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Abstract

Real-time event summarization is an essential task in natu-
ral language processing and information retrieval areas. De-
spite the progress of previous work, generating relevant, non-
redundant, and timely event summaries remains challeng-
ing in practice. In this paper, we propose a Deep Reinforce-
ment learning framework for real-time Event Summarization
(DRES), which shows promising performance for resolving
all three challenges (i.e., relevance, non-redundancy, time-
liness) in a unified framework. Specifically, we (i) devise
a hierarchical cross-attention network with intra- and inter-
document attentions to integrate important semantic features
within and between the query and input document for bet-
ter text matching. In addition, relevance prediction is lever-
aged as an auxiliary task to strengthen the document mod-
eling and help to extract relevant documents; (ii) propose a
multi-topic dynamic memory network to capture the sequen-
tial patterns of different topics belonging to the event of inter-
est and temporally memorize the input facts from the evolving
document stream, avoiding extracting redundant information
at each time step; (iii) consider both historical dependencies
and future uncertainty of the document stream for generating
relevant and timely summaries by exploiting the reinforce-
ment learning technique. Experimental results on two real-
world datasets have demonstrated the advantages of DRES
model with significant improvement in generating relevant,
non-redundant, and timely event summaries against the state-
of-the-arts.

1 Introduction

Real-time event summarization aims to select an only rele-
vant, non-redundant and timely subset from an overwhelm-
ing time-ordered stream of documents to summarize an
event of interest. Different from the static event summariza-
tion (Saggion and Poibeau 2013) that only generates event
summaries once without updating the summaries when new
information emerges, real-time event summarization gener-
ates updating summaries when documents are coming in real
time. It becomes an extremely important research topic with
the increase of streaming applications.

∗Chengming Li is corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
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Recently, great efforts have been devoted to building ef-
fective and efficient real-time event summarization systems
(Aslam et al. 2015). One representative method is to select or
skip the documents in the text streams using the locally opti-
mal learning method with greedy search (Kedzie, Diaz, and
McKeown 2016). As deep learning models have achieved
promising performance in text matching, there have been in-
creasing attempts to apply deep learning models to real-time
event summarization (Tan, Lu, and Li 2017). Despite the ef-
fectiveness of previous studies, there are several technical
challenges (i.e., text relevance, non-redundancy, and timeli-
ness) that are critical to generate high-quality real-time event
summaries.

Text Relevance Most real-time event summarization ap-
proaches focus on learning inter-document relations be-
tween the query and input document. However, the intra-
document features within the query and input document
are complementary to the inter-document relations between
the query and input document (Vaswani et al. 2017; Liang
et al. 2019). It is necessary to explore both intra- and
inter-document features to capture the relevance between
the query and input document for real-time event summa-
rization. In addition, most methods consider relevance pre-
diction and real-time event summarization as a sequential
pipeline or treat the relevance score as a feature of the
real-time event summarization model. However, these two
subtasks are often mutually dependent on each other and
shall be considered simultaneously. Concretely, for each
specific query, knowing the relevance degree of each query-
document pair in advance enables to filter out quite non-
relevant documents. Meanwhile, the existence of the sen-
tence in the summary context might further improve the per-
formances of the relevance prediction as the part of the sum-
mary sentences is generally intensely relevant to the query.

Non-redundancy There exist long-term dependencies
among the document stream for real-time event summariza-
tion, i.e., the later decision making will be affected by the
previous actions so as to avoid repeating the redundant infor-
mation. Considering the rapidly growing document stream,
it is challenging for the model to scan through the complete
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historical sequence at each prediction time. Thus, most ex-
isting methods merely consider recent historical documents,
which leaves huge space for capturing long-term, especially
lifelong sequential patterns to facilitate the model to gener-
ate relevant and non-redundant event summaries.

Timeliness Timeliness is critical for the quality of real-
time event summaries, where the updates should be provided
as soon after the actual event occurrence as possible. Paying
more attention to timeliness could hurt relevance since at
early stages information is prone to be uncertain and hence
less relevant. On the contrary, taking more time to hone rel-
evance tends to sacrifice the timeliness of the information,
resulting in the information having low utility for summa-
rizing the event. Hence, real-time event summarization is a
long-term process and the potential trade-offs between the
timeliness and relevance of information should be consid-
ered. It is a real-time forward decision process in which the
current action may affect future decisions (dependency), and
the future streaming documents may generate uncertainty on
the current decision (Tan, Lu, and Li 2017). However, most
of the existing methods consider merely historical depen-
dencies.

In this study, we aim to fully resolve all the three chal-
lenges in a unified framework. First, we propose a hier-
archical cross-attention network (HCAN) with intra- and
inter-document attentions to integrate important semantic
features within and between the query and input document,
which is expected to capture the text relevance effectively.
In addition, we leverage relevance prediction as an auxiliary
task to strengthen the document representation learning and
help to recognize relevant documents. Second, we devise a
multi-topic dynamic memory network (MDMN) to maintain
merely the latest multi-topic memories through an incremen-
tal updating mechanism along with the evolving document
stream. MDMN model updates memorization from newly
coming document stream for different topics belonging to
the event so as to capture multi-topic lifelong sequential pat-
terns during the lifetime of the event. Hence, MDMN can
avoid repeating the redundant information even if that in-
formation was pushed many steps away by using the multi-
topic memories to modulate an adaptive attention for text
matching. Third, we model the real-time event summariza-
tion as a long-term optimization problem considering both
historical dependencies and future uncertainty of the docu-
ment stream. A deep reinforcement learning (RL) algorithm
is then proposed as the solution. The RL reward is estimated
on a complete sequence produced by the model, taking rel-
evance, non-redundancy, and timeliness of event summaries
into consideration simultaneously.

To evaluate the performance of the proposed DRES
model, we conduct extensive experiments on two widely
used real-life datasets from TREC 2016 Real-time Sum-
marization track and TREC 2017 Real-time Summarization
track. Experimental results show that the proposed model is
able to generate more relevant, non-redundant, and timely
real-time event summaries than the state-of-the-art baseline
methods.

2 Related Work

Automatic real-time summarization has been an active re-
search field. Recently, many approaches have been pro-
posed to deal with real-time event summarization. Guo,
Diaz, and Yom-Tov (2013) presented a temporal summariza-
tion approach, which extracts event summaries from real-
time news stream for specific events. Thereafter, temporal
summarization has been operationalized in the TREC Tem-
poral Summarization (TS) Track from 2013 to 2015 (Xu,
Oard, and McNamee 2013; Aslam et al. 2015; Alianne-
jadi et al. 2015). The top performers at TREC TS included
the Multi-Document Summarization (MDS) combination
model (McCreadie, Macdonald, and Ounis 2014) and the
affinity propagation clustering model (Kedzie, Diaz, and
McKeown 2016), etc. In addition, the real-time document
pushing on document stream has attracted much attention
from the TREC-2015 Microblog Track (Lin et al. 2015)
and the TREC 2016-2017 Real-Time Summarization (RTS)
Track (Lin et al. 2016; 2017). For example, Tan et al. (2016),
the winner of the TREC-2015 Microblog Track, proposed a
dynamic emission method to maintain an adaptive threshold
for filtering the non-relevant tweets.

Subsequently, there are some works treating the real-time
or temporal summarization task as a dynamic forward de-
cision process by employing the reinforcement learning al-
gorithms. Kedzie, Diaz, and McKeown (2016) proposed a
locally optimal learning method, which learns a policy to
select or skip each document from the document stream. In
(Kedzie, Diaz, and McKeown 2016), the real-time summa-
rization task is performed by using greedy search, and the
model is trained to simulate the oracle summarization sys-
tem. Tan, Lu, and Li (2017) employed a deep Q-Network
to maximize the long-term rewards for real-time event sum-
marization. The Q-Network is composed of an LSTM layer
and a three-layer fully-connected neural network. Yang et al.
(2019) proposed a multi-task learning method for web-scale
event summarization, which learns the relevance prediction
and real-time document filtering subtasks simultaneously.

Different from previous methods, we propose a unified
framework to resolve all three challenges (relevance, non-
redundancy, timeliness) in real-time event summarization.
Previous methods mainly focused on one of these problems,
but an algorithm that assumes and resolves all three prob-
lems together has not been proposed yet.

3 Our Methodology

Problem Formulation

Given the document stream and queries, the real-time event
summarization task aims at selecting or skipping each doc-
ument d as it is observed such that the users are provided a
set of filtered documents that are relevant, non-redundant,
and timely. Formally, when a user issues a query q that
contains n words [wq

1, w
q
2, . . . , w

q
n], DRES generates a sum-

mary by choosing documents from a document stream D =
{d1, d2, . . . , dt, . . . dT }, where each document d consists of
l words [wd

1 , w
d
2 , . . . , w

d
l ], and has a relevance label yr (one-

hot vector). It is noteworthy that, for simplicity, we assume
the size of the stream window is fixed with size T . However,
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Figure 1: Architecture of our DRES model.

this is not strictly necessary. To avoid conceptual confusion,
we adopt superscripts “r”, “q” and “d” to represent the vari-
ables that are related to the relevance prediction, the query,
and the input document.

As illustrated in Figure 1, DRES is composed of the
following four components: (1) information representation
layer to convert each word into a vector representation, (2)
a hierarchical cross-attention network (HCAN) to integrate
important semantic features within and between the query
and input document, (3) a multi-topic dynamic memory net-
work (MDMN) to maintain multi-topic memories and retain
long-term dependencies for each event, (4) a deep reinforce-
ment learning model to consider both historical dependen-
cies and future uncertainty of the document stream. In ad-
dition, we treat relevance prediction as an auxiliary task to
improve the relevance modeling in real-time event summa-
rization. Next, we will describe each component of DRES in
detail.

Information Representation Layer

The words which share common parts (e.g., root, pre-
fix, suffix) may be related potentially. Therefore, we de-
sign a hybrid word embedding layer to take advantage
of both the character-level and word-level representations.
For the word-level embedding model, we adopt the popu-
lar word2vec (Mikolov et al. 2013) embeddings which are
widely used in NLP domain. For the character-level em-
bedding model, the ELMo (Peters et al. 2018) language
model is used because of its superior performance in a wide
range of NLP tasks. Each word is then represented as a con-
catenation of the character-level embedding and word-level
embedding, resulting in a hybrid word embedding vector
ei ∈ R

dw for each token wi. Here, dw represents the size
of the hybrid word embedding. The context representations
of query q and input document d thus can be represented as
Eq = [eq1, . . . , e

q
n] and Ed = [ed1, . . . , e

d
m], respectively.

We employ gated recurrent unit (GRU) (Cho et al. 2014)
to learn the hidden states of tokens in the input query and
document. Specifically, the learned feature representations

Eq and Ed are passed to GRU encoder to obtain the context-
dependent hidden state matrices Hq = {hq

i |hq
i ∈ R

dh , i =
1, 2, . . . , n} for query q and Hd = {hd

i |hd
i ∈ R

dh , i =
1, 2, . . . , l} for input document d, where dh is the dimension
of the hidden state of GRU.

Hierarchical Cross-Attention Network

Context-aware Transformer In order to model the tem-
poral interactions and long-term dependency between words
within a document, we employ a multi-head self-attention
Transformer (Vaswani et al. 2017) to learn essential intra-
document knowledge. We do not design a position embed-
ding used in original Transformer. Instead, we have em-
ployed a GRU before the Transformer for capturing the se-
quential features of the documents (see Section 3.1). For-
mally, we feed the hidden representations Hq and Hd to
Transformer to obtain the self-attentive representations for
query q and document d as H̃q = {h̃q

i |h̃q
i ∈ R

dw , i =

1, 2, . . . , n} and H̃q = {h̃d
i |h̃d

i ∈ R
dw , i = 1, 2, . . . , l},

respectively. The reader can refer to the paper (Vaswani et
al. 2017) for the implementation details of Transformer.

After the Transformer layer, the sequential information
captured with GRU layer will be discarded since the mean
and variance of the feature vector will be changed. Inspired
by (Li et al. 2018), we combine the features before the trans-
formation and the self-attentive features, and pass them to-
gether to the next layer. A gate ξi for the i-th token is devised
to control the proportions of the features before the transfor-
mation, which is computed as:

ξi = sigmoid(Wtranshi + btrans) (1)

Then, we can get the context-aware representations
by combining context-dependent hidden states and self-
attentive representations based on the gate:

h̄i = ξi · hi + (1− ξi) · h̃i (2)

Thus, we can take advantage of the context information
and global information of the input text. We denote the fi-
nal intra-document representations as H̄q = {h̄q

i |h̄q
i ∈

R
dw , i = 1, 2, . . . , n} for query q and H̄d = {h̄d

i |h̄d
i ∈

R
dw , i = 1, 2, . . . , l} for document d.

Multi-perspective Cross-attention We propose a multi-
perspective cross-attention network (MPCN) to capture the
semantic interaction between query q and document d.
MPCN produces a 2-dimensional attention weight matrix.
Given the intra-document query and document representa-
tions (i.e., H̄q and H̄d), the attention matrix Σq for the
document-aware query representation is computed as:

Σq = [Σq
1, · · · ,Σq

n], Σq
i =

exp(δ([H̄q
i , μ(H̄

d)]))
∑k

j=1 exp(δ([H̄
q
j ;μ(H̄

d)]))
(3)

δ([H̄q
i , μ(H̄

d)]) = W c
1 tanh(W c

2 [H̄
q
i , μ(H̄

d)]) (4)

where Σq
i ∈ R

b denotes the i-th row of attention matrix,
b is the number of hops of attention, μ is average pooling
operation, W c

1 and W c
2 are learnable parameters. Similarly,

we can calculate the attention matrix Σd for the query-aware
document representation.
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After obtaining the interactive query and document rep-
resentations, we compute the interactive representations for
query q and document d as:

Oq = flat(Σq · H̄q), Od = flat(Σd · H̄d) (5)

where flat is a function flattening matrix into vector form.

Multi-topic Dynamic Memory Network

In this section, we propose a multi-topic dynamic memory
network (MDMN) to memorize input facts temporally from
historical document stream and consider long-term depen-
dencies (sequential patterns) within document stream with
extremely large length. MDMN model is proposed based on
two considerations of the motivation.
• There exist long-term dependencies among the document

stream for real-time event summarization, i.e., the later
decision making will be affected by the previous actions
so as to avoid repeating the redundant information. Con-
sidering the rapidly growing document stream, it is chal-
lenging for the model to scan through the complete histor-
ical sequence at each prediction time. Hence, we devise
MDMN to maintain merely the latest memories through
an incremental updating mechanism along with the evolv-
ing document stream, which is expect to capture the life-
long dependencies of the document stream.

• Each critical event may contain several evolving top-
ics that span various time distances. To analyze various
evolution patterns that emerge from multiple topics, it
requires multi-topic sequential pattern mining. MDMN
model deals with this by maintaining multi-topic memory
slots with different update periods.

Dynamic Memory Update For each query, there is a
multi-topic memory network containing L memory slots,
where each topic-specific memory slot mj

t ∈ R
p denotes the

memory slot of the j-th topic at the t-th time step, which will
be transmitted to the next time step. This external memory
is used to better memorize the historical document stream
and capture temporal sequential patterns for different topics
belonging to a specific event.

MDMN model maintains the memory in real time through
an incremental updating mechanism along with the evolving
document steam. The memory slot at each layer would be
updated as:

mj
t = gjt GRU(mj

t−1, O
d
t ) + (1− gjt )m

j
t−1 (6)

gjt = sigmoid(Wm[Od
t , O

q
t ,m

j
t−1]) (7)

where Wm indicates learnable parameters, gjt is a gate that
dynamically decide whether to update the memory slot of j-
th topic at time step t. In Eq. (6), the memory writing in each
layer is based on the GRU. Oq

t and Od
t represent the query

and document representations at time step t, respectively.

Attentional Memory Reading After conducting the long-
term memorization of the multi-topic temporal dynamics
along with the document stream, we implement the atten-
tional memory usage similar to the standard memory net-
works (Sukhbaatar et al. 2015). Formally, we compute the

comprehensive event memory mt up to time step t as:

mt =
L∑

j=1

wj
t ·mj

t (8)

where the weight wj
t indicates the contribution of the mem-

ory slot mj
t to the long-term memory representation mt up

to time step t, which is calculated as:

wj
t =

exp(ωj
t )∑L

k=1 exp(ω
k
t )

, ωj
t = tanh(Wa[O

d
t ;m

j
t ]) (9)

where ωj
t is an energy function that measures the relevance

between the document representation Od
t and the long-term

memory mj
t , Wa is a learnable parameter.

Distilled Non-redundant Document Representation
Looking back at previous timesteps will allow DRES to
extract more novel information and avoid repeating the
redundant information even if that information was pushed
many steps away. To achieve this, we devise a filtration
gate st to filter out the redundant features contained in the
document representation Od

t at time step t. Specifically,
we compute new fact-specific document representation
embt at time step t based on the event memory mt and the
document representation Od

t as:

st = Relu(Ws1mt +Ws2O
d
t + bs1) (10)

embt = st(tanh(Ws3O
d
t + bs2)) (11)

where Ws1, Ws2, Ws3, bs1, and bs2 are parameters to be
learned. embt is the novel features after filtering out the re-
dundant information by the filtration gate.

Relevance Prediction

We treat relevance prediction as an auxiliary task to en-
hance the document representation learning, which helps
to identify relevant documents from the document stream.
Given the document stream and queries, the relevance pre-
diction task aims at assigning a relevance label (i.e., “highly-
relevant”, “relevant” or “non-relevant”) to each coming doc-
ument, indicating whether it is relevant to the corresponding
query. Relevance prediction can be treated as a multi-class
classification problem.

We feed the concatenation of the query representation Qq
t

and new fact-specific document representation embt into a
fully-connected layer and a softmax layer (for probabilistic
classification) to obtain the predicted relevance label ŷrt of
document dt corresponding to query qt at time step t:

ŷr
t = softmax(V r

3 · tanh(V r
1 embt + V r

2 Q
q
t + br)) (12)

where V r
1 , V r

2 , and V r
3 are learnable parameters for rele-

vance prediction, and br is the bias term.
The parameters used for the relevance prediction task

is learned via supervised learning. Specifically, given the
labeled training data {(d1, q1,yr

1), . . . , (dT , qT ,y
r
T )}, we

learn the model by minimizing the cross-entropy between
the ground truth relevance distribution yr and the predicted
relevance distribution ŷr:

L1 = − 1

T

T∑

t=1

K∑

i=1

I{yr
t = i} log(ŷr

t ), (13)
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where I{·} represents an indicator such that I{true}=1 and
I{false}=0. K denotes the number of relevance categories.

Real-time Event Summarization

Relevance-aware Document Representation Inspired
by (Cao et al. 2017), we develop a relevance-aware trans-
formation process to make the transformed document repre-
sentation hold the relevance information, and therefore learn
better document representation. Formally, we transform the
document representation embt into a relevance-aware docu-
ment representation ˜embt by

˜embt = tanh(Wμ × embt) (14)

where Wμ ∈ R
dr is the transformation matrix, dr is the

dimensionality of the relevance-aware document represen-
tation. Note that we define the same dimensionality for
both embt and ˜embt. To make ˜embt capture relevance in-
formation, we introduce 3 sub-matrices {W 1

μ ,W
2
μ ,W

3
μ},

with each directly corresponding to one relevance label (i.e.,
“highly-relevant”, “relevant” or “non-relevant”). Based on
the predicted relevance label derived from Eq. (12), the
relevance-aware transformation matrix Wμ is computed as
the weighted sum of the sub-matrices: Wμ =

∑3
i=1 ŷ

r
tW

i
μ.

In this way, Wμ is automatically biased to the sub-matrix of
the predicted relevance label.

Reinforcement Learning for Long-term Optimization
In this paper, we formulate the real-time event summariza-
tion as a long-term optimization problem. Specifically, a pol-
icy gradient reinforcement learning method is employed to
maximize the long-term rewards by considering both his-
torical dependencies and future uncertainty. Different from
(Tan, Lu, and Li 2017) which learns an approximation of
the value function, the proposed DRES model searches the
policy space with the policy gradient algorithm directly. In
this way, DRES can express stochastic optimal policy and
is robust to small change in function approximation. Next,
we introduce the state, action, policy and reward of the rein-
forcement learning algorithm we used.

State At timestep t, a state st is the concatenation
of new fact-specific document representation embt and
relevance-aware document representation ˜embt, i.e., st =
[embt; ˜embt]. The learned state st is expected to capture im-
portant information from both the current input document
and the historical document steam.

Action At time step t, the action is at ∈ {0, 1} with 1 rep-
resenting we select the t-th document to the real-time event
summary, and 0 representing we jump it.

Policy We use the stochastic policy gradient algorithm to
learn the approximation of the policy πθ. An approxima-
tion function with parameters θ is employed, which takes
the state st as input, and outputs the probability of choos-
ing the action at. Formally, we define the policy function as

follows:

πθ(at|st) = softmax(V p
2 · tanh(V p

1 · st + bp)) (15)

where V p
1 and V p

2 are learnable weight parameters, and bp is
the bias term.

Reward When we reach the end of the sequence of
document-query pairs, the expected reward (RT ) will be cal-
culated from the predicted distribution, which represents the
score for producing the global action sequence a1:T given
document stream and the update summary. Here, the delayed
final reward RT can be computed as:

RT = r(a1:T ) = λ1EG(a1:T ) + λ2nCG(a1:T ) + λ3Latency
(16)

where r(·) is the reward function; λ controls the effect of
EG, nCG and Latency, and we empirically demonstrate that
we can achieve best results when λ1 = 0.15, λ2 = 0.8, λ3 =
0.05. EG and nCG can capture the output quality (relevance
and non-redundancy), while Latency ensures the timeliness.

Objective Function We optimize the parameters θ of our
model using REINFORCE algorithm (Williams 1992) and
policy gradient method, aiming to maximize the expected
reward as shown below:

L2(θ) = Eat∼πθ(at,|st)r(a1 . . . aT ) (17)

=
∑

a1...aT

∏

t

πθ(at|st)RT ,

Note that this reward is computed over just one time in-
terval, say D = [d1, . . . , dT ]. The reader can refer to the
study (Williams 1992) for details of policy gradient theo-
rem.

Joint Training

DRES is a multi-task learning method, which contains two
subtasks. and each task has an objective function for train-
ing. To strengthen the learning of the share document-query
representations, we train these two related tasks simultane-
ously by minimizing the joint multi-task objective function:

L = γ1L1 + γ2L2, (18)

where γ1 and γ2 are hyper-parameters that determines the
weights of L1 and L2. Here, we set γ1 = 0.2 and γ2 = 0.8
by performing the grid search on a validation set.

4 Experimental Setup

Datasets

We evaluate the proposed DRES model on two publicly
available corpora.

TREC-RTS-161 This dataset consists of 61,519 docu-
ments which are collected with Twitter streaming API (about
1% instances of all data) during the period from August 2,
2016 to August 11, 2016. It is used by TREC 2016 RTS

1http://trecrts.github.io/TREC2016-RTS-guidelines.html
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Method EG-0 nCG-0 EG-1 nCG-1 GMP Latency
IPS 0.033 0.039 0.201 0.213 -0.324 192344
AP 0.037 0.031 0.232 0.235 -0.103 134077

CST 0.048 0.063 0.262 0.254 -0.321 91456
DES 0.036 0.035 0.229 0.219 -0.351 128857
LS 0.070 0.081 0.271 0.297 -0.185 85665

NNRL 0.069 0.085 0.282 0.288 -0.236 84343
MP-HCNN 0.073 0.077 0.285 0.294 -0.233 89647

CIG 0.069 0.079 0.276 0.288 -0.247 90472
COMP2016 0.048 0.069 0.269 0.291 -0.205 91539

DRES 0.087 0.102 0.308 0.315 -0.080 72264
DRES+Bert 0.089 0.105 0.306 0.311 -0.078 71983

w/o Transformer 0.079 0.091 0.299 0.305 -0.085 73425
w/o MPCN 0.078 0.093 0.302 0.307 -0.087 72958
w/o MDMN 0.073 0.085 0.291 0.299 -0.091 73536

w/o RP 0.076 0.089 0.297 0.304 -0.097 74376
w/o RL 0.071 0.082 0.295 0.298 -0.102 80143

Table 1: Event summarization results on TREC-RTS-16.
The bottom five rows show the ablation test of DRES.

Track. Each instance has a relevance label (“highly rele-
vant”, “relevant” or “non-relevant”) conditioned on the par-
ticular interest profile. At testing phase, 56 interest profiles
are monitored, which represent the information needs of
users. Similar to (Tan, Lu, and Li 2017), we choose instances
of 41 interest profiles for training, instances of 5 interest pro-
files for validation, and the rest instances of 10 interest pro-
files are utilized for testing.

TREC-RTS-172 This corpus consists of 203,344 docu-
ments which are provided by Twitter API from July 29, 2017
to August 5, 2017, which is used by TREC 2017 RTS Track.
There are 97 interest topics being monitored during the eval-
uation period. We choose the tweets of 80 interest topics as
the training set, the tweets of 7 interest topics as the valida-
tion set, and the rest tweets are utilized for testing.

Baseline Methods

We evaluate and compare the proposed DRES with several
state-of-the-art event summarization methods, including In-
terest Profile Similarity (IPS) (Han et al. 2014), Affinity
Propagation (AP) (Frey and Dueck 2007), Cosine Similar-
ity TDREShold (CST, Team WATERLOOCLARKE at TREC
2015) (Kedzie, McKeown, and Diaz 2015), Learning to
Search (LS) (Kedzie, Diaz, and McKeown 2016), and Neu-
ral Network based Reinforcement Learning (NNRL) (Tan,
Lu, and Li 2017). We also compare DRES with several ad-
vanced text matching methods, including Multi-Perspective
Hierarchical Convolutional Neural Network (MP-HCNN)
(Rao et al. 2019) and Concept Interaction Graph (CIG) (Liu
et al. 2019). In addition, we replace the information repre-
sentation layer and Transformer layer of DRES with the pre-
trained BERT (Devlin et al. 2019) (denoted as DRES+Bert),
and take DRES+Bert as a compared method. The hyperpa-
rameters are chosen with the validation data.

Implementation Details

In the experiments, we utilize 100-dimensional word2vec
(Mikolov et al. 2013) vectors to initialize the word embed-

2http://trecrts.github.io/TREC2017-RTS-guidelines.html

Method EG-0 nCG-0 EG-1 nCG-1 GMP Latency
IPS 0.051 0.054 0.202 0.188 -0.225 119273
AP 0.047 0.049 0.197 0.220 -0.183 126575

CST 0.063 0.061 0.251 0.243 -0.089 68112
DES 0.057 0.053 0.243 0.237 -0.064 77427
LS 0.073 0.065 0.283 0.255 -0.087 48392

NNRL 0.068 0.062 0.274 0.257 -0.115 44758
MP-HCNN 0.072 0.067 0.278 0.261 -0.092 65371

CIG 0.066 0.063 0.273 0.256 -0.094 61824
HLJIT (winner) - - 0.281 0.126 -0.156 119374

DRES 0.086 0.075 0.302 0.278 -0.056 35319
DRES+Bert 0.085 0.077 0.298 0.283 -0.061 35362

w/o Transformer 0.080 0.067 0.289 0.272 -0.083 37631
w/o MPCN 0.083 0.071 0.295 0.275 -0.074 36219
w/o MDMN 0.073 0.065 0.276 0.261 -0.067 37946

w/o RP 0.082 0.069 0.283 0.265 -0.097 39189
w/o RL 0.077 0.066 0.281 0.266 -0.094 40182

Table 2: Event summarization results on TREC-RST-17.
The bottom five rows show the ablation test of DRES.

dings. The tokens that did not appear in the pre-trained word
embeddings are initialized to zero. We set the initializations
of bias vectors to zero, and all weight matrices are randomly
sampled from orthogonal matrices. The hidden state sizes
of GRUs in both representation layer and memory network
are set to 300. We use mini-batch (batch size=64) training
with Adam (Kingma and Ba 2014) optimization algorithm
to learn the parameters of DRES. l2 regularization (weight
decay = 0.001) and dropout strategy (dropout rate = 0.2) are
used to avoid overfitting.

Evaluation Metrics

The relevance of the documents returned by event summa-
rization systems are evaluated by NIST assessors (Roegi-
est, Tan, and Lin 2017). Each document is assigned a rel-
evance label from {“not relevant”, “relevant”, or “highly-
relevant”}. Then, the NIST assessors conduct semantic clus-
tering merely on the “relevant” and “highly-relevant” docu-
ments. The documents are grouped into clusters, and each
cluster contains the documents that convey similar informa-
tion. As discussed previously, the update summaries should
be relevant, timely, and non-redundant, thus we adopt the
Expected Gain (EG), Normalized Cumulative Gain (nCG),
Gain Minus Pain (GMP) to evaluate the output quality (re-
dundancy and relevance) and use Latency to evaluate the
output timeliness, which are the official metrics of 2016-
2017 TREC RTS track. We compute these metrics for each
event cluster per day and average the values.

Expected Gain (EG) Following (Lin et al. 2016; 2017),
we define the EG score in response to a specific interest
profile at time t as: EG = 1

N

∑
G(t), where N denotes

the number of returned documents, G(t) denotes the gain of
each document at time t. Each document is assigned with
a gain score from {0, 0.5. 1}, where 1 indicates “highly-
relevant”, 0.5 indicates “relevant”, and 0 indicates “not rel-
evant”. Once a document from a cluster is selected, the other
documents from the same cluster become non-relevant auto-
matically. This strategy penalizes the real-time summariza-
tion model for extracting redundant information.
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Time Tweet Text Action
08-02
04:21:18

“Obama At Hiroshima: A World Without Nu-
clear Weapons šC Ours - American Thinker”

Keep

08-02
19:48:37

“Hiroshima nuclear bombing death toll:
146,000, World War II overall death toll: 65
to 80 million”

Keep

08-03
00:30:12

“Cockroaches survived atomic bombings at
Hiroshima and Nagasaki but cannot survive a
bug spray.”

Skip

08-03
02:55:44

“But you the bomb, but you the bomb Hi-
roshima.”

Skip

08-03
11:36:54

“This Saturday, August 6th, will mark the 71st
anniversary of the #Hiroshima bombing. Time
for abolition.”

Keep

08-05
07:16:49

“Hiroshima prepares for A-bomb anniversary;
peace activists meet: The Hiroshima city gov-
ernment sai”

Skip

08-05
09:08:05

“Lok Sabha pays homage 1945 atomic bomb
victims, wishes Rio team well: New Delhi,
Aug” 5

Skip

08-05
12:20:43

“The world says never again. Memorial events
across the UK on #Hiroshima Day 6 August.”

Skip

08-05
16:50:31

“Tomorrow: 71st anniversary of the U.S. drop-
ping an atomic bomb on Hiroshima.”

Skip

08-05
17:45:29

“How to Keep an Atomic Bomb From Being
Smuggled Into New York City? Open Every
Suitcase.”

Skip

Table 3: Case study for topic ”Hiroshima atomic bomb”.

Normalized Cumulative Gain (nCG) Similar to previ-
ous work, we define the nCG score as: nCG = 1

Z

∑
G(t),

where Z denotes the maximum possible gain. Specifically,
for a “silent day” (when there are only non-relevant docu-
ments), the EG-1 and nCG-1 have a score of 1 if the model
does not select any documents, or 0 otherwise. In the EG-0
and nCG-0 variants, for a silent day, the gain is 0.

Gain Minus Pain (GMP) The goal of GMP is to pun-
ish the model for selecting non-relevant documents. Follow-
ing (Lin et al. 2016; 2017), we define GMP as: GMP =
λ̃G− (1− λ̃)P , where G denotes the gain of each document
defined above, P represents the number of non-relevant doc-
uments that are selected, and λ̃ determines the weights of G
and P . Here, we set λ̃ = 0.5 by tuning its value from [0,1]
on the validation set.

Latency We calculate the latency of the model separately
rather than apply a latency penalty to gain. The latency score
only computed on the documents which are relevant. We re-
port the mean difference between the time the target docu-
ment was selected and the time the first relevant document
in the same cluster emerged. We measure the mean latency
of pushed tweets in seconds.

5 Experimental Results

Quantitative Evaluation

We first verify the performance of real-time summarization
quantitatively. The experimental results are summarized in
Tables 1-2. From the results, we can observe that DRES con-
sistently and substantially surpasses the compared models
by a large margin on all the evaluation metrics. The improve-
ment from DRES is statistically significant over the com-

pared models (t-test, p-value < 0.05). Specifically, DRES
achieves higher EG values than the compared baseline
methods on the two corpora, indicating the novelty and non-
redundancy of the produced summaries. From the relevance
perspective, DRES obtains the highest GMP score, which
implies that less “non-relevant” documents are pushed by
DRES. In addition, the low latency score of DRES suggests
the timeliness of DRES.

Ablation Study

In order to analyze the contribution of each part to
the superiority of DRES, we also report the ablation
test in terms of discarding the context-aware Transformer
(w/o Transformer), multi-perspective cross-attention net-
work (w/o MPCN), multi-topic dynamic memory network
(w/o MDMN), relevance prediction task (w/o RP), and re-
inforcement learning algorithm (w/o RL), respectively. The
ablation results are summarized in Tables 1-2 (bottom five
rows). As expected, all the components contribute great im-
provements to the proposed DRES model. In particular, the
performance of DRES decreases sharply when discarding
the reinforcement learning and multi-task learning.

Case Study

To evaluate the proposed model qualitatively, we use an ex-
emplary case for the topic “Hiroshima atomic bomb” from
TREC-RST-16 to demonstrate the adaptive ability of DRES
for real-time event summarization. Table 4 shows the sum-
marization results for a snippet of the tweet sequence of
10 tweets given the query topic “Hiroshima atomic bomb”.
From the results, we can observe that DRES tends to gen-
erate a filtered stream of documents that are relevant, non-
redundant, and timely to the given query. For example, our
model skips the third and fourth tweets while it keeps the
fifth tweet. Note that the fifth one is more comprehensive
and relevant to the given query (topic), which shows the
effectiveness of our method on selecting better documents.
Moreover, after keeping the fifth one, our model skips the
subsequent tweets (e.g., the eighth and the ninth tweets) that
are relevant but redundant, which verifies the effectiveness
of our method on avoiding redundancy.

6 Conclusion

This paper proposed a novel deep reinforcement learning
framework for real-time event summarization. Benefiting
from the hierarchical cross-attention, multi-task learning,
multi-topic dynamic memory network, and RL strategy, the
proposed model was able to resolve three main challenges
(i.e., relevance, non-redundancy, timeliness) of real-time
event summarization in a unified framework. Experimental
results on two real-life datasets showed that our proposed
approach significantly outperforms the baseline methods.
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