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Abstract

Word embedding has become essential for natural language
processing as it boosts empirical performances of various
tasks. However, recent research discovers that gender bias
is incorporated in neural word embeddings, and downstream
tasks that rely on these biased word vectors also produce
gender-biased results. While some word-embedding gender-
debiasing methods have been developed, these methods
mainly focus on reducing gender bias associated with gender
direction and fail to reduce the gender bias presented in word
embedding relations. In this paper, we design a causal and
simple approach for mitigating gender bias in word vector re-
lation by utilizing the statistical dependency between gender-
definition word embeddings and gender-biased word embed-
dings. Our method attains state-of-the-art results on gender-
debiasing tasks, lexical- and sentence-level evaluation tasks,
and downstream coreference resolution tasks.

.

1 Introduction

Word embeddings that capture the relationship between
words have become an essential component of natural lan-
guage processing (NLP) due to its enhancement to the per-
formance of numerous downstream tasks including senti-
ment analysis (Tang et al. 2014), information retrieval (Gan-
guly et al. 2015), and question answering (Yang et al. 2016).

Recent studies have discovered that neural word embed-
dings, such as Word2Vec (Mikolov et al. 2013) and GloVe
(Pennington, Socher, and Manning 2014), exhibit gender
bias to various extents (Bolukbasi et al. 2016; Zhao et al.
2018b). Sources of gender bias of word vectors are two-fold.
Firstly, word vectors of gender-neutral words are found to
favor spatial directions of either male- or female-definition
words, which is defined as gender bias associated with gen-
der direction. Secondly, gender bias is also presented in
the distance between embeddings of gender-neutral words,
which is attributed to as gender bias in word vector relation.

Gender-biased word embeddings lead to serious social
implications. For example, many NLP pipelines routinely
use clustering algorithms as a feature extraction step. Yet,
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gender-biased word embeddings are known to be suscepti-
ble to clustering algorithms. For instance, Gonen and Gold-
berg (2019) discover that clustering algorithms tend to dif-
ferentiate word vectors as either male or female associated,
despite the fact that these words are by definition not asso-
ciated with gender. When it comes to concrete downstream
NLP tasks, the usage of gender-biased word vectors is even
more worrying. Zhao et al. (2018a) illustrate that the word
embedding component used in coreference resolution sys-
tems results in gender-biased identification outcomes. Park,
Shin, and Fung (2018) find that one of the leading causes
of gender bias in abusive language detection models is the
sexist word embeddings employed.

Due to the importance of eliminating gender bias from
word embeddings, previous research has proposed post-
processing algorithms (Bolukbasi et al. 2016; Kaneko and
Bollegala 2019) and word-vector-learning algorithms (Zhao
et al. 2018b) aiming at solving this issue. While these meth-
ods adopt the strategy of forcing gender-biased word vec-
tors to be orthogonal to a gender directional vector, which
alleviates the gender bias associated with gender direction
significantly, this strategy has been proven to be unhelpful
in reducing the gender bias in word vector relation (Gonen
and Goldberg 2019). Moreover, some previous methods re-
quire tuning several hyper-parameters as well as differenti-
ating between gender-neutral and gender-biased words.

In this paper, we design a causal and simple post-
processing approach for reducing gender bias in word em-
beddings, which addresses the limitations of previous re-
search. While traditional methods mitigate gender bias
by diminishing the relationship between the gender-biased
word vector and the gender direction, our method is quite
different: we propose to learn the spurious gender infor-
mation via causal inference by utilizing the statistical de-
pendency between gender-biased word vectors and gender-
definition word vectors. The learned spurious gender infor-
mation is then subtracted from the gender-biased word vec-
tors to achieve gender-debiasing. Through learning the gen-
der information in gender-biased word vectors, both gen-
der bias in word vector relation and gender bias associated
with gender direction are approximated and subtracted. The
proposed method is theoretically interpretable via the Half-
Sibling framework proposed by Schölkopf et al. (2016), and
it is practically simple as only one hyper-parameter needs
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to be tuned, and no additional classification of words is re-
quired.

The experimental results on gender direction relation
tasks, gender-biased word relation tasks, lexical- and
sentence-level evaluation tasks, and downstream corefer-
ence resolution tasks show the effectiveness of our pro-
posed method. Specifically, while constantly achieving the
best performance on the gender-biased word relation tasks
GBWR-Correlation and GBWR-Profession (see Section
4.2), our proposed method attains 6.72% and 4.98% im-
provement respectively compared to the runner-up method,
and it results in 16.89% and 17.02% improvement com-
pared to the original embedding. Furthermore, our method
achieves an average improvement of 6.96% on eight lexical-
level evaluation tasks, and it obtains an average improve-
ment of 14.19% on 20 sentence-level evaluation tasks com-
pared to the prior best post-processing methods. Lastly, on
the downstream gender coreference resolution task Wino-
Bias, our method reduces the difference between the corefer-
ence accuracy of pro-stereotyped and anti-stereotyped sen-
tences by 87.26% compared to the runner-up method.

The contributions of this paper are summarized as fol-
lows: (1) To the best of our knowledge, our method is
the first word-vector gender-debiasing method that applies
causal inference to learn and subtract spurious gender in-
formation; (2) The method we propose is light-weight and
simple to implement; (3) The experimental results demon-
strate that our method is the state-of-the-art post-processing
method that mitigates both types of gender biases, enhances
the general quality of word vectors, and diminishes gender
bias in downstream tasks.

The rest of the paper is organized as follows. First, we
briefly review related work on gender bias identification and
gender-debiasing methods for word vectors. Then, we in-
troduce our Half-Sibling Regression method for alleviat-
ing gender bias in word embeddings. Finally, we conduct
experiments on a series of gender-debiasing tasks, lexical-
and sentence-level evaluation tasks, and coreference resolu-
tion tasks to reveal the effectiveness of the proposed post-
processing algorithm1.

2 Related Work

2.1 Aspects of Gender Bias

Words can be classified as gender-definition and non-
gender-definition words. Gender-definition words are as-
sociated with gender by definition, such as mother and
father. While non-gender-definition words are not associ-
ated with gender, the word embeddings of some non-gender-
definition words are not gender-neutral and contain gender
bias. Previous research has discovered and defined two types
of gender biases in word vectors: gender bias associated with
gender direction and gender bias in word vector relation.

Gender bias associated with gender direction Gender
bias associated with gender direction is the bias with respect

1Codes are available at https://github.com/KunkunYang/
GenderBiasHSR

to a vector that mostly captures the gender information in a
word embedding. The gender direction is defined as the dif-
ference between the word vectors of male-definition words
(e.g. he) and female-definition words (e.g. she), in which
the vector

−→
he − −→she is the most widely accepted definition

of the gender direction. Bolukbasi et al. (2016) discover that
some words have a large projection on the gender direction,
and this large projection value is considered as the gender
bias associated with gender direction. For example, given
the word embedding GloVe pre-trained on 2017 January
dump of English Wikipedia, the cosine similarity between
−−−→nurse and the gender direction

−→
he − −→she has a negative

value of -0.2146, and the cosine similarity between
−−−−→
colonel

and the gender direction has a positive value of 0.1830. For
reference,

−−→
tree, which is seldom related to human, has a co-

sine similarity of 0.0046 with respect to the gender direc-
tion, which is much closer to zero compared to −−−→nurse and−−−−→
colonel. Therefore, it is easy to see that −−−→nurse has a female
bias, and

−−−−→
colonel has a male bias.

The gender bias associated with gender direction of a
word embedding is removed when the projection of the word
embedding on the gender direction is zero.

Gender bias in word vector relation While much pre-
vious research believes that the gender bias associated with
gender direction represents all gender-stereotypical informa-
tion in word embeddings, Gonen and Goldberg (2019) show
that after diminishing the cosine similarity between the word
embedding and the gender direction to zero, another system-
atic gender bias still exists, which is the gender bias implied
in the relations between the non-gender-definition word vec-
tors (referred to as gender bias in word vector relation). Af-
ter subtracting the gender direction, most gender-biased em-
beddings of non-gender-definition words remain their pre-
vious similarity to each other, and they still cluster together
as male- and female-biased words. For example, in the pre-
trained GloVe embedding, the cosine similarity between two
female-biased word vectors

−−−−→
dancer and −−−→nurse is 0.2728,

while the cosine similarity between
−−−−→
dancer and the male-

biased word
−−−−→
colonel has a much smaller value of 0.0891.

This close relationship between the two female-biased word
vectors

−−−−→
dancer and −−−→nurse cannot be thoroughly eliminated

by just removing their relation to the gender direction.
To eliminate gender bias presented in word vector rela-

tions, the similarity between male/female-biased word em-
beddings needs to be removed. Gonen and Goldberg (2019)
propose five tasks to measure the degree of gender bias in
word vector relation.

2.2 Prior Gender-Debiasing Methods

After defining what gender bias is, we now look at
prior gender-debiasing methods. Word-embedding gender-
debiasing methods can be classified into two groups:
post-processing approaches and word-vector-learning ap-
proaches.
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Post-processing approaches alleviate gender bias during
the post-processing period of word vectors. Bolukbasi et
al. (2016) develop a hard-debiasing method which first
classifies the words into gender-definition words and non-
gender-definition words using a support vector machine
classifier trained on a seed set of gender-definition words,
and then projects non-gender-definition words to a subspace
that is orthogonal to a gender directional vector defined by
a set of male- and female-definition word pairs. Kaneko
and Bollegala (2019) construct a gender-preserving debias-
ing method that utilizes an autoencoder. The loss function
of the autoencoder retains the gender-related information
of gender-definition words, requires the gender-biased and
gender-neutral words to be embedded into a subspace which
is orthogonal to a gender directional vector computed in a
similar fashion as in Bolukbasi et al. (2016), and minimizes
the reconstruction loss of the autoencoder.

Furthermore, debiasing methods that mitigate gender bias
during the learning process of word vectors have also been
developed. Zhao et al. (2018b) propose Gender-Neutral
GloVe, a word-vector-learning algorithm in which the ob-
jective function is a combination of the original GloVe
objective function and two extra components. One of the
extra components maximizes the distance between male-
and female-definition words, the other component requires
the non-gender-definition words to be orthogonal to a gen-
der directional vector defined similarly as in Bolukbasi et
al. (2016).

While both post-processing approaches and word-vector-
learning approaches could effectively mitigate gender bias,
some limitations exist. Firstly, all three previous methods re-
duce gender bias by forcing the non-gender-definition word
vectors to be orthogonal to a gender directional vector. This
strategy mitigates the gender bias associated with gender
direction efficiently by directly removing spurious associ-
ations between gender-biased word vectors and the gender
direction. Yet, according to the experimental results of Go-
nen and Goldberg (2019), this strategy fails to significantly
reduce the gender bias in word vector relation. Secondly, for
Gender-Neutral GloVe and the gender-preserving debiasing
method, as two to three constraints are added to the orig-
inal objective function, the hyper-parameters of these con-
straints need to be optimized, which complicates the debi-
asing process. Thirdly, for the gender-preserving debiasing
method, the distinction between gender-neutral words and
gender-biased words in non-gender-definition words is nec-
essary for the undersampling process, resulting in an extra
classification step compared to the other methods.

3 Causal Gender-Debiasing
To comprehensively reduce gender bias, we propose a post-
processing algorithm that builds upon a statistical depen-
dency graph and uses causal inference method to learn and
subtract the spurious gender information contained in non-
gender-definition word vectors directly, instead of only re-
moving the relationship between the gender direction and
the word vectors.

Consider two classes of words, gender-definition word
vectors that embody gender information by definition, and

non-gender-definition word vectors that contain gender bias,
like −−−→nurse and

−−−−→
colonel. It is easy to see that both word

vectors contain underlying gender information. In addition,
the semantic content (apart from gender information) of the
two groups of word vectors is different. While non-gender-
definition word vectors contain abundant semantic content,
the gender-definition word vectors contain little semantic
content apart from the gender information. Figure 1 illus-
trates the relation between the above-mentioned groups of
word vectors and the underlying contents, in which the black
arrows indicate statistical dependency between variables.

Figure 1: Relation between gender-definition word vectors
and gender-biased non-gender-definition word vectors

Based on the semantic features of gender-definition word
vectors and gender-biased non-gender-definition word vec-
tors, we could formulate a procedure to extract the de-
sired gender-debiased semantic information of non-gender-
definition word vectors. Specifically, we propose that the
debiased non-gender-definition word vectors V̂N is learned
by subtracting the approximated gender information Ĝ from
the original non-gender-definition word vectors VN :

V̂N := VN − Ĝ, (1)

where the approximated gender information Ĝ is obtained
by predicting VN using the gender-definition word vectors
VD:

Ĝ := E[VN |VD]. (2)
Since VN and VD embody the same gender information,
when predicting VN using VD, the underlying gender in-
formation is learned by Ĝ. Furthermore, as VD contains lit-
tle semantic information apart from the gender information,
when approximating VN using VD, the semantic informa-
tion of VN is not learned by Ĝ. Hence, when we subtract Ĝ
from VN , only spurious gender information is eliminated,
and the semantic information of VN is preserved, which is
eventually the gender-debiased word embeddings.

The above debiasing framework is named Half-
Sibling Regression (HSR) as we inherit the idea from
a confounding-noise-elimination method proposed by
Schölkopf et al. (2016). The name of the framework comes
from the fact that VN and VD share one parent of gender
information, but their other parent, semantic information, is
different. Therefore, VN and VD are half-siblings. HSR has
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Algorithm 1: HSR for gender-debiasing
Input : Matrix VD of gender-definition word vectors

as columns, Matrix VN of
non-gender-definition word vectors as
columns, Ridge Regression constant α.

1 Compute the weight matrix of Ridge Regression:
W← (

(VD)�VD + αI
)−1

(VD)�VN

2 Compute the approximated gender information:
Ĝ← VDW

3 Subtract gender information from the
non-gender-definition word vectors: V̂N ← VN − Ĝ

Output: HSR debiased non-gender-definition word
vectors V̂N .

proven to be theoretically effective. Schölkopf et al. (2016)
show that HSR approximates the cleaned variable not less
than the mean-subtraction method does.

To calculate Ĝ, we use Ridge Regression (Hoerl and Ken-
nard 1970). The formal procedure of our post-processing
algorithm is described in Algorithm 1. Through learning
the approximated gender information Ĝ in gender-biased
word embeddings, both gender bias in word vector rela-
tion and gender bias associated with gender direction are
learned and subtracted. Our proposed algorithm is not only
theoretically interpretable but also practically simple. HSR
achieves gender-debiasing by utilizing the causal assump-
tions between word embeddings (see Figure 1), which en-
sures the interpretability of the model. Moreover, HSR has
only one hyper-parameter (Ridge Regression constant) that
needs to be tuned, and it does not require extra classification.

When implementing Algorithm 1, for the gender-
definition words, we combine the male- and female-word
lists2 (223 words each) in Zhao et al. (2018b) as the gender-
definition word list. Words outside of the gender-definition
word list are considered as non-gender-definition words.
Furthermore, for the Ridge Regression constant α in Half-
Sibling Regression, we fix α = 60 throughout the experi-
ment as it works well in practice.

4 Experiments

To show that our proposed HSR post-processing method
reduces both gender bias associated with gender direction
and gender bias in word vector relation, we test our method
on both gender direction relation tasks and gender-biased
word relation tasks. Furthermore, we show that the quality
of the word embedding is not only preserved but also en-
hanced after adopting our method by testing it on lexical-
and sentence-level evaluation tasks. Lastly, we show that the
word vectors generated by our method reduces gender bias
in the downstream task coreference resolution.

We examine our proposed HSR method on GloVe
(Pennington, Socher, and Manning 2014) pre-trained on
2017 January dump of English Wikipedia (represented by

2https://github.com/uclanlp/gn glove

HSR-GloVe), and compare the performance of our al-
gorithm with previous post-processing methods including
the hard-debiasing method (Hard-GloVe) (Bolukbasi et al.
2016) and the gender-preserving debiasing method (GP-
GloVe) (Kaneko and Bollegala 2019). Additionally, we
also compare with the word-vector-learning (shortened to
WV-Learning in the tables) method for gender-debiasing:
Gender-Neutral GloVe (GN-GloVe) (Zhao et al. 2018b). We
use pre-trained original GloVe embedding2 as well as the
pre-trained GP-GloVe3 and GN-GloVe2 embedding released
by the original authors.

4.1 Gender Direction Relation

Gender direction relation tasks aim to measure the degree
of gender bias associated with gender direction (see Section
2.1 for more details).

Table 1: Result of gender direction relation tasks

Post-Processing WV-Learning

GloVe Hard-GloVe GP-GloVe HSR-GloVe GN-GloVe

Bias-by-projection 0.0375 0.0007 0.0366 0.0218 0.0555
SemBias 0.8023 0.8250 0.8432 0.8591 0.9773
SemBias (subset) 0.5750 0.3250 0.6500 0.1000 0.7500

Bias-by-projection Bias-by-projection is the dot product
between the target word and the gender direction

−→
he−−→she.

Following Gonen and Goldberg (2019), we report the av-
erage absolute bias-by-projection of the embedding of the
top 500 male-biased words and the top 500 female-biased
words. These words are determined according to the bias on
the original GloVe embedding.

The first row in Table 1 shows the bias-by-projection,
where the result marked in bold indicates the best re-
sult among all post-processing methods, and the result un-
derlined is the globally best result. We could see that,
while Hard-GloVe has the least bias-by-projection among
all methods, our method is the runner-up and outperforms
the word-vector-learning method GN-GloVe.

SemBias SemBias is an analogy task created by Zhao et
al. (2018b) after SemEval 2012 Task2 (Jurgens et al. 2012).
The task aims at identifying the gender-definition word
pair from four pairs of words, including a gender-definition
word pair, a gender-biased word pair, and two other pairs
of words. The dataset contains 440 instances, in which 40
instances are not used during the training process of GN-
GloVe, GP-GloVe, and HSR-GloVe. Hence the 40 instances
(denoted by SemBias (subset)) are used to test the general-
izability of the methods. For each instance, we calculate the
subtraction −→a − −→b for each word pair (a, b), and the word
pair with the highest cosine similarity between the subtrac-
tion and the gender direction

−→
he − −→she is selected as the

prediction based on the corresponding embedding.

3https://github.com/kanekomasahiro/gp debias
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The accuracy of identifying the gender-definition word
pairs is reported in Table 1. It is observed that our method is
the best-performing post-processing method on SemBias.

4.2 Gender-Biased Word Relation

Gender-biased word relation tasks examine whether gender
bias in word vector relation exists (see Section 2.1 for more
details). We use the five gender-biased word relation tasks
proposed by Gonen and Goldberg (2019).

Table 2: Result of gender-biased word relation tasks

Post-Processing WV-Learning

GloVe Hard-GloVe GP-GloVe HSR-GloVe GN-GloVe

GBWR-Clustering 1.0000 0.8050 1.0000 0.9410 0.8560
GBWR-Correlation 0.7727 0.6884 0.7700 0.6422 0.7336
GBWR-Profession 0.8200 0.7161 0.8102 0.6804 0.7925
GBWR-Association 2 1 3 1 3
GBWR-Classification 0.9980 0.9068 0.9978 0.9055 0.9815

Clustering male- and female-biased words (GBWR-
Clustering) This task takes the top 500 male-biased words
and the top 500 female-biased words according to the orig-
inal embedding and clusters them into two clusters using k-
means (Lloyd 1982). The purity (Manning, Raghavan, and
Schütze 2008) against the original biased male and female
clusters is shown in Table 2. We could see that HSR-GloVe
is the runner-up among all post-processing methods.

Correlation between bias-by-projection and bias-by-
neighbors (GBWR-Correlation) While we demonstrate
the bias-by-projection in Section 4.1, bias-by-neighbors
refers to the percentage of male/female socially-biased
words among the k-nearest neighbors of the target word,
where k = 100. The GBWR-Correlation task calculates the
Pearson correlation between the two biases.

In Table 2, it is observed that our proposed HSR-GloVe
has the lowest Pearson correlation coefficient and outper-
forms all post-processing and word-vector-learning meth-
ods. Specifically, HSR brings about 6.72% reduction of the
correlation coefficient compared to the runner-up method,
and it achieves 16.89% reduction compared to the original
GloVe embedding.

Bias-by-neighbors of profession words (GBWR-
Profession) For this task, we first calculate the 100
nearest neighbors of profession words adopted by Boluk-
basi et al. (2016) and Zhao et al. (2018b). Then, we
compute the Pearson correlation between the number of
male neighbors and the original bias.

The Pearson correlation coefficient is shown in Table 2.
Again, our proposed HSR-GloVe has the lowest Pearson
correlation coefficient and outperforms all other methods.
Moreover, our method further reduces the correlation coef-
ficient by 4.98% compared to the runner-up method, and it
results in 17.02% reduction compared to the original GloVe
embedding.

We also plot the number of male neighbors for each pro-
fession against its original gender bias in Figure 2. We could

see that for HSR-GloVe, the percentage of male neighbors
is much closer to 50% for words with different original gen-
der bias. For example, after debiasing via HSR, the number
of male neighbors of the female-biased word vector −−−−→nanny

and the male-biased word vector
−−−−−→
warden are both around

60, while in the original GloVe embedding, −−−−→nanny has less
than 10 male neighbors and

−−−−−→
warden has around 90 male

neighbors.

Association between female/male and female/male-
stereotyped words (GBWR-Association) Following the
Word Embedding Association Test (WEAT) created by
Caliskan, Bryson, and Narayanan (2017), Gonen and Gold-
berg (2019) develop three association tasks which mea-
sure the association between female/male names and three
groups of words including family and career words, arts and
mathematics words, and arts and science words.

Table 2 documents the number of significant p-values in
the three tasks, and the p-values of the three tasks for each al-
gorithm are reported in the appendix. HSR-GloVe and Hard-
GloVe have the best performance that only one of the three
p-values is significant.

Classifying previously female- and male-biased words
(GBWR-Classification) In this task, the top 5000 female-
and male-biased words (2500 for each gender) are sampled,
and an SVM classifier is trained on a subset of 1000 words
to predict the gender of the rest 4000 words.

The classification accuracy is reported in Table 2, we
could see that HSR-GloVe has the least accuracy among all
debiasing methods, indicating that it preserves the least gen-
der bias.

4.3 Lexical- and Sentence-Level Evaluation

Besides the gender-debiasing quality, the general quality of
word embedding is also crucial as it influences the per-
formance of word embedding in many downstream NLP
tasks. To test the gender-debiasing methods, we employ one
lexical-level task: (a) word similarity task; and one sentence-
level task (b) semantic textual similarity task.

Word similarity Word similarity tasks compare the sim-
ilarity between embeddings of word pairs with human-
annotated similarity scores. We use eight word similarity
tasks to evaluate the proposed gender-debiasing method.
The eight tasks include RG65 (Rubenstein and Goode-
nough 1965), WordSim-353 (Finkelstein et al. 2002), Rare-
words (Luong, Socher, and Manning 2013), MEN (Bruni,
Tran, and Baroni 2014), MTurk-287 (Radinsky et al. 2011),
MTurk-771 (Halawi et al. 2012), SimLex-999 (Hill, Re-
ichart, and Korhonen 2015), and SimVerb-3500 (Gerz et al.
2016). For each task, the Spearman’s rank correlation co-
efficient (Myers and Well 1995) of the estimated rankings
against the human rankings is calculated and shown in Table
3, where the result marked in bold is the best result among
all post-processing methods, and the result underlined is the
globally best result.
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(a) Original GloVe (b) Hard-GloVe (c) GP-GloVe

(d) HSR-GloVe (e) GN-GloVe

Figure 2: The number of male neighbors for each profession against its original gender bias. Only a limited number of profes-
sions are shown on the plots to ensure readability.

From the table, we could observe that HSR-GloVe has
a dominantly better performance against all other post-
processing methods as it obtains the best result in seven
out of the eight tasks. Compared to the word-vector-learning
method, HSR-GloVe still has the best performance by hav-
ing five globally best coefficients out of the eight tasks.
Overall, HSR-GloVe improves the coefficient of the eight
word similarity tasks by 6.96% on average compared to the
prior best post-processing methods, and it results in 7.31%
improvement compared to the original embedding.

Table 3: Spearman’s rank correlation coefficient of word
similarity tasks

Post-Processing WV-Learning

GloVe Hard-GloVe GP-GloVe HSR-GloVe GN-GloVe

RG65 0.7540 0.7648 0.7546 0.7764 0.7457
WordSim-353 0.6199 0.6207 0.6003 0.6554 0.6286
RW 0.3722 0.3720 0.3450 0.3868 0.3989
MEN 0.7216 0.7212 0.6974 0.7353 0.7446
MTurk-287 0.6480 0.6468 0.6418 0.6335 0.6617
MTurk-771 0.6486 0.6504 0.6391 0.6652 0.6619
SimLex-999 0.3474 0.3501 0.3389 0.3971 0.3700
SimVerb-3500 0.2038 0.2034 0.1877 0.2635 0.2219

Semantic textual similarity The semantic textual simi-
larity (STS) tasks examine the sentence-level effectiveness
of word embeddings by measuring the degree of semantic
equivalence between two texts (Agirre et al. 2012). The STS
tasks we employ include 20 tasks from 2012 SemEval Se-
mantic Related task (SICK) and SemEval STS tasks from
2012 to 2015 (Marelli et al. 2014; Agirre et al. 2012; 2013;
2014; 2015). For each task, we average the embedding of
words in the sentence as the sentence embedding, and record
the Pearson correlation coefficient of the estimated rankings
of sentence similarity against the human rankings. In Ta-
ble 4, we report the average Pearson correlation coefficient
for the STS tasks each year (detailed results are in the ap-
pendix).

From Table 4, we could see that HSR-GloVe outper-
forms all post-processing and word-vector-learning gender-
debiasing methods by performing the best globally on four
out of the five tasks. For the SICK task, HSR-GloVe per-
forms the best among all post-processing methods. On av-
erage, HSR-GloVe achieves an improvement of 14.19%
over the 20 STS tasks with respect to the prior best post-
processing methods, and it attains 14.71% improvement
with respect to the original embedding.

Table 4: Average Pearson correlation coefficient of semantic
textual similarity tasks each year

Post-Processing WV-Learning

GloVe Hard-GloVe GP-GloVe HSR-GloVe GN-GloVe

STS-2012 48.92 48.03 45.34 51.27 50.90
STS-2013 46.90 46.92 43.16 52.46 48.71
STS-2014 50.99 50.41 46.67 60.07 54.16
STS-2015 51.26 50.02 47.22 61.36 53.49
SICK 62.11 61.23 59.02 62.56 63.58

4.4 Downstream Task: Coreference Resolution

Lastly, we examine whether HSR-debiased word vectors re-
duce gender bias in the downstream task coreference res-
olution. Coreference resolution tasks strive to discover all
textual mentions that refer to the same entity in a given
text. Recently, Zhao et al. (2018a) show that word em-
bedding is one of the causes of gender-biased identifica-
tion outcomes of neural coreference resolution systems. We
test the word embeddings on two coreference resolution
tasks: OntoNotes 5.0 (Weischedel et al. 2013) and Wino-
Bias (Zhao et al. 2018a). OntoNotes 5.0 is a benchmark
dataset for coreference resolution with texts from various
genres. WinoBias dataset evaluates the level of gender bias
in coreference resolution outcomes. The dataset is split into
pro-stereotype (PRO) and anti-stereotype (ANTI) datasets.
The PRO dataset contains sentences in which a gender pro-
noun (e.g. she) refers to a profession (e.g. nurse) that is
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biased toward the gender represented by the pronoun. The
ANTI dataset is composed of the same sentences as the PRO
dataset, except that the gender pronouns are reversed man-
ually. A coreference resolution model passes the WinoBias
test when the pro-stereotyped and anti-stereotyped corefer-
ence outcomes are made with the same accuracy (Zhao et al.
2018a).

Table 5: Average F1 score of coreference resolution tasks

Post-Processing WV-Learning

GloVe Hard-GloVe GP-GloVe HSR-GloVe GN-GloVe

OntoNotes-test 66.5 66.2 66.2 66.2 66.2
WinoBias-PRO 76.2 70.6 71.2 63.0 72.4
WinoBias-ANTI 46.0 54.9 52.4 61.0 51.9
WinoBias-Avg 61.1 62.8 61.8 62.0 62.2
WinoBias-Diff 30.2 15.7 18.8 2.0 20.5

Following the experimental setting of Zhao et al. (2018b),
we train the end-to-end coreference resolution model (Lee et
al. 2017) using OntoNotes 5.0 train set for each of the em-
beddings, and we report the average F1 score on OntoNotes
5.0 test set, WinoBias PRO test set (Type 1), and WinoBias
ANTI test set (Type 1). Furthermore, we also report the av-
erage (WinoBias-Avg) and the difference (WinoBias-Diff)
between WinoBias PRO and ANTI test sets.

The experimental results of coreference resolution tasks
are shown in Table 5. The results of GloVe, Hard-GloVe,
and GN-GloVe are collected from Zhao et al. (2018b). From
the table, we could see that HSR-GloVe performs the best
on the WinoBias task by achieving the lowest difference
(WinoBias-Diff) between PRO and ANTI datasets. Specif-
ically, HSR-GloVe reduces WinoBias-Diff by 87.26% com-
pared to the runner-up method Hard-GloVe and by 93.38%
compared to the original GloVe embedding. Furthermore,
HSR-GloVe has an on-par performance on the OntoNotes
5.0 benchmark dataset compared to other baselines.

5 Conclusion

In this paper, we introduce a causal and simple gender-
debiasing method which reduces gender bias during the
post-processing period of word embeddings. Our proposed
Half-Sibling Regression algorithm learns the spurious gen-
der information via Ridge Regression and subtracts the
learned gender information from the original non-gender-
definition word vectors to obtain the gender-debiased word
vectors. The experimental results on gender direction rela-
tion tasks, gender-biased word relation tasks, lexical- and
sentence-level evaluation tasks, and coreference resolution
tasks show that our proposed method (1) reduces gender
bias in word vector relation as well as gender bias asso-
ciated with gender direction, (2) enhances the lexical- and
sentence-level quality of the word vectors, (3) diminishes
gender bias in downstream tasks such as coreference reso-
lution, and (4) consistently improves performance over the
existing post-processing and word-vector-learning methods.

In the future, we will incorporate other supervised learn-
ing algorithms into the Half-Sibling framework and compare
their performance to the Ridge Regression method proposed
in this paper. Moreover, since our proposed algorithm is only

suitable for alleviating gender bias of non-contextualized
word embeddings, we will try to extend our method to de-
bias contextualized word embeddings. We believe that HSR
can be adopted as a post-processing method for contextual-
ized word embeddings, and it is also possible to incorporate
HSR during the training process of contextualized models.
Last but not least, our method can be generalized to iden-
tify and mitigate other social biases such as racism in word
vectors.
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