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Abstract

Bootstrapping for entity set expansion (ESE) has long been
modeled as a multi-step pipelined process. Such a paradigm,
unfortunately, often suffers from two main challenges: 1) the
entities are expanded in multiple separate steps, which tends
to introduce noisy entities and results in the semantic drift
problem; 2) it is hard to exploit the high-order entity-pattern
relations for entity set expansion. In this paper, we propose an
end-to-end bootstrapping neural network for entity set expan-
sion, named BootstrapNet, which models the bootstrapping
in an encoder-decoder architecture. In the encoding stage, a
graph attention network is used to capture both the first- and
the high-order relations between entities and patterns, and en-
code useful information into their representations. In the de-
coding stage, the entities are sequentially expanded through
a recurrent neural network, which outputs entities at each
stage, and its hidden state vectors, representing the target cat-
egory, are updated at each expansion step. Experimental re-
sults demonstrate substantial improvement of our model over
previous ESE approaches.

Introduction

Bootstrapping is a classical technique for entity set ex-
pansion (ESE) (Riloff and Jones 1999), as well as many
other information extraction tasks such as relation extrac-
tion (Batista, Martins, and Silva 2015; Gupta, Roth, and
Schütze 2018) and event extraction (Liao and Grishman
2010). Bootstrapping has long been modeled as a multi-step
pipelined process. Starting from several seed instances, a
bootstrapping ESE system expands new instances by itera-
tively matching patterns using expanded entities, evaluating
and selecting new patterns, matching entities using selected
patterns, and eventually, expanding new entities based on the
quality evaluation (see example in Figure 1).

However, such a multi-step pipeline paradigm often suf-
fers from two challenges.

First, the entities are expanded in multiple separate steps,
which tends to introduce noisy entities and results in the se-
mantic drift problem (Curran, Murphy, and Scholz 2007).
In bootstrapping, the expansion results in previous steps are
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Figure 1: An example of the bootstrapping process by un-
folding the bootstrapping iterations to a sequence. Patterns
and entities in blue are top scored ones to be selected. Enti-
ties with strikethroughs are noisy entities.

used to boost the successive expansions; and in the pipeline
paradigm, the expanded entities from previous steps are di-
rectly used as the golden entities to guide the next expansion
(Riloff and Jones 1999; Curran, Murphy, and Scholz 2007;
Gupta and Manning 2014; Yan et al. 2019), which may
cause the expansion process drifting to other categories as
not all expanded entities are correct. For example, in Figure
1, when expanding the geopolitical entities (GPE), the noisy
entity “NASA” selects a general pattern “* said”, resulting in
selection of other noisy entities (“Ford” and “Allen”) in the
subsequent steps. To resolve the semantic drift problem, we
argue that the expansion steps should be tightly coupled so
that: 1) more information from previous expansion steps can
be better exploited, e.g., the confidence scores of entities; 2)
future expansion results can be used as feedback for filtering
out noisy entities.

Second, it is hard to exploit the high-order entity-pattern
relations for entity set expansion. Due to the lack of extra
supervision, previous studies mainly used the entity-pattern
matching statistics for entity/pattern evaluation (Riloff and
Jones 1999; Curran, Murphy, and Scholz 2007; Shi et al.
2014; Zupon et al. 2019). However, these methods only ex-
ploit the first-order entity-pattern relations, while ignoring
the useful information from the high-order relations, which
have been proven useful in many information extraction
tasks (Riedel et al. 2013; Chen et al. 2006).

To address the above two problems, this paper proposes a
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neural network for ESE, named BootstrapNet, which mod-
els bootstrapping in an end-to-end manner via an encoder-
decoder architecture. Specifically, we use the entity-pattern
bipartite graph constructed from the corpus as our model
input. In the encoding stage, a multi-layer graph attention
network (Veličković et al. 2018) is used to encode correla-
tion information between entities and patterns, which can
naturally exploit both the first- and the high-order relations
in the constructed bipartite graph. Self-attention mechanism
(Vaswani et al. 2017) is used to avoid noisy relations. Com-
paring to the traditional bootstrapping methods, our model
can effectively capture both the first- and the high-order
relations from the bipartite graph, which is more informa-
tive than using only the first-order evidence (i.e., the entity-
pattern matching statistics). In the decoding stage, a recur-
rent neural network (RNN) is used to sequentially expand
entities. The RNN’s outputs are new entities, and its hid-
den state vectors are used as category embeddings. At each
step, the expanded entities are used to update the category
embeddings, and new entities are expanded based on their
similarity to the updated category embeddings. Comparing
to the traditional bootstrapping methods, our model can ef-
fectively exploit various sources of useful information in the
expanded results, such as the uncertainty of the expanded
entities and the correlations between expanded entities, and
such information is conveniently used on-the-fly. Further-
more, our model can leverage the successive expansion re-
sults as the feedback for previous expansion steps via the
backpropagation through time (BPTT) learning.

To learn our BootstrapNet, we devise a multi-view based
learning algorithm, which can efficiently learn our model us-
ing a small set of seed entities. Experimental results show
that our method outperforms the traditional bootstrapping
methods and can significantly reduce the semantic drift.

Our contributions are:

• We propose to model the entire bootstrapping process in
an encoder-decoder architecture. To our best knowledge,
this is the first attempt to fully model the whole bootstrap-
ping process using a single neural network.

• We propose the BootstrapNet, which can capture both the
first- and the high-order relations using a graph neural net-
work as the encoder, and sequentially, rather than sepa-
rately, expand new entities using a recurrent neural net-
work as the decoder.

• We design an efficient learning algorithm for Bootstrap-
Net with only several seeds as the supervision signals.

Entity-Pattern Bipartite Graph

Given several seed entities, an ESE bootstrapping system of-
ten expands entities based on the <entity, context pattern>
relations extracted from a given corpus. For example, an
<entity, context pattern> entry could be <Moscow, went
to *>.

To effectively leverage the high-order information be-
tween entities and patterns, we construct an entity-pattern bi-
partite graph using all <entity, context pattern> entries ex-
tracted from the corpus as the input to the BootstrapNet (see

Figure 2(a)). In this graph, each entity is linked to the pat-
terns associating with it in the corpus. Therefore, by exploit-
ing multi-hop paths in this bipartite graph, we can obtain the
high-order relations between entities and patterns, which is
effective in aggregating evidence for evaluating entities and
patterns. Formally, our entity-pattern bipartite graph is de-
fined as a tuple G =< V,E,L >, where:

1. V = Vn ∪ Vp consists of a set of entity nodes (Vn) and a
set of pattern nodes (Vp);

2. E is the set of edges that link an entity node to a pattern
node if the pattern occurs around the entity;

3. L is the set of labels of seed entities.

BootstrapNet

This section describes the proposed BootstrapNet—an end-
to-end bootstrapping neural network for ESE, which em-
ploys the encoder-decoder architecture. Specifically, the
BootstrapNet contains the following two main components:

• BootstrapEncoder is a graph neural network-based en-
coder which takes the bipartite graph as the input, and en-
codes the first- and the high-order relations between enti-
ties and patterns into the learned node representations.

• BootstrapDecoder is an RNN-based decoder which takes
the above node representations as the inputs, sequentially
generates new entities, and updates the entity category
representations.

Figure 2(b) illustrates the framework of BootstrapNet.
Components within BootstrapNet are introduced in detail in
the following sections.

BootstrapEncoder

Given the constructed bipartite graph, the BootstrapEncoder
captures the correlations between entities and patterns, and
encodes the correlation information as node representations.
The node representations are then fed into the BootstrapDe-
coder to generate new entities.

To this end, we use a multi-layer graph attention network
(Veličković et al. 2018), which takes the constructed bipar-
tite graph as the input and updates node representations by
aggregating neighboring representations from the previous
layer.

Specifically, for each node vi, the BootstrapEncoder
learns its l-th layer representation using two parts. The first
gets the information from its representation in the previous
layer, i.e.,

αl
i = W l

vs
l−1
i (1)

where W l
v is the projection matrix to be learned, and sl−1

i
is the node representation in layer l − 1 (For s0i , we encode
each node in the bipartite graph using an initial represen-
tation described in the end of this subsection). The second
aggregates the information from its neighboring nodes:

βl
i =

∑

j∈N (i)

ali,jW
l
vs

l−1
j (2)
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Figure 2: The input and the overall framework of BootstrapNet.

where N (i) is the set of neighboring nodes of node vi, ai,j
is the normalized weight computed by the attention mecha-
nism.

Consequently, the final updated representation of node vi
in the l-th layer is the combination of αl

i and βl
i as follows:

sli = σ(αl
i + βl

i) (3)

where σ is a non-linear activation function, e.g., the ReLU.
By recursively aggregating the information from neighbor-
ing nodes, the encoder is capable of capturing multi-hop in-
formation contained in the graph and therefore can exploit
high-order relations for entity set expansion.

Attention. The normalized weight in Eq. (2) is crucial for
filtering out noises when aggregating neighboring informa-
tion since not all context patterns are representative to the
semantics of an entity. For example, “prime minister of *”
is a strong indicator for GPE, while the general pattern “*
wants to” is a weak indicator of an entity’s category. There-
fore, we compute the normalized weight using the following
self-attention score, for a node vi:

ali,j =
exp(eli,j)∑

k∈N (i) exp(e
l
i,k)

eli,j = f(W l
ah

l
i,W

l
ah

l
j)

(4)

where f is a shared attention mechanism function f : RF ×
R

F �→ R to compute attention coefficients, W l
a is the pro-

jection matrix to be learned.
Initial representation. In this paper, we initialize the rep-

resentations of entities/patterns using the average embed-
dings of tokens in them. Because both entities and patterns
are short n-grams in our experiments, average token embed-
ding is an effective initialization1. We use the pre-trained

1For long patterns and entities, other contextualized initializa-
tion can be applied, e.g., BERT (Devlin et al. 2019). We herein
adopt average embedding for its simplicity and equivalent perfor-
mance according to our pilot experiment results.

GloVe (Pennington, Socher, and Manning 2014) to embed
the tokens.

BootstrapDecoder

After encoding each node using the BootstrapEncoder, the
BootstrapDecoder exploits a recurrent neural network to se-
quentially expand new entities, and the learned seed repre-
sentations are used as its initial inputs.

Specifically, we regard the entity expansion process as a
sequential entity generation process, and Gated Recurrent
Unit (GRU) (Cho et al. 2014) is used as the sequential gener-
ation model. To capture the semantics of the target category
and update it during the bootstrapping process, the GRU’s
hidden state is used to represent the entity categories. At
each step, our GRU decoder takes previous expansion re-
sults as the inputs to update the hidden state (i.e., category
representations) and generates new entities as the outputs ac-
cording to their similarities to the updated hidden state.

Formally, the expansion of new entities at each bootstrap-
ping step contains two stages—the category representation
updating and the entity generation. At the category represen-
tation updating stage, the BootstrapDecoder takes the last
expanded entity embeddings as the inputs and updates the
hidden state (i.e., the category embeddings) as follows:

ztc = σ(Wz · stc + Uz · ht−1
c )

rtc = σ(Wr · stc + Ur · ht−1
c )

h̄t
c = σ(W · stc + rtc · U · ht−1

c )

ht
c = ztc � ht−1

c + (1− ztc)� h̄t
c

(5)

where ht−1
c is the updated hidden state vector of category c

after the step t − 1, and stc is the average embedding of the
expanded entities belonging to category c in the step t−1(we
set stc to an all-zero vector if there is no entity belonging to
c). The initial hidden state is set to all-zero.

At the entity generation stage, the BootstrapDecoder gen-
erates new entities for each category based on the cosine
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similarity of the unexpanded entities to the updated cate-
gory representations. Specifically, at the t-th decoding step,
an unexpanded entity vi is labeled as the category with the
highest probability computed as:

p(c|i) = g(c, i)∑
c′∈C g(c′, i)

g(c, i) = 0.5 + 0.5 ∗ sim(ht
c, si)

(6)

where sim(ht
c, si) is the cosine similarity of category c’s up-

dated representation ht
c and an entity si, C is the set of all

categories, g(∗) is a normalization function to scale the co-
sine similarity to [0, 1]. After that, for those entities labeled
as the same category, only the top N entities with the highest
probabilities are expanded.

Model Learning

One challenge for our BootstrapNet is how to train it using a
few seed entities as the initial supervision. Because the seed
entities are fed as the first-step input of the BootstrapDe-
coder, there is no other supervision for evaluating Boot-
strapDecoder’s successive outputs. Therefore, most semi-
supervised learning algorithms on graph neural network are
not applicable to our model.

To address the above issues, we propose to optimize our
BootstrapNet with a multi-view based algorithm inspired
by Qu, Bengio, and Tang (2019). Specifically, we first con-
struct an auxiliary neural network, named BootstrapTeacher,
which shares the same encoder architecture with the Boot-
strapNet, but directly connects the encoder to a multilayer
perceptrons (MLP) classifier to classify each entity. The
BootstrapTeacher does not consider the long-term depen-
dencies between entity expansion decisions. Therefore, the
BootstrapTeacher and the BootstrapNet can be regarded as
two different views of entity set expansion: the BootstrapNet
models a sequential expanding process considering the in-
fluence of current expansion on successive expansion; while
the BootstrapTeacher models a non-sequential expanding
process in which the classification results depend only on
the individual entity representations.

Specifically, we design an iterative model learning algo-
rithm containing two phases (see Alg. 1) as follows:
• BootstrapTeacher learning phase learns the Boot-

strapTeacher parameters using the seed entities and the
labeled expanded entities by BootstrapNet.

• BootstrapNet learning phase learns the BootstrapNet
parameters using labeled entities returned by Boot-
strapTeacher.

In the following, we explain the two phases in detail.
BootstrapTeacher learning phase. To learn the Boot-

strapTeacher, we use both the seed entities and the expanded
entities returned by BootstrapNet as the supervision, and let
the BootstrapTeacher maximize the following objective:

OS =
∑

n∈L

log q(yn|xn) +
∑

n′∈L′
log q(ŷn′ |xn′) (7)

where q(∗|x) is the category distribution predicted by Boot-
strapTeacher, L is the set of seed entities, yn is the label

Algorithm 1 Optimization Algorithm

Input: A bipartite graph G, and seed entities with category
labels (L, yL)

Output: Expanded entities for each category
1: Construct BootstrapTeacher with the BootstrapEncoder

followed by an MLP classifier
2: Pre-train BootstrapTeacher according to Eq. (9)
3: while convergence criteria not met do
4: Copy Encoder’s parameters in BootstrapTeacher to

BootstrapNet
5: Annotate unlabeled entities with BootstrapTeacher
6: Update BootstrapNet with Eq. (10)
7: Expand new entities with labels using BootstrapNet
8: Update BootstrapTeacher with Eq. (9)
9: end while

10: Expand new entities using the learned BootstrapNet.

of a seed entity, L′ is the set of expanded entities returned
by the BootstrapNet, and ŷn′ is the label of an expanded en-
tity returned by the BootstrapNet. At the beginning of model
learning, L′ is set to be empty.

Because the seed entities are sparse comparing to
the number of unexpanded entities, the learned Boot-
strapTeacher tends to be underfitting. Inspired by Zupon et
al. (2019), and based on the intuition that the pattern and en-
tity embeddings are similar to their neighbors but dissimilar
to their unrelated patterns or entities, we leverage the graph
structure as a regularizer to the learning procedure, and let
the BootstrapTeacher maximize the following unsupervised
learning objective:

OU =
∑

e

[
∑

e−
log(σ(−V T

e Ve−))+

∑

p+

log(σ(V T
e Vp+))+

∑

p−
log(σ(−V T

e Vp−))]

(8)

where e is an entity node in the graph, e− is the entity multi-
hop away from e, p+ is the pattern directly linked to entity
e, p− is the pattern multi-hop away from e in the graph. By
adding Eq. 7 and 8, we obtain the overall objective:

Oteacher = γOS + (1− γ)OU (9)

BootstrapNet learning phase. After optimizing the
BootstrapTeacher, all unlabeled entities are labeled using the
BootstrapTeacher. Then the BootstrapNet is trained on these
pseudo-labeled unexpanded entities by maximizing the fol-
lowing objective:

Onet =

T∑

t=1

∑

n∈Node(t)

log p(ȳn|xn) (10)

where T is the maximal decoding step of BootstrapNet,
Node(t) is the set of expanded entities at the t-th decod-
ing step, p(∗|xn) is the category distribution for node n re-
turned by the BootstrapNet, ȳn is the node n’s label returned
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Figure 3: Overall results on CoNLL and OntoNotes.

by BootstrapTeacher. To accelerate the optimization process,
the encoder of BootstrapNet will share the same parameters
with that of BootstrapTeacher after the BootstrapTeacher
learning phase, and it will not be tuned during the Bootstrap-
Net learning phase.

After the BootstrapNet learning phase, BootstrapNet ex-
pands a set of entities with their categories as labels, which
are used in the subsequent BootstrapTeacher learning phase.

Experiments

Experimental Setup

Datasets: We use two datasets, CoNLL and OntoNotes, con-
structed by Zupon et al. (2019). CoNLL is constructed from
the CoNLL 2003 shared task dataset (Tjong Kim Sang and
De Meulder 2003), which contains 4 entity types. OntoNotes
is constructed from the OntoNotes datasets (Pradhan et al.
2013) without numerical categories, which finally contains
11 entity types. Zupon et al. (2019) use the n-grams of the
size up to 4 tokens on either side of an entity as the patterns
and filter out some patterns. Table 1 demonstrates the basic
statistics of these two datasets 2.

Dataset # Categories # Entities # Patterns # Links

CoNLL 4 5,522 8,477 13,916
OntoNotes 11 19,984 33,985 67,229

Table 1: Dataset statistics.

Baselines. In this paper, we use the following methods as
our baselines:

• LP: this is the label propagation method which uses the
seed entities as labeled ones and co-occurrence counts of

2There are other larger datasets available. Due to the limited
scalability of implementing graph neural networks on large scale
graphs, we leave the experimentation on these datasets for our fu-
ture work.

the entities and patterns as the entity features, and expands
top entities with the lowest entropy at each iteration3.

• Gupta (Gupta and Manning 2014): this method is a clas-
sical bootstrapping system that iteratively evaluates and
selects patterns, and scores new entities by a learned en-
tity classifier4.

• Emboot (Zupon et al. 2019): this method follows Gupta
and Manning (2014), but learns custom embeddings for
entities and patterns at each iteration, which are used to
guide the entity classifier.

• LTB (Yan et al. 2019): this method uses the MCTS algo-
rithm to perform lookahead search for estimating delayed
feedback and jointly learns an entity similarity function.

Settings. To evaluate these methods, we report the cumu-
lative precision and throughput of expanded entities (The
seed entities are treated as the initial throughput). For all
baselines and our model, we manually select 10 seeds per
category with the highest frequency in the datasets and run
them for 20 bootstrapping iterations. At each bootstrapping
iteration, we add 10 entities and 10 patterns to each category.
The number of layers in BootstrapEncoder is set to 3.

To learn our model, we randomly select other 30 entities
per category with their labels from each dataset as the devel-
opment set, and leave the remaining entities as the test set.
Source code is available online5.

Overall Results

Figure 3 shows the overall results on CoNLL and
OntoNotes. From this figure, we can see that:

• BootstrapNet significantly outperforms baselines on
two datasets. On both CoNLL and OntoNotes, our pro-

3LP is implemented using the scikit-learn package (https://
scikit-learn.org/stable/modules/label propagation.html).

4Due to the fact that the labels of its builtin Named Entity clas-
sifier do not match the labels in the OntoNotes, we do not run this
method on the OntoNotes.

5https://github.com/lingyongyan/bootstrapnet
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Figure 4: An ablation study of the BootstrapNet.

posed BootstrapNet can expand entities with higher preci-
sion comparing to the baselines. Specifically, on CoNLL,
the BootstrapNet expands 800 new entities with the pre-
cision higher than 80% after 20 iterations, while the pre-
cision of all baselines is less than 70%; on OntoNotes, the
BootstrapNet expands around 2,000 new entities with the
precision higher than 45% after 20 iterations, while the
precision of all baselines is less than 40%.

• BootstrapNet can significantly reduce the semantic
drift problem in the bootstrapping technique. Com-
paring to the baselines, the precision curve of the Boot-
strapNet decreases more smoothly with the increases of
the throughput on both CoNLL and OntoNotes; while the
baselines usually decrease drastically at the very begin-
ning stages, especially on the OntoNotes dataset. The dif-
ferent decreasing curve slopes indicate that our model can
introduce less noisy entities when performing more boot-
strapping iterations and consequently reduce the semantic
drift problem.

Detail Analysis

Ablation study of BootstrapNet. To further analyze the
contribution of the encoder and the decoder to the final per-
formance, we conduct ablation study on the two datasets
(see Figure 4), where “-Encoder” denotes directly using ini-
tial node representations (i.e., GloVe) as the final node repre-
sentations, “-Decoder” denotes iteratively selecting top en-
tities that are most similar to seed entities’ representation
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Figure 5: The performance of BootstrapNet with different
numbers of layers in the BootstrapEncoder.

Method
CoNLL OntoNotes

10 Iters 20 Iters 10 Iters 20 Iters

GloVe .882/400 .808/800 .521/1007 .431/2007
Random .405/400 .385/800 .226/897 .206/1579

Table 2: Expansion quality comparison for two node initial-
ization methods. “GloVe”: initializing using GloVe vectors.
“Random”: randomly initializing. We report the precision
(before the slash) and numbers of expanded entities (after
the slash) at expansion iteration 10 and 20 (We only report
the precision of expanded entities excluding the seeds).

without RNN; “-Encoder&Decoder” means disabling both
components. From Figure 4, we can find that the both com-
ponents have considerable contributions to the final perfor-
mance. Specifically, the precision of BootstrapNet decreases
without the BootstrapEncoder or the BootstrapDecoder; and
the performance of BootstrapNet further degrades if both
components are dropped. The results indicate that the Boot-
strapEncoder for capturing the first- and the high-order re-
lations and the BootstrapDecoder for modeling a sequential
expansion process are both effective and beneficial to the fi-
nal performance of our BootstrapNet.

Comparison of different layers of BootstrapEncoder.
We further study the influence of layer numbers on our
model’s performance (see Figure 5)( “0 layers” indicates di-
rectly using initial node representation as final node repre-
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sentations, which is the same as the “-Encoder”). Among
these methods, “0 layers” captures no relations between en-
tities and patterns; “1 layer” captures the first-order relations
between entities and patterns; “3 layers” captures both the
first- and the high-order relations. From Figure 5, we can
see that the performance of the BootstrapNet increases with
more layers. Besides, we can also see that “3 layers” out-
performs “1 layer” on the CoNLL, which indicates that cap-
turing more high-order relations between entities and pat-
terns can significantly improve the performance comparing
to only using the first-order relations. On OntoNotes, “3 lay-
ers” slightly outperforms “1 layer”, which may be mainly
due to the unbalanced category distribution in OntoNotes
makes the learning a bit underfitting 6.

Comparison of different node representation initial-
ization methods. To study the importance of pre-trained
embeddings to the BootstrapNet’s final performance, we
conduct another experiment with randomly initialized em-
beddings. The randomly initialized embeddings are only
learned during the pre-training stage in alg. 1 and fixed dur-
ing the following learning phases; to fully learn the ran-
domly initialized embeddings, we double the pre-training
epochs while keeping all other settings unchanged. The fi-
nal results are shown in Table 2. We can see that the initial-
ization methods influence the overall performance a lot on
both CoNLL and OntoNotes. Specifically, the precision of
randomly initialized embeddings drops to the half of GloVe
initialization on both datasets; on OntoNotes, the expansion
numbers also decrease when using the randomly initialized
embeddings. Because there is only sparse supervision pro-
vided, the pre-trained GloVe vectors can provide some ex-
tra information for better model learning. The lack of extra
supervision is likely to lead to aggregation of noisy infor-
mation, which may cause the entities belonging to similar
but different categories to have similar representations. As
a result, some categories containing fewer entities are more
likely to drift to other categories, which decreases the expan-
sion throughput and precision.

Related Work

Bootstrapping is the algorithm that starts from a small set
of seed instances and expands to more instances. Due to
its minimal requirement for supervision signals, it has been
widely applied in information extraction (Riloff and Shep-
herd 1997; Qadir et al. 2015; Gupta, Roth, and Schütze
2018), as well as word disambiguation (Yoshida et al. 2010),
entity translation (Lee and Hwang 2013), model learning
(Whitney and Sarkar 2012), etc.

Early bootstrapping methods (Riloff and Shepherd 1997;
Collins and Singer 1999) on information extraction evalu-
ate and select patterns and new instances mainly based on
instance-pattern first-order relations (i.e., instance-pattern
matching statistics) without consider the entire bootstrap-
ping process, which can easily lead to semantic drifting
problem (Curran, Murphy, and Scholz 2007). To reduce
the semantic drifts, most previous studies focus on adding

6There are two categories of entities (i.e., “LAW” and “LAN-
GUAGE”) whose numbers are less than 200.

extra constraints or features, e.g., mutual exclusive boot-
strapping (Curran, Murphy, and Scholz 2007; McIntosh
and Curran 2008; Gupta, Roth, and Schütze 2018), neg-
ative seeds (Yangarber, Lin, and Grishman 2002; Shi et
al. 2014), coupling constraints (Carlson et al. 2010), lexi-
cal and statistical features (Gupta and Manning 2014), co-
sine similarity over one-hot vectors (Liao and Grishman
2010), word embeddings (Batista, Martins, and Silva 2015;
Gupta and Manning 2015), etc. Some other studies focus
on detecting drift points (i.e., patterns and instances) and
stopping expanding detected drift points (Li et al. 2014;
2018). Besides, similar to our method, some studies us-
ing the bipartite graph and reduce the semantic drift using
graph-based methods (Komachi et al. 2008; Tao et al. 2015).
However, these methods still lack the high-order informa-
tion or require extra manual participants. Recently, (Berger
et al. 2018) try to address the sparse supervision problem
using active learning strategy to acquire supervision signals
from human; (Zupon et al. 2019) leverage entity-pattern co-
occurrence information to learn the custom embedding be-
yond sparse supervision; Yan et al. (2019) estimate delayed
feedback (which is the high-order relation) for bootstrap-
ping using the Monte Carlo Tree Search algorithm. How-
ever, all these methods model the bootstrapping process in a
pipelined and separate paradigm.

Graph Neural Network (Gori, Monfardini, and Scarselli
2005) is another related work that can aggregate high-order
information on the graph structure. The graph neural net-
work in our model is closely related to graph convolutional
networks(GCN) (Kipf and Welling 2017) and its variant—
graph attention network(GAT) (Veličković et al. 2018). In
NLP, Marcheggiani and Titov (2017) and Bastings et al.
(2017) use the GCN to encode dependency parsing tree as
syntax information for semantic role labeling and machine
translation respectively; Beck, Haffari, and Cohn (2018) in-
troduce the gate mechanism to GCN for learning a graph-to-
sequence model; recently, Guo, Zhang, and Lu (2019) lever-
age the GAT to capture syntax information for the relation
extraction.

Conclusions
In this paper, we propose BootstrapNet, an end-to-end neu-
ral network which can model the bootstrapping process in an
encoder-decoder architecture. Specifically, we use a graph
attention network as the encoder to capture both the first-
and the high-order relations between entities and patterns,
and a recurrent neural network-based decoder is used to se-
quentially expand new entities and update category repre-
sentations. A multi-view learning algorithm is further pro-
posed to effectively learn our BootstrapNet using sparse su-
pervision signals. Experiments show that our BootstrapNet
outperforms state-of-the-art methods.

For future work, since the input of our model is a con-
structed bipartite graph, our method can be easily adapted
to other information extraction tasks. For example, if we
use the <head entity, tail entity> pair as the instance and
the context around it as the pattern, we can construct an
instance-pattern bipartite graph and extract new relations us-
ing our BootstrapNet.
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