deep neural networks have achieved remarkable success in
sentence representation learning. Based on sequential mod-
els like recurrent neural networks (RNN), convolutional neu-
ral networks (CNN) or self-attention, we can build a sen-
tence encoder that transforms a sentence into a meaningful
context vector for use in various downstream tasks.

Recently, the prevalent sentence encoders are usually
based on a single type of encoding method: either RNN,
CNN or self-attention. However, we argue that in order to
obtain general contextual representations, a sentence en-
coder should simultaneously use multiple encoding meth-
ods. Considering the nature of language, the meaning of a
word can depend on what has been stated as well as the
company it keeps. Similarly, given a variety of encoding hy-
potheses, a sentence can be interpreted with multiple seman-
tic readings each of which is not contradictory but comple-
mentary to the others. Therefore, instead of using a single
encoding method arbitrarily, a better strategy would be to
integrate semantic evidence from different perspectives and
control the information flow according to context dynami-
cally.
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Figure 1: The reading behavior of our model. The RNN en-
coder catches the topic words alone and cooperates with the
CNN encoder for the detailed description.

To this end, we introduce SINN, a novel neural architec-
ture which leverages the information from various encod-
ing methods through self-inference. Our model is composed
of an RNN and CNN as two base encoders which generate
contextual representations individually. Inspired by the com-
mon strategy for natural language inference (NLI), we pro-
pose a self-inference component based on heuristic interac-
tion to learn the view of each base encoder and furthermore
to create more generalized sentence representations by strik-
ing a balance between them. Figure 1 illustrates the reading
behavior of our model. The RNN encoder would catch the
topic words alone while it tends to cooperate with the CNN
encoder when the semantic readings become more compli-
cated.

To show the generalization ability, We evaluate the pro-
posed method on four benchmarks among three differ-
ent NLP tasks: natural language inference, text classifica-
tion and sentiment classification. The experimental results
demonstrate that our model sets a new state-of-the-art on
two benchmarks while showing strong performance on the
others, which indicates that through self-inference, the shal-
low base encoders can still outperform many deep and com-
plicated architectures.

In addition, the process of self-inference is highly inter-
pretable. By visualizing the importance weight of each con-
textual representation, we found that in our model, the base
encoders adopt a collaborative strategy, each of which cap-
tures different and complementary semantic features. We
conduct extensive analysis on the fusion gate to explain the
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reading behavior of our model as well as the applicability of
our base encoders for various tasks.

Background
Sentence Encoder
The main purpose of a sentence encoder is to represent
a variable length sentence into a fixed-size context vector
which contains the semantic information of the original sen-
tence. To achieve this goal, a sentence encoder usually con-
sists of two sub-modules: an encoding method which cap-
tures the dependencies between words to build the contex-
tual representations and a pooling method which summa-
rizes the encoded sequences into a single vector. In this sec-
tion, we will introduce the encoding methods which can be
divided into three general categories: RNNs, CNNs and self-
attention, depending on how to aggregate the dependencies
between words.

Because of their superior ability to capture long-term de-
pendencies, encoding methods based on RNNs are widely
used in various NLP tasks. To build the contexts, RNNs
process a sentence word by word and aggregate the current
word with the hidden state which stores the semantic infor-
mation of previous words. There are several RNN variants
such as GRU (Chung et al. 2014) which improves sequence
modeling in different ways, but in general they all have the
same reading behavior as the vanilla RNN. Currently, one
of the most popular embeddings is based on the RNN (Pe-
ters et al. 2018). They used a three layer BiLSTM as a lan-
guage model to learn deep contextualized word representa-
tions. According to their observations, each recurrent layer
in the language model encodes different types of linguistic
knowledge, which indicates that RNNs are efficient to un-
derstand a language system.

Unlike RNNs which capture sequential dependencies,
CNNs model sentence representations with local depen-
dencies. CNNs have proven effective to learn meaning-
ful regional representations such as phrases by aggregating
word embeddings with convolutional filters (Kalchbrenner,
Grefenstette, and Blunsom 2014). Based on this observation,
Kim (2014) proposed a simple-yet-efficient CNN architec-
ture which concatenates the outputs of filters with various
sizes to build feature-rich n-gram representations. From an-
other point of view, instead of concatenating features which
make a network wide, Johnson and Zhang (2017) proposed
deep pyramid convolutional neural networks to capture both
local and global dependencies, which achieves the state-
of-the-art performance on several text classification bench-
marks.

The attention mechanism was originally used in neural
machine translation to gather relevant information accord-
ing to context. Vaswani et al. (2017) connected the dot be-
tween attention and sentence representation learning. They
described self-attention as mapping a query and a set of key-
value pairs to an output where the query, keys and values
are in the same sequence. The output is a weighted sum of
values where the weights are determined by a scoring func-
tion which models the relations between query and keys.
Self-attention is highly efficient since it does not involve

Figure 2: The high-level overview of our model.

any recurrence process. In recent years, many researchers
tried to adapt self-inference to different tasks. Devlin et al.
(2018) proposed a deep self-attention based architecture and
it reached the state-of-the-art for many tasks, which shows
that although self-attention is a new encoding method, it still
can compete with traditional methods like CNNs and RNNs.

Hybrid System
In addition to making a single encoding method deeper and
more complicated, there are many studies which improve
sentence modeling by mixing multiple encoding methods.
As we discussed in our motivations, the encoders based on
different hypotheses would tend to focus on different aspects
of semantic information which can be further combined to
from the general and comprehensive representation. Lai et
al. (2015) analyzed the pros and cons of RNNs and CNNs
and proposed the first hybrid system where a CNN is stacked
on the RNNs to aggregate the left and right contexts of
each word. Following the similar strategy, Zhou et al. (2016)
stacked the compositions of 2D CNNs and 2D max-pooling
on top of BiLSTMs to model the context on both the time di-
mension and the feature dimension, which achieved state-of-
the-art performance on several benchmarks. To handle the
hierarchical structure in natural language, stacking RNNs
on top of CNNs is also a popular method (Wang, Jiang,
and Luo 2016; Zhou et al. 2015). They applied CNNs on
the word embeddings to extract meaningful n-gram features
which are subsequently forwarded by the RNNs to capture
the high-level dependency between the regional representa-
tions.

Although many studies have explored the implementation
of hybrid systems, most of the prior works were based pri-
marily on stacking various encoders, which raises two prob-
lems. First, there is no universal rule to determine the order
of each encoder. We therefore have to search the best stack-
ing strategy case by case. Second, the input of the encoders
on the upper layer is the output of the encoders on the lower
layer, which leads to the information bias and hence the per-
formance of upper encoder would be limited by the lower
encoder. It is also more difficult to fine-tune the model in
this case because we cannot easily tell which layer in the
architecture would be the bottleneck.

We therefore propose a collaborative strategy where en-
coders would capture observations on its own hypothesis
and model the sentences independently. In other words, the
encoders are totally unrelated to each other, which solves the
problem in the current hybrid systems and makes our archi-
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tecture quite flexible and parallelizable.

Our Method
The overview of our model is shown in Figure 2. Our model
is composed of four parts: the word encoder, the context
encoders, the self-inference layer and representation fusion
layer. We will describe the architecture layer-by-layer in the
following sections.

Word Encoding
To construct distributed word representations, we concate-
nate the word embedding and character embedding for each
word. The word embedding was pretrained in an unsuper-
vised manner on a large corpus to learn the relations among
words in a low dimensional vector space. The character em-
bedding is constructed by a convolutional neural network
with max-pooling (Kim et al. 2015) which captures the sub-
word structures and mitigates the impacts of out-of-vocab
words. For each d-dimensional concatenated embedding wt,
where t indicates the time step, we pass it through a position-
wise highway network (Srivastava, Greff, and Schmidhuber
2015) to obtain our feature-rich word representation xt:

xt = tt · ht + (1− tt) · wt (1)
ht = φ(Whwt + bh) (2)
tt = σ(Wtwt + bt) (3)

where Wh,t ∈ R
d×d and φ, σ are non-linear activation

functions. The highway network plays the role of word en-
coder which aims at learning task-specific features by aggre-
gating the information on word level and character level.

Context Encoding
Given an encoded sequence (x1, x2, ..., xn), to incorporate
context information from various aspects, we model the se-
quence using both an RNN and CNN which capture the se-
quential and regional dependencies, respectively.

The RNN encoder is a single layer bidirectional GRU.
The context representation at time step t is a concatenation
of the output from forward and backward GRUs:

−→rt =
−−−→
GRUt(x1, ..., xn) (4)

←−rt =
←−−−
GRUt(x1, ..., xn) (5)

rt = [−→rt ,←−rt ] (6)

where [·, ·] is the concatenation operator.
The CNN encoder follows the idea of an n-gram but

makes it more flexible. It uses several convolution units with
different kernel sizes to extract local information in parallel.
We then concatenate the output of each convolution unit to
construct the context representation:

ct = [Convk1(xt), ...,Convkn(xt)] (7)

where Convkt is a 1-D convolution operation with a kernel
size kt. We use appropriate zero padding to make the con-
catenation operation feasible.

The RNN and CNN are regarded as the base encoders
whose outputs are in the same k-dimensional space for the
purpose of encoding context information in an equal manner.

Self-Inference
With two base encoders, a word can be interpreted as having
two non-contradictory contexts. The aim of self-inference is
to learn a single but well-generalized contextual represen-
tation by inferring the relations between the outputs of the
base encoders.

Before inference, we first gather the semantic evidence.
Besides contexts themselves, the dependency between con-
texts is also a key to understanding how a base encoder
works. Specifically, we want to know how cm, the context at
the m time step, affects cn for any possible (m,n) pair. To
learn this pairwise relation, we apply self-attention (Vaswani
et al. 2017) over the encoded contexts. The attention energy
ak is determined by the additive method which is described
as:

ak = tanh(Wqhq +Wkhk + bqk) (8)

where hq is the query and hk is the key. The energies are
normalized by softmax to represent the result as a probabil-
ity weighted average of values. We concatenate the contexts
with the results of self-attention to augment the evidence:

ert = [rt, attentiont(r1, ..., rn)] (9)
ect = [ct, attentiont(c1, ..., cn)] (10)

where ert,ct ∈ R
2k, is the evidence at t time step to corre-

sponding base encoders.
Inspired by the strategy in natural language inference,

we use an interaction layer which describes the relations
between evidence using the dense features, the distance
features and the similarity features. The interaction vector
would be further inferred by a feed-forward network:

it = [ert, ect, |ert − ect|, ert � ect] (11)
gt = φ(Wiit + bi) (12)

where Wi ∈ R
k×8k and � is the element-wise multipli-

cation. With self-inference, gt is the generalized contextual
representation which captures semantic information based
on not only the view but also the interaction of recurrent and
convolutional encoders.

Representation Fusion
Considering the effectiveness of self-inference relies heavily
on the performance of the base encoders, the contextual rep-
resentations of our model are the weighted average of gen-
eralized representations and outputs from the base encoders.

The gate mechanism retains the connections between the
output layers and base encoders, so part of gradients can be
propagated directly back without being affected by the self
inference component, which is important because we expect
the base encoders to retain their original characteristics and
capture word dependencies mainly based on their own en-
coding hypotheses. In particular, the gate dynamically gen-
erates the most relevant contextual mixture, depending on
the importance of each representation at the same time step.
Specifically, we concatenate gt, rt, ct as an observation vec-
tor based on which we determine the importance using non-
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linear transformations:

imprt = φ(Wgr[rt, ct, gt] + bgr) (13)
impct = φ(Wgc[rt, ct, gt] + bgc) (14)
impgt = φ(Wgg[rt, ct, gt] + bgg) (15)

where the importance imprt,ct,gt ∈ R
k and Wgr,gc,gg ∈

R
k×3k. To make the importance of each dimension compa-

rable, we permute the importance as a matrix whose rows
are subsequently normalized by the softmax function:

W = softmax([imprt; impct; impgt]) (16)

where W ∈ R
k×3 and [·; ·] is the operator for column

vectors concatenation. Each column in W is a normalized
weight vector. We then multiply the representations with
weights to obtain the optimal fusion:

ft = W1 � rt +W2 � ct +W3 � gt (17)

Sentence Representation
We summarize the fused sequences (f1, ..., fn) with max
and average pooling:

f = [max(f1, ..., fn), avg(f1, ..., fn)] (18)

where f is a 2d-dimensional vector which is the generalized
sentence representation for subsequent downstream tasks.

Experiments
Dataset
We evaluate our model on four widely-studied benchmark
datasets among three NLP tasks: natural language inference,
text classification and sentiment classification.

Natural Language Inference (NLI) is a fundamental task
in natural language understanding which aims to determine
entailment relations between premise and hypothesis. We
compare our approach against the state-of-the-art sentence
encoders on two competitive dataset: MultiNLI (Williams,
Nangia, and Bowman 2017), and Scitail (Khot, Sabharwal,
and Clark 2018). To show the capacity of our method, we
implement SINN as a Siamese encoder which would not
propagate any information across the premise and hypoth-
esis pairs.

For text classification, we use AG News (Zhang, Zhao,
and LeCun 2015), a balanced dataset which consists of 120K
web news articles pertaining to the 4 classes. Since there is
no official validation set for this dataset, we split 5% training
data for early-stopping and hyper-parameter searching.

For sentiment analysis, we use SST (Socher et al. 2013)
to evaluate our model. We removed the neutral reviews and
represent the sentiment scores with binary labels. Our model
is trained with the phrases in the parse trees and tested on the
whole sentence.

Experimental Settings
We initialize word embeddings using the pretrained FastText
common-crawl vectors (Mikolov et al. 2018) and freeze the
weights during training. The embedding of out of out-of-
vocabulary words are initialized by a Gaussian distribution

whose mean and standard deviation were calculated from
the word vectors. The character embedding is composed of
(50, 55, 60, 65, 70) filters with kernel sizes (2, 3, 4, 5, 6) fol-
lowed by max pooling. The pooled outputs are then aggre-
gated by a single-layer highway network.

For all tasks, we choose GELU (Hendrycks and Gimpel
2016) as the activation function. The CNN base encoder has
k/4 filters with sizes (2, 3, 4, 5), respectively. The classifier
is a neural network of two-hidden layers followed by batch
normalization and dropout layers. The objective function is
cross-entropy loss which is optimized by Adam(Kingma and
Ba 2014) with cyclic learning rate(Smith 2015). We applied
label smoothing (Szegedy et al. 2015) to penalize confident
predictions for NLI datasets and regularize the models with
the L2 penalty. We search for the optimal hyper-parameters
for each task by grid search.

Results

For the two NLI datasets, we compare SINN against the
state-of-the-art sentence encoding based methods. The ex-
perimental results of MultiNLI are reported in Table 1. On
the mismatched test set, SINN significantly outperforms the
current state-of-the-art method by 0.8% with the least num-
ber of parameters. On the matched test set, our model is
0.2% lower than the best model. However, we do not train
with external data and our number of parameters is one tenth
of theirs, which keeps our performance stable across differ-
ent evaluation sets.

The results of Scitail are reported in Table 2 where C
refers to whether information would be passed across sen-
tence pairs and E refers to the use of external datasets or pre-
trained models. We achieve a new best accuracy in Scitail.
SINN can outperform HBMP (Talman, Yli-Jyrä, and Tiede-
mann 2018) which stacked three BiLSTM layers by 0.3%
using a single context encoding layer and achieves around
2% improvement compared to the models that propagates
information across the premise and the hypothesis, which
shows that SINN can efficiently represent the semantic in-
formation of the original sequence with a single vector.

The results of text classification are reported in Table 3
where SINN is compared with models equipped with a sin-
gle encoding method. For the RNN based models, SINN
is obviously better than BiLSTM and Tree-LSTM. For the
CNN based models, SINN is compared with two very deep
architectures. The result demonstrates that the shallow 240D
SINN can outperform VDCNN (Conneau et al. 2016) that
stacks 29 layers and DPCNN (Johnson and Zhang 2017) that
stacks 15 layers by 2.5% and 0.7%, respectively.

For sentiment analysis, We compare SINN with four base-
line encoding methods as well as our base encoders on SST-
2. As shown in Table 4, hybrid encoding is more efficient
than a single type of encoding. After applying self-attention,
we can observe improvements for both LSTM and CNN.
Despite the weak performance of the base CNN encoder,
with our inference process, SINN still can outperform all
baselines and improve the base RNN and CNN by 0.7% and
1.8%, respectively.
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Model SNLI Mix ‖θ‖ Test Accuracy (%)
Matched Mismatched

Deep Gated Attn. BiLSTM encoders (Chen et al. 2017) X 11.6m 73.5 73.6
HBMP (Talman, Yli-Jyrä, and Tiedemann 2018) X 22m 73.7 73.0
BiLSTM with generalized pooling (Chen, Ling, and Zhu 2018) X 65m 73.8 74.0
Distance-based Self-Attention Network (Im and Cho 2017) X 4.7m 74.1 72.9
Shortcut-Stacked BiLSTM encoders (Nie and Bansal 2017) O 140.2m 74.6 73.6
Our Self-Inference Neural Network (600D) X 5.6m 74.2 74.4
Our Self-Inference Neural Network (1200D) X 13.2m 74.4 74.8

Table 1: Experimental results of MultiNLI. ‖θ‖ is the number of model parameters excluding word embeddings. *D denotes
the dimension of sentence embeddings.

Model C E Test acc.
DeIsTE (Yin, Roth, and Schütze 2018) O X 82.1
CAFE (Tay, Tuan, and Hui 2018) O X 83.3
MIMN (Liu et al. 2019) O X 84.0
ConSeqNet (Wang et al. 2019) O O 85.2
HBMP X X 86.0
Our SINN (1200D) X X 86.3

Table 2: Experimental results of Scitail where C represents
whether the model has cross-sentence attention and E repre-
sents whether the model introduces external data.

Model Test acc.
BiLSTM (Cho et al. 2014) 88.2
Tree-LSTM (Tai, Socher, and Manning 2015) 90.1
VDCNN (Conneau et al. 2016) 91.3
Capsule-B (Zhao et al. 2018) 92.6
DPCNN (Johnson and Zhang 2017) 93.1
Our SINN (240D) 93.8

Table 3: Experimental results of AG News.

Model Test acc.
BiLSTM (Cho et al. 2014) 87.5
CNN (Kim 2014) 87.2
BiLSTM + self-attn. (Yoon, Lee, and Lee 2018) 88.2
CNN + self-attn. (Yoon, Lee, and Lee 2018) 88.3
Our Base CNN (600D) 86.8
Our Base RNN (600D) 87.9
Our SINN (600D) 88.6

Table 4: Experimental results of SST binary classification.

Method Matched Mismatched AG News
BaseRNN 73.8 73.9 92.9
BaseCNN 72.3 72.5 93.0
Sum. 73.3 73.4 93.5
Concat. 73.7 73.4 93.8
WAVG. 73.8 74.0 93.5
SINN 74.2 74.4 93.8

Table 5: Comparisons of fusion methods.

Analysis
Fusion Method
In order to show improvement from the interaction and
vector gates, we compare the performance of our fusion

Dataset Gap Sum. Concat. WAVG. SINN
M 1.5% -0.5% -0.1% -0.0% +0.4%
MM 1.4% -0.5% -0.5% +0.1% +0.4%
AG 0.1% +0.5% +0.8% +0.5% +0.8%
Mean 1.0% -0.2% +0.1% +0.2% +0.5%

Table 6: The relations between the improvement and the gap.
The symbols M, MM, AG are the abbreviations for Matched,
MisMatched, AG-News, respectively.

component with three baselines: concatenate, average, and
weighted average of the outputs of base encoders. The re-
sults are reported in Table 5. For MultiNLI, most baselines
do not improve the BaseRNN but for AG News all baselines
outperform both base encoders significantly. This inconsis-
tency is due to the difference between the performance of
base encoders. The BaseRNN and BaseCNN have similar
performance on AG News while there is a huge gap between
them on MultiNLI.

To give a clear picture, we visualize the relations between
the performance gap and the improvements in Table 6. Since
baselines have no relation between base encoders, the infor-
mation flow can not be gated based on the interaction. There-
fore, their performance is dragged down by the BaseCNN.
Unlike the baselines, SINN can dynamically choose the op-
timal representation fusion with self-inference, which is why
it can always achieve the best accuracy even though a base
encoder has undesirable performance.

To further explore the noise immunity of each baseline
on the difficult tasks, we replace BaseCNN with BaseWord,
an encoder which only uses a non-linear transform to ob-
tain the context of a word, namely without any sequential
dependency. The results are shown in Table 7. SINN still
can improve the base encoders even though there is a huge
gap since it can dynamically extract the relevant features
and determine the optimal representation fusion with self-
inference. It is important to note that for a general-purpose
encoding architecture, this property is quite critical because
we would not know if there is a huge difference in the per-
formance of the base encoders in an unknown downstream
task. Therefore, what we need is a solution that can improve
the base encoders steadily and SINN is, however, the other
baselines are not.
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Dataset Gap Sum. Concat. WAVG. SINN
M 8.1% -2.2% -2.0% -1.3% +0.4%
MM 8.0% -2.4% -2.4% -1.5% -0.1%

Table 7: The comparison of improvement and the gap be-
tween BaseRNN and BaseWord.

Test Accuracy (%) / Difference (%)
Matched Mismatched SST-2

SINN 74.2 74.4 88.6
SINN - attn. 74.1 / -0.1 73.8 / -0.6 88.2 / -0.4
SINN - mul. 74.2 / -0.0 74.2 / -0.2 88.1 / -0.5
SINN - sub. 74.1 / -0.1 74.2 / -0.2 87.9 / -0.7
SINN - cat. 74.0 / -0.2 73.8 / -0.4 87.7 / -0.9
SINN - gate 73.0 / -1.2 74.1 / -0.3 88.0 / -0.6

Table 8: Experimental results of ablation study on the self-
attention, interaction and fusion gate.

Ablation Study
To ensure the effectiveness of each component in self-
inference, we perform a series of ablation analyses in Table
8. The results demonstrate that all components are needed
and they make contributions on different parts. In the first
experiment, after removing the self-attention module, the ac-
curacy degrades to 74.1 on the matched set and 73.8 on the
mismatch set, which indicates the dependency of contexts
is also an important piece of evidence to learn how an en-
coder works. As observed in many studies, we can see that
self-attention is an efficient method to aggregate the encoded
contexts.

The second part is about the interaction layer. The con-
catenation is the most critical interaction which improves
the matched set and mismatched set by 0.2% and 0.6%, re-
spectively. The help of multiplication is marginal and it only
improves the mismatched by set 0.2%. It is worth mention-
ing that our ablation study reaches the same conclusion as
other NLI architectures. It may be a clue that self-inference
is actually a special case of language inference and can be
improved with certain well-established NLI solutions such
as decomposable attention.

The third experiment is to remove the fusion gate and use
the generalized representations directly, which results in a
drop in both matched and mismatched accuracy. Especially
in the matched set, the accuracy degrades to 73.0. As we
pointed out in the motivation, the fusion gate that controls
the information flow and generates the most relevant mixture
plays a pivotal role in our method. In addition, after remov-
ing the fusion gate, there is no direct connection between
the base encoders and the output layer, which makes it dif-
ficult for the base encoders to capture semantic dependency
without being affected by the self-inference component.

Error analysis
To understand how self-inference improves our model, we
split the test set in SST and the mismatched dev set in
MultiNLI based on the following rules: (i) both base RNN

Dataset size M MM SST AG
(i) Both are correct 67% 67% 82% 92%
(ii) Someone is correct 12% 12% 10% 5%
(ii) None is correct 21% 21% 8% 3%

Table 9: The proportion of subset to the original dataset.

SINN Accuracy. M MM SST AG
(i) Both are correct 96% 96% 99% 99%
(ii) Someone is correct 59% 58% 66% 64%
(ii) None is correct 13% 16% 10% 18%

Table 10: The performance report of SINN on each subset.

and CNN make the correct prediction. (ii) either base RNN
or CNN make the correct prediction. (iii) neither base RNN
nor CNN make the correct prediction. The sizes of each sub-
set are presented in Table 9 and The experimental results are
reported in Table 10.

When both RNN and CNN make the correct prediction,
our model usually follows their agreement, especially in
SST and AG-News where the error rate is only 1%. For
the case that either base RNN or CNN is correct, the per-
formance of SINN is also better than the random baseline,
which shows that SINN has the ability to select the relevant
context. To our surprise, SINN is able to solve 16% and 18%
examples where both base encoders fail for Mismatched and
AG-News, respectively. The result indicates that there exist
certain linguistic features that cannot be captured by a single
encoding method while these features can be simply created
by aggregating the contextual representations between mul-
tiple encoders.

We visualize the confusion matrix of three methods on
the Mismatched development set in Figure 3. The improve-
ment of SINN mainly comes from the contradiction class
and entailment class. For the base encoders, their tenden-
cies to make predictions is quite similar. They both tend to
mis-classify a contradiction or entailment example as neu-
tral. And even though the overall performance of CNN is
significant lower than RNN by 2.4%, it still can keep pace
with RNN on detecting neutral examples, which is interest-
ing and may indicate that for determining if a sentence pair
is related or not, CNN might also be a considerable solution.

How to Infer
To gain a better insight into the scenarios where each en-
coder excels, we explore the weight distribution of impor-
tance in the fusion component. The results are shown in Ta-
ble 11. On MultiNLI which require complicated language
understanding, their importance is mainly based on the gen-
eralized representations. Because the generalized represen-
tations are derived from two base contexts, it has more se-
mantic evidence for word sense disambiguation. As for why
the importance of Scitail differs, we think it is because Sc-
itail does not contain the contradiction category which sim-
plifies the inference process.

For text classification, the CNN base encoder dominates
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Figure 3: Confusion matrix of base RNN, CNN and SINN
on MultiNLI Mismatched development set.

Dataset Convol. Recurrent. General.
MultiNLI 0.24 0.24 0.51
Scitail 0.43 0.36 0.19
AG News 0.38 0.29 0.33
SST-2 0.34 0.34 0.32

Table 11: Fusion importance of each representation on all
datasets.

other representations. It is because the labels in classification
tasks are often based on whether a word or phrase appears,
compared to long-term dependencies. Therefore regional se-
mantic information, which CNN is good at, is more suitable
for solving such problems.

For sentiment classification, there is no representation
which stands out, which caught our attention. We therefore
explore the relations between importance and contexts by
sampling the top 10 important words from SST for each rep-
resentation. We remove the low-frequency (<50) words to
reduce the noise. The results are reported in Table 12. For
the base CNN, all important words are verbs, while most
words are adjectives for the base RNN and generalized rep-
resentation. The difference may be caused by writing habits.
For a verb, we can usually find the subject and object around
it, but for an adjective, the subject can be in other sentence to
express our opinion of an event, which needs to be captured
by long-term dependency. In SST, the adjectives are more
critical than verbs, which explains why the words that need
to be further inferred are adjectives. Because the base RNN
focuses on the same pattern as inferred unit, we can reweight
the importance from (0.34, 0.34, 0.32) to (0.34, 0.66) where
the former is for capturing verbs and the latter is for captur-
ing adjectives.

Conclusion
We introduced SINN, a lightweight and effective hybrid sys-
tem for sentence encoding which leverages the information
of the base CNN and base RNN with self-inference. Our
method achieves the state-of-the-art performance on four
benchmarks among three NLP tasks. To know where the im-
provements come from, we conduct extensive ablation stud-
ies and error analysis. We also explore the importance dis-
tribution and the most activated words in the fusion gate to
open the black box of our encoding method.

Representation Top 10 important words
Convol. walked, wondering, ask, trying,

went, pulling did, try, searching,
caught

Recurrent. sobering, unflinching, hugely,
harrowing, breathtakingly, unsen-
timental, enduring, uncommonly,
harrowing, startling

General. nor, insipid, worse, unfulfilling,
unimaginative, lackluster, garbage,
unfunny, bland, crap

Table 12: The top 10 important words for each representa-
tion in SST.

Model AG News
SINN (240D) 93.8
Deep SINN (240D) 94.3

Table 13: Comparison between naive base encoders and
deep base encoders.

In future work, we would like to make SINN much more
deeper and wider. We choose two basic sequential models as
base encoders to highlight the inference module. However,
the performance of SINN is closely related to the base en-
coders. Table 13 illustrates that by simply stacking the base
encoders with more layers, we can obtain a significant im-
provement. Therefore, we intend to evaluate a collection of
complex sequential models, including the pre-trained lan-
guage models, to investigate the interaction between differ-
ent encoding hypotheses and to figure out the optimal com-
bination of the base encoders.
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