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Abstract

Recent years have seen rapid progress in identifying prede-
fined relationship between entity pairs using neural networks
(NNs). However, such models often make predictions for
each entity pair individually, thus often fail to solve the in-
consistency among different predictions, which can be char-
acterized by discrete relation constraints. These constraints
are often defined over combinations of entity-relation-entity
triples, since there often lack of explicitly well-defined type
and cardinality requirements for the relations. In this pa-
per, we propose a unified framework to integrate relation
constraints with NNs by introducing a new loss term, Con-
straint Loss. Particularly, we develop two efficient meth-
ods to capture how well the local predictions from mul-
tiple instance pairs satisfy the relation constraints. Experi-
ments on both English and Chinese datasets show that our ap-
proach can help NNs learn from discrete relation constraints
to reduce inconsistency among local predictions, and outper-
form popular neural relation extraction (NRE) models even
enhanced with extra post-processing. Our source code and
datasets will be released at https://github.com/PKUYeYuan/
Constraint-Loss-AAAI-2020.

Introduction

Relation extraction (RE) aims to extract predefined relations
between two marked entities in plain texts, and its success
can benefit many knowledge base (KB) related tasks like
knowledge base population (KBP) (Suchanek et al. 2013;
Wu, He, and Hu 2018), question answering (QA) (Dai, Li,
and Xu 2016; Yu et al. 2017; Lai et al. 2019) and etc.

Most existing works investigate the RE task in a classifica-
tion style. A sentence marked with a given pair of entities is
fed to a classifier to decide their relationship, also called the
sentence-level RE. Another related setup is to feed a group
of sentences containing the given entity pair to the classifier,
called the bag-level RE. We should note that both sentence-
level RE and bag-level RE make predictions for each en-
tity pair individually and locally. However, when we look at
the model outputs globally, there are always contradictions
among different predictions, such as an entity is regarded
as the object of both Country and City, two different cities

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have been labeled as Capital for one country and so on. To
alleviate these local contradictions, Chen et al. 2018 collect
constraints on the type and cardinality requirements of re-
lations, such as whether two relations should not have the
same type of subject (object), or whether a relation should
not have multiple subjects (objects) given its object (sub-
ject). Further, in the inference stage, they use integer linear
programming (ILP) to filter and adjust the local predictions
that are inconsistent with these constraints. Basically, ILP
operates in a post-processing way to copy with contradic-
tory predictions, but there is no way to provide feedback to
the original RE model.

In fact, it would be of great importance to utilize those
constraints to backwards improve the original RE models.
For example, enhanced with various attention or pooling
mechanisms, most current neural network extraction models
have shown promising performance on benchmark datasets,
but they still suffer from inconsistent local predictions (Chen
et al. 2018). If those relation constraints can be learned dur-
ing model training, that will help to further improve the over-
all performance, and we may no longer need a separate post-
processing step as ILP does.

However, directly integrating relation constraints with
NRE models is not a trivial task: (1) relation constraints
are not defined regarding a single prediction, but often over
combinations of instances, thus it is not easy to find appro-
priate representations for those constraints; (2) it is not easy
to evaluate how well pairwise predictions match the con-
straints in a batch, and it is not clear how to feed the infor-
mation back to the NRE models.

To tackle the challenges, we propose a unified framework
to flexibly integrate relation constraints with NRE models
by introducing a loss term Constraint Loss. Concretely, we
develop two methods denoted as Coherent and Semantic to
construct Constraint Loss from different perspectives. Co-
herent captures how well pairwise predictions match the
constraints from an overall perspective, and Semantic pays
more attention to which specific rule in the constraints the
pairwise predictions should satisfy. In addition, we encode
relation constraints into different representations for each
method. Notably, Constraint Loss is regarded as a rule-based
regularization term within a batch instead of regularizing
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each instance, since the relation constraints are often defined
over combinations of local predictions. Moreover, our ap-
proach does not bring extra cost to the inference phase and
can be adapted to most existing NREmodels without explicit
modifications to their structures, as it only utilizes the out-
puts from the NRE model as well as relation constraints to
obtain Constraint Loss and provides feedback to the NRE
model through backward propagation. Experiments on both
Chinese and English datasets show that our approach can
help popular NRE models learn from the constraints and out-
performs state-of-the-art methods even enhanced with ILP
post-processing. Moreover, jointing our approach and ILP
achieves further improvement which demonstrates that our
approach and the ILP post-processing exploit complemen-
tary aspects from the constraints.

The main contributions of this paper include: (1) We pro-
pose a unified framework to effectively integrate NRE mod-
els with relation constraints without interfering the inherent
NRE structure. (2) We develop two efficient methods to cap-
ture the inconsistency between local NRE outputs and re-
lation constraints, which are used as a loss term to help the
NRE training. (3) We provide thoroughly experimental study
on different datasets and base models. The results show that
our approach is effective and exploits the constraints from
different perspectives with ILP.

Related Work

Since annotating high-quality relational facts in sentences is
laborious and time-consuming, RE is usually investigated in
the distant supervision (DS) paradigm, where datasets are
automatically constructed by aligning existing KB triples <
subj, r, obj > 1 with a large text corpus (Mintz et al. 2009).
However, the automatically constructed dataset suffers the
wrong labeling problem, where the sentence that mentions
the two target entities may not express the relation they hold
in KB, thus contains many false positive labels (Riedel, Yao,
and McCallum 2010). To alleviate the wrong labeling prob-
lem, RE is usually investigated in the multi-instance learning
(MIL) framework which considers RE task at bag-level and
holds the at-least-one hypothesis, thinking that there exists at
least one sentence which expresses the entity pair’s relation
in its corresponding sentence bag (Hoffmann et al. 2011;
Surdeanu et al. 2012; Suchanek et al. 2013).

As neural networks have been widely used, an increasing
number of researches for RE have been proposed under MIL
framework. Zeng et al. 2014 use a convolution neural net-
work (CNN) to automatically extract features and Zeng et al.
2015 use a piece-wise convolution neural network (PCNN)
to capture structural information by inherently splitting a
sentence into three segments according to the two target en-
tities. Furthermore, Lin et al. 2016 proposed sentence-level
attention-based models (ACNN, APCNN) to dynamically re-
duce the weights of noisy sentences. And there also exists
many NN based works improving the RE performance by
utilizing external information, such as syntactic information

1We use subj, obj and r to denote subject, object and relation
for a KB triple, respectively, in the rest of this paper.

(He et al. 2018), entity description (Ji et al. 2017), relation
aliases (Vashishth et al. 2018) and etc.

In addition, there are many works focusing on combining
NNswith precise logic rules to harness flexibility and reduce
uninterpretability of the neural models. Hu et al. 2016 make
use of first-order logic (FOL) to express the constraints and
propose a teacher-student network that could project predic-
tion probability into a rule-regularized subspace and trans-
fer the information of logic rules into the weights of neural
models. Xu et al. 2018 put forward a semantic loss frame-
work, which bridges between neural output vectors and log-
ical constraints by evaluating how close the neural network
is to satisfying the constraints on its output with a loss term.
And Luo et al. 2018 develop novel methods to exploit the
rich expressiveness of regular expressions at different lev-
els within a NN, showing that the combination significantly
enhances the learning effectiveness when a small number of
training examples are available.

However, using these frameworks on RE is not straightfor-
ward. Specifically, Hu et al. 2016 directly project prediction
probability of instance as they can assess how well a single
instance’s prediction satisfies the rules, while constraints in
RE are non-local and we could not examine each instance
individually for the violation of constraints. Luo et al. 2018
need the regular expressions to provide keyword informa-
tion and get a priori category prediction, however, generat-
ing high-quality regular expressions from RE datasets is not
easy. For Xu et al. 2018, since our constraints are related to
the combination of instances rather than a single instance,
to utilize the semantic loss framework, we need to find ap-
propriate representations for various relation constraints and
evaluate the neural output in a pairwise way.

Relation Constraints

Since many KBs do not have a well-defined typing sys-
tem and explicit argument cardinality requirements, sim-
ilar in spirit with Chen et al. 2018, our relation con-
straints are defined over the combination of two triples:<
subjm, rm, objm > and < subjn, rn, objn >. 2 We derive
the type and cardinality constraints from existing KB to im-
plicitly capture the expected type and cardinality require-
ments on the arguments of a relation. One can surely employ
human annotators to collect such constraints.

Type Constraints. Type constraints implicitly express the
types of subjects and objects that a specific relation could
have. For example, the subject and object types for relation
almaMater should be PERSON and SCHOOL, respectively,
and we take positive rules [almaMater and knownFor could
have the same subject type] and [almaMater and employer
could have the same object type] to implicitly encode al-
maMater’s subject and object type requirements.

Specifically, we use entity sharing between different re-
lations to implicitly capture the expected argument type of

2The main difference is that our constraints are considered as
positive rules where we expect the relation predictions to fall in,
while the constraints in Chen et al. 2018 are considered as inviolate
rules that the local predictions should not break.
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each relation. If the subject (or object) set of relation ri in
KB has an intersection with those of rj , then we consider
ri and rj could have the same expected subject (or object)
type. We thereby assign relation pairs (ri, rj) into Cts if
they are expected to have the same subject type, into Cto if
they are expected to have the same object type, and assign it
into Ctso if the subject type of one relation is expected to
be same as the object type of the other.

Cardinality Constraints. Cardinality constraints indicate
the cardinality requirements on a relation’s arguments. For
example, relation almaMater could have multiple subjects
(PERSON) when its object (SCHOOL) is given.

Specifically, for each predefined relation ri, we collect all
triples containing ri, and count the number of the triples that
have multiple objects (subjects) for each subject (object).
Then, we assign relation ri into Ccs if it can have multiple
subjects for a given object, into Cco if it can have multiple
objects for a given subject.

Finally, we get 5 sub-category constraint sets. We use Cφ

to represent a single set, Ct∗ ∈ {Cts,Cto,Ctso} to repre-
sent a type constraint set, and Cc∗ ∈ {Ccs,Cco} to repre-
sent a cardinality constraint set. Note that our relation con-
straints are defined to examine whether a pair of subject-
relation-object triples can hold at the same time from dif-
ferent perspectives. To make our constraints clearer, we list
some rules for each constraint set in Table 1.

Set Sampled Positive Rules

Cts (almaMater, knowFor), (city, region), (spouse, child)
Cto (almaMater, owner), (city, hometown), (capital, city)
Ctso (birthPlace, capital), (child, spouse), (city, country)
Ccs almaMater, country, city, hometown
Cco foundationPerson, child, knownFor, product

Table 1: Example rules for each constraint set Cφ.

Our Approach

As shown in Fig. 1, our framework consists of two main
components, a base NREmodel and the Constraint Loss Cal-
culator (CLC). The CLC module is designed to integrate the
relation constraints with NRE models, which does not rely
on specific NRE architectures and can work in a plug-and-
play fashion.

Base NRE Model

While our framework can work with most existing relation
extractors, in this paper, we take the most popular neural
relation extractors, ACNN and APCNN (Lin et al. 2016), as
our base extractors. 3

ACNN uses convolution neural networks with max-
pooling layer to capture the most significant features from

3We do not use the most recently neural models, such as Feng
et al. 2018, Qin, Xu, and Wang 2018 and Jia et al. 2019, as our base
model, as they focused more on noise reduction which is not within
the scope of this paper.

Mini-Batch

Constraint Loss 
Calculator

Total Loss

NRE Model

Original 
Loss

Constraint 
Loss

Back Propagation

X)(Y|pθ

Relation 
Constraints

Figure 1: Framework overview. For each mini-batch, the
Constraint Loss is calculated by evaluating the predicted
probability pθ(Y |X) according to the relation constraints.

a sentence. Then, an attention layer is used to selectively ag-
gregate individual representations from a bag of sentences
into a sentence bag embedding, which is fed to a softmax
classifier to predict the relation distribution pθ(Y |X).

APCNN is an extension of ACNN. Specifically, APCNN
divides the convolution output into three segments based on
the positions of the two given entities and devises a piece-
wise max-pooling layer to produce sentence representation.

Constraint Loss Calculator (CLC)

Given the inherent nature of our relation constraints, the
CLC can not evaluate a single subject-relation-object pre-
diction against our constraint sets, we thus operate our CLC
in a mini-batch wise way. Specifically, in each batch, we in-
tegrate the relation constraints with the NRE output by in-
troducing a loss term, Constraint Loss, which is designed
to regulate the NRE model to learn from those constraints,
e.g., not to violate the positive rules in the constraints. As
shown in Fig. 1, to calculate Constraint Loss, we first collect
the NRE output probability pθ(Y |X) within the batch, and
then the CLC takes pθ(Y |X) and relation constraints as
input to obtain Constraint Loss, which should reflect the in-
consistency among all local predictions pθ(Y |X) accord-
ing to our relation constraints. Finally, the total loss for back
propagation consists of two parts: the original NRE loss (LO)
and the Constraint Loss (LC):

Ltotal = LO + λLC

where λ is a weight coefficient.
Particularly, the key task of CLC is to evaluate how well

the current NRE output probabilities pθ(Y |X) satisfy our
relation constraints. We solve this problem in two steps. We
first calculate a local loss term L(pm,pn,Cφ) for a pair
of local predictions, i.e., pm and pn for the mth and nth

instances, respectively, 4 against the constraint set Cφ. Sec-
ondly, we aggregate all local loss terms to obtain the batch-
wise Constraint Loss. Here, we develop two methods to cal-

4We use pm to represent the probability output of the neural
model on the mth instance in a batch.
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Figure 2: A running example of our two CLC modules, Semancit and Coherent. To exhibit the main process clearly, we simplify
the example and only consider 4 relations, a mini-batch with 3 instances and two constraint sets (Cts, Ccs). The whole process
of CLC contains 3 steps, we take Semantic as an example. First, we represent constraint set Cts (Ccs) as a vector set U ts (Ucs)
and each vector represents a single rule. Then, we feed NRE output and the vector set into local loss calculator, getting the local
loss L(pm, pn,Cφ) (using Eq. 4) for each pair of instances within a batch. Finally, Constraint Loss is obtained by aggregating
all instance pairs in the batch. The main difference between Semantic and Coherent is that Coherent represents constraint set
into one vector while Semantic represents it into a vector set, utilizing relation constraints from different perspectives.

culate Constraint Loss from different perspectives, denoted
as Coherent (Coh) and Semantic (Sem), respectively.

Coherent (Coh)
In this method, we calculate Constraint Loss by evaluating
the coherence between the NRE output and a constraint set.
Note that this method only requires the NRE outputs to be
more consistent with one constraint set as a whole, but does
not explicitly push the NRE model to update according to
specific positive rules in this set.

Representing Constraint Sets. We encode a constraint
set into one single binary vector. Since the positive rules in
the type and cardinality constraint set have different forms,
we represent them in slightly different ways.

For a type constraint set Ct∗, we construct a binary vec-
tor vt∗, where vt∗i,j indicates whether relation pair (ri, rj)

belongs to Ct∗, i.e., vt∗i,j = 1 if (ri, rj) ∈ Ct∗ and vt∗i,j = 0

if (ri, rj) �∈ Ct∗. Take Cts illustrated in Fig. 2 as an exam-
ple, since (almaMater, city) ∈ Cts, vts0,1 is set to 1.

For a cardinality constraint set Cc∗, we construct a binary
vector vc∗, where vc∗i indicates whether relation ri belongs
to Cc∗, i.e., vc∗i = 1 if ri ∈ Cc∗ and vc∗i = 0 if ri �∈ Cc∗.
Again, in Fig.2, vcs0 is set to 1, since almaMater ∈ Ccs.

Thus, for each one of the 5 sub-category constraint sets,
we build one single representation vector, resulting in 5 vec-
tors {vts,vto,vtso,vcs,vco}. And the dimensions of vt∗
and vc∗ are |R|2 and |R|, respectively, where |R| is the size
of the relation set.

Local Loss Calculation. Now, we proceed to calculate the
loss term for a pair of local predictions, e.g., the mth and

nth instances, within a batch. Our expectation is that coher-
ent local prediction pairs should satisfy our constraint sets.
Again, we deal with the type constraint sets and cardinality
constraint sets separately.

Thus, for a type constraint set Ct∗ represented by vt∗,
the local loss, L(pm,pn,Ct∗), can be written as:

L(pm,pn,Ct∗) = −Imn
t∗ log(

∑

i,j

vt∗i,jp
m
i pnj ) (1)

where Imn
t∗ ∈ {0, 1} indicates whether to calculate

L(pm,pn,Ct∗). Take Imn
ts as an example, for triple pair

(subjm, rm, objm) and (subjn, rn, objn), we set Imn
ts = 1,

if subjm = subjn which means the two triples have the
same subject type and corresponding predicted relation pair
should satisfy Cts; otherwise, we assign 0 to Imn

ts .5 pmi pnj
can be considered as the probability that the base NREmodel
predicts relation ri and rj for the mth and nth instances, re-
spectively.

For cardinality constraint set Cc∗ represented by vc∗, the
local loss, L(pm,pn,Cc∗), can be written as:

L(pm,pn,Cc∗) = −Imn
c∗ log(

∑

i

vc∗i pmi pni ) (2)

where Imn
c∗ is an indicator similar to Imn

t∗ and pmi pni is seen
as the possibility that the base NRE predicts relation ri for
both the mth and nth instances.

Aggregation. To obtain the batch-wise Constraint Loss,
we simply sum all the local loss terms L(pm,pn,Cφ) in a
batch to get the total constraint loss LC (Eq. 3).

LC =
∑

m

∑

n

∑

φ

L(pm,pn,Cφ) (3)

5Detailed assignment for Imn
φ can be found in Appendix.
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Semantic (Sem)
In this method, we pay more attention to which specific rules
in the constraint sets the pairwise local predictions should
satisfy. Our intuition is that, for each of our constraint set,
good local predictions should follow one rule in that set,
while bad ones may not find any rules to satisfy. This may
push the NRE model to effectively learn from specific rules
in a more focused way.

Representing Constraints. To represent the rules in the
constraint sets more precisely, we encode each rule c ∈ Cφ

into a single binary vector u, thus, the whole set is repre-
sented as a vector set Uφ, shown as in Fig. 2. Again, since
the rules in Ct∗ and Cc∗ have different forms, we represent
them in different ways.

For each type rule (ri, rj) ∈ Ct∗, the representation vec-
tor u is a binary vector whose ith and jth dimensions are
set to 1 and the rest are set to 0. Take Cts in Fig. 2 as an
example, the rule (almaMater, city) ∈ Cts is encoded as a
vector whose first two dimensions are set to 1.

For each cardinality rule ri ∈ Cc∗, the representation
vector u is a binary vector whose ith dimension is set to 1
and the rest are set to 0. In Fig. 2, the rule almaMater ∈ Ccs

is represented by a vector, where only the first dimension is
set to 1.

Different from Coherent, here we construct one vector set
to represent each sub-category constraint sets, resulting in 5
vector sets {U ts,U to,U tso,Ucs,Uco}. And each single
rule is represented by a |R|-dim binary vector.

Local Loss Calculation. Inspired by the semantic loss
function (SL) introduced in Xu et al. 2018, which operates
on a single output, we adapt the original SL to deal with pair-
wise instances over different kinds of constraints. We design
the new local loss term as:

L(pm,pn,Cφ) = −Imn
φ log

∑

c∈Cφ

f(pm,pn, c) (4)

where Imn
φ is an indicator same as before and f is a score

function reflecting how well the pairwise predictions match
a single rule c ∈ Cφ. Since the rules in Ct∗ and Cc∗ are
encoded in different ways, we calculate f for type constraint
sets and cardinality constraint sets separately.

Thus, for a rule c in type constraint set Ct∗, the score
function f(pm,pn, c) can be calculated by:

qi = pmi + pni − pmi pni

f(pm,pn, c) =
∏

ui=1

qi
∏

ui=0

(1− qi) (5)

where u is the vector representation of c and qi is the prob-
ability that base NRE model predicts relation ri for at least
one of the mth and the nth instances.

For a rule c in cardinality constraint set Cc∗,
f(pm,pn, c) can be calculated by:

f(pm,pn, c) =
∏

ui=1

pmi pni
∏

ui=0

(1− pmi pni ) (6)

where pmi pni means the probability that NRE model predicts
relation ri for both the mth and the nth instances.

Aggregation. We use the same method as Coherent to per-
form aggregation according to Eq. 3.

Note that Coherent handles the constraint set as a whole
and treats each single rule in that set equally, while Semantic
treats all rules in a constraint set as mutually exclusive and
makes the pairwise predictions more satisfying one certain
rule in that set. Take Ccs as an example, in Eq. 2, Coherent
just simply increases the probabilities of corresponding re-
lation pairs for all positive rules, and each rule has the same
influence on the summation. However, in Eq. 6, for a poten-
tially satisfied rule, Semantic not only tries to increase the
probabilities of its corresponding relation pair, but also low-
ers the probabilities of the rest. That is, there would not exist
pair-wise local predictions which satisfy two positive rules
well in one constraint set at the same time, since if the high
probabilities of a relation pair have the positive effect on one
specific rule, it has negative effect on all the others.

Experiments

Our experiments are designed to answer the following ques-
tions: (1) whether our approach can effectively utilize the re-
lation constraints to improve the extraction performance? (2)
which CLC module performs better, Coherent or Semantic?
(3) which is the better way to utilize the relation constraints,
learning or post-processing?

Datasets

We evaluate our approach on both English and Chinese
datasets constructed by Chen et al. 2018. The English one
is constructed by mapping triples in DBpedia (Bizer et al.
2009) to sentences in the New York Times Corpus. It has 51
relations, about 50k triples, 134k sentences for training and
30k triples, 53k sentences for testing. The Chinese dataset is
built by mapping the triples of HudongBaiKe, a large Chi-
nese encyclopedia, with four Chinese economic newspapers.
It contains 28 relations, about 60k triples, 120k sentences for
training and 40k triples, 83k sentences for testing.

We automatically collect relation constraints for English
and Chinese datasets based on corresponding KBs. In total,
we obtain 541 rules for the English dataset and 110 rules for
the Chinese one.

Here we do not use the popular RE dataset created
by Riedel, Yao, and McCallum 2010, since it is produced
with an earlier version of Freebase which is not avail-
able now, and makes it impossible to automatically col-
lect the constraints. Secondly, Riedel’s dataset is dominated
by three big relations: location/contains, /people/nationality
and /people/place lived, covering about 60% of all KB
triples. Therefore, there are not enough data related to other
relations for us to collect constraints.

Setup

Following common practice in the RE community (Ji et al.
2017; He et al. 2018), we report the model performance by
both precision-recall (PR) curve and Precision@N (P@N).
We also report the average score of P@N (Mean).
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Figure 3: The PR curves of our approach on two datasets with ACNN and APCNN as base models.

The main goal of our work is to explore whether our ap-
proach can help neural models effectively learn from dis-
crete relation constraints. Therefore, the first baseline mod-
els are the two most popular base NRE models, ACNN and
APCNN. We also compare with the base NRE models en-
hanced with a post-processing ILP step, ACNN+ILP and
APCNN+ILP, which can be considered as state-of-the-art
constraint-based RE solutions.

We use a grid search to tune our hyper parameters, includ-
ing the weight coefficient λ. Details about our hyper param-
eters are reported in Appendix.

Main Results

Our main results are summarized in Fig. 3 and Table 2. As
shown in Fig. 3, we can see that both the red and green dot
lines are lifted above the solid black lines, showing that after
equipped with our CLC modules, i.e., Coherent and Seman-
tic, both ACNN and APCNN obtain significant improvement
on the English and Chinese datasets. This indicates our CLC
module actually helps the base NRE models benefit from
properly utilizing the relation constraints, without interfer-
ence to the base models.

However, we find that our approach obtains different lev-
els of improvement on the two datasets. On the Chinese
one, as shown in Table 2, with our Semantic version CLC,
APCNN(Sem) gains 4.9% improvement in Mean compared
to APCNN, but, on the English dataset, it only receives 0.5%
in Mean. Similar trends are also found for the Coherent ver-
sion and the ACNN base model. The better performance gain
on the Chinese dataset is mainly because its relation defini-
tions are more clear compared to that of the English dataset.
For example, in English dataset, there are 8 relations whose
object could be any LOCATION, such as birthPlace, while
only 3 similar relations exist in Chinese dataset.

In addition, we investigate the performance improvement
when applying our CLC module to different base NRE mod-
els. Although both ACNN and APCNN are improved by
our CLC module in various datasets, we can still observe
that ACNN generally receives more performance improve-
ment compared with the APCNN base model. Taking the
Semantic method as an example, as shown in Table 2, on
the English dataset, ACNN(Sem) obtains 2.2% performance
improvement in Mean against ACNN, while APCNN(Sem)
only fetches 0.5% improvement. And similar trends can be
found in the Coherent method and on the Chinese dataset.
The more improvement when taking the ACNN as base NRE
model is because, compared with ACNN, APCNN itself is

designed to take the entity-aware sentence structure infor-
mation into account, thus can extract more effective features
that, to some extent, can implicitly capture part of the argu-
ments’ type and cardinality requirements of a relation, leav-
ing relatively less space for our CLC module to improve.

Comparing Coherent and Semantic This paper presents
two different methods, Coh and Sem, to represent and inte-
grate the relation constraints, both of which can lead to sub-
stantial improvement with both base models and datasets.
Specifically, as shown in Table 2, Sem brings slightly more
improvement than Coh in most of the settings, e.g., on Chi-
nese dataset, APCNN(Sem) obtain about 0.2% more gains
(4.9% vs 4.7%) in Mean than APCNN(Coh). We think the
reason is that Sem provides a more precise treatment for
the constraints, e.g., embedding each rule with a vector and
trying to evaluate the NRE output against one specific rule,
while Coh represents all rules in a sub-category with one
single vector and evaluates the output against whole set of
rules, which is admittedly a more coarse fashion.

Learning? or Post-processing? Previous works show
that ILP can effectively solve the inconsistency among pre-
dictions in a post-processing fashion (Chen et al. 2018).

Now we discuss which is the better way to utilize the re-
lation constraints, our CLC module or traditional ILP post-
processing. As shown in Table 2, both APCNN(Sem) and
APCNN(Coh) outperforms APCNN+ILP by at least 0.1% on
the English dataset and 1.0% on the Chinese dataset. Similar
trends can be also found for ACNN(Sem) and ACNN(Coh).
This shows that helping base NRE models to learn from the
relation constraints can generally bring more improvement,
thus utilizes the constraints more effectively compared to
utilizing those constraints in a post-processing way.

We can also apply ILP as a post-processing step to our
approach, since our CLC module works in the model train-
ing phase, and leaves the testing phase as it is. Interestingly,
as shown in Table 2, with an extra ILP post-processing, both
Coh and Sem obtain further improvement with different base
NRE models on different datasets. This indicates that our
CLC module still may not fully exploit the useful informa-
tion behind the relation constraints. The reasons may be that
our approach and the ILP post-processing exploit the rela-
tion constraints from different perspectives. For example,
our CLC operates in a mini-batch level during training, that
is a relatively local view, but ILP post-processing directly
optimizes the model output in a slightly global view.

Moreover, in Table 3, we find that applying ILP to our
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English Dataset Chinese Dataset
Model Name P@100 P@200 P@300 Mean ΔBase P@100 P@200 P@300 Mean ΔBase

ACNN 96.70 92.61 91.72 93.68 – 89.08 86.89 84.52 86.83 –
ACNN(Coh) 97.39 93.78 90.69 93.96 +0.3 95.86 94.86 93.04 94.59 +7.8
ACNN(Sem) 97.62 95.87 94.12 95.87 +2.2 95.97 94.61 93.53 94.70 +8.1
ACNN+ILP 97.87 94.36 93.16 95.13 +1.5 93.75 92.18 90.10 92.01 +5.2
ACNN(Coh)+ILP 97.73 94.51 91.29 94.51 +0.8 97.09 96.18 94.01 95.76 +9.0
ACNN(Sem)+ILP 98.17 96.6 95.48 96.75 +3.1 97.73 96.40 94.43 96.18 +9.4

APCNN 100 98.97 97.41 98.79 – 92.96 91.75 91.08 91.93 –
APCNN(Coh) 100 99.57 97.33 98.97 +0.2 98.88 96.00 94.98 96.62 +4.7
APCNN(Sem) 100 100 97.95 99.32 +0.5 100 96.97 93.42 96.80 +4.9
APCNN+ILP 100 99.13 97.55 98.89 +0.1 96.06 95.15 94.63 95.28 +3.4
APCNN(Coh)+ILP 100 100 98.03 99.34 +0.6 99.07 96.17 95.16 96.79 +4.9
APCNN(Sem)+ILP 100 100 98.39 99.46 +0.7 100 97.67 94.25 97.31 +5.4

Table 2: Summary P@N(%) scores of our approach on two datasets with ACNN and APCNN as base models. ΔBase indicates
the difference between mentioned model and the base NRE model (ACNN in the top and APCNN in the bottom). And the name
with +ILP means that we perform ILP over the model’s outputs as an extra post-processing.

CLC enhanced model receives relatively less gain com-
pared to applying ILP to the base model, e.g., 0.5% for
APCNN(Sem) v.s. 3.4% for APCNN on the Chinese dataset.
This observation may indicate that our approach has pushed
NRE base models to learn part of the useful information be-
hind relation constraints, leaving fewer inconsistent outputs
for ILP post-processing to filter out. On the other hand, this
observation shows again that our CLC approach and the ILP
post-processing exploit complementary aspects from the re-
lation constraints, and our CLC module could be further im-
proved by taking more global optimization into account.

English Chinese
Mean ΔILP Mean ΔILP

ACNN 93.68 +1.5 86.83 +5.2
ACNN(Coh) 93.86 +0.6 94.59 +1.2
ACNN(Sem) 95.87 +0.9 94.70 +1.5
APCNN 98.79 +0.1 91.93 +3.4
APCNN(Coh) 98.97 +0.4 96.62 +0.2
APCNN(Sem) 99.32 +0.1 96.80 +0.5

Table 3: Relative improvement of different models in Mean.
ΔILP is the performance difference between the mentioned
model and the same model with an extra ILP step. For ex-
ample, ΔILP corresponding to raw ACNN indicates that ap-
plying ILP to ACNN obtains 1.5% and 5.2% gain in Mean
on English and Chinese dataset, respectively.

More Analysis

To better understand what our approach learns from the con-
straints, we take a deep look at the outputs of APCNN and
APCNN(Sem) on the test split of the Chinese dataset. First,
we count the total number of contradictory pairwise predic-
tions and find that applying our Semantic method to APCNN

achieves a reduction of 5,966 violations, 28.0% of the total6.
This indicates our approach has pushed the base NRE mod-
els to learn from the relation constraints. However, there are
still many remaining violations since our approach operates
during training in a soft and local way, compared to ILP dur-
ing testing.

Another observation is that our approach actually reduces
the violations related to each relations, and especially does
better when there are tighter requirements on the relation’s
arguments. For example, APCNN(Sem) reduces 89.6% vio-
lations for relation locationState compared to APCNN, but
for locationRegion, it only reduces 36.3%. This is because
the relation constraints may indicate more clear arguments’
type requirements for locationState than those of location-
Region, which are captured by our CLC module to push into
the base NRE during training.

Conclusion

In this paper, we propose a unified framework to effec-
tively integrate discrete relation constraints with neural net-
works for relation extraction. Specifically, we develop two
approaches to evaluate how well NRE predictions satisfy our
relation constraints in a batch-wise, from both general and
precise perspectives. We explore our approach on English
and Chinese dataset, and the experimental results show that
our approach can help the base NRE models to effectively
learn from the discrete relation constraints, and outperform
popular NRE models as well as their ILP enhanced versions.
Our study reveals that learning with the constraints can bet-
ter utilize the constraints from a different perspective com-
pared to the ILP post-processing method.
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