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Abstract

External knowledge is often useful for natural language un-
derstanding tasks. We introduce a contextual text representa-
tion model called Conceptual-Contextual (CC) embeddings,
which incorporates structured knowledge into text represen-
tations. Unlike entity embedding methods, our approach en-
codes a knowledge graph into a context model. CC embed-
dings can be easily reused for a wide range of tasks in a
similar fashion to pre-trained language models. Our model
effectively encodes the huge UMLS database by leveraging
semantic generalizability. Experiments on electronic health
records (EHRs) and medical text processing benchmarks
showed our model gives a major boost to the performance
of supervised medical NLP tasks.

Introduction

External knowledge is often useful for language understand-
ing tasks. Especially in specialized domains like medicine,
it is unlikely to attain human-level performance in text un-
derstanding without referring to external domain knowl-
edge. Ontologies and knowledge graphs are the most com-
mon forms of domain knowledge, but due to their structured
nature, it is not straightforward to incorporate them with
representation-based neural models.

Current approaches usually bridge text and knowledge
graphs with retrieval. Triplets or entities are retrieved based
on occurrences of the text tokens in the entity descriptions.
After retrieval, triplets can be treated as text sequences and
be provided to the model as an extra input (Mihaylov and
Frank 2018). Another method is to use the corresponding
entity embeddings from a graph embedding model trained
on knowledge graphs (Huang et al. 2019). However one still
needs to deal with the aligning issue between entity embed-
dings and text representations.

In this paper, we take a novel approach which takes exter-
nal knowledge into the realm of text representation learning.
Word embeddings models like skip-gram (Mikolov et al.
2013a) and contextual embedding models like BERT (De-
vlin et al. 2018) have proved the crucial role of good text
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representations in NLP tasks. Our model aims to incorporate
external knowledge into text representations, which makes
it easy to apply external knowledge and makes it robust to
variations of expression in text.

Our model, which we termed Conceptual-Contextual
(CC) Embeddings, is a contextual text representation model
similar to BERT. Instead of providing general text represen-
tations, CC embeddings are specifically designed to be “con-
cept aware.” The model is trained to recognize concept and
entity names in text and produce representations of those
concepts and entities. Knowledge from knowledge graphs is
encoded in the representations, which can be easily utilized
in NLP tasks. Like other contextual representation models,
CC embedding model can be used to generate embeddings
as features or fine-tuned for a supervised learning task.

The rest of the paper is organized as follows: we first for-
mulate our approach and discuss why it is particularly rele-
vant for the medical domain. Then we detail our model and
the process of encoding a large knowledge graph into con-
textual representations. Finally we evaluate on several tasks
to validate the effects of our CC embeddings.

Methodology

Model

… in premature infants
 cortisone was predominant 
compared with cortisol …

Cardiovascular involvement 
in rheumatoid arthritis (RA) 
is increasingly observed …

C0003873C0010137 may_prevent+ =
concept_a concept_brelation

“Cortisone” “Rheumatoid Arthritis”

Figure 1: Encoding concept mentions in text

The core component of CC embedding model is an en-
coder which encodes structured knowledge. The encoder
takes a written form of a concept as input, and outputs a
vector representation of the concept. The idea is illustrated
in Figure 1.
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In this example, the encoder encodes a mention of a con-
cept within a piece of text, and produces a concept em-
bedding that satisfies a relationship defined in a knowledge
graph:

Encode(“Cortisone”) +may prevent

≈ Encode(“Rheumatoid Arthritis”)

For simplicity we assume that the encoded concept
embeddings and relation embeddings satisfy approximate
translational relationship. Such a formulation is similar to
TransE (Bordes et al. 2013), but instead of learning entity
embeddings, we would like to learn an encoder that can
“compose” the right concept representation from a mention
found in text.

In this work we use a multi-layer bi-directional LSTM
network as the encoder, similar to ELMo (Peters et al. 2018).
Given an input sentence, it computes a representation vector
at every word positions. The only difference is that we adopt
a knowledge graph embedding objective, rather than a lan-
guage modeling objective.

To embed knowledge into it, the model is trained on a
graph embedding task. During training the model is exposed
to a large text corpus to learn to recognize and encode con-
cepts in text. After training, the model absorbs structured
knowledge in its parameters and is ready for reuse.

Knowledge in medical KBs

Medical text processing is still quite challenging despite re-
cent success of deep learning in other modalities like medi-
cal image and sequential measurement data. The difficulty of
incorporating a large amount of domain knowledge to under-
stand text is definitely a reason. Therefore we are interested
in getting an overall picture of medical domain knowledge
from the perspective of NLP, and find out to what extent can
representation models capture structured knowledge.

Another reason we are interested in the medical domain
is that there exists a good collection of well structured do-
main knowledge, maintained in the form of multiple ontolo-
gies and knowledge bases (KBs). And more importantly, a
large portion of the knowledge base entries has central at-
tributes (like concept names, relation names) expressed in
written language, rather than merely symbols and proper
nouns. This makes text processing extremely relevant in uti-
lizing the domain knowledge.

Diving into one of the medical KBs, one can summarize
the typical structured information there into two categories:
• Language inferable (LI) knowledge: these are triplets

where the relation between two concepts can be at least
partially inferred from the name of the concepts, e.g.,
Pulmonary Fibrosis is sibling Cystic Disease of Lung
The relation can be inferred as likely because “pul-
monary” means “relating to the lungs”.
• Non-language inferable (Non-LI) knowledge: facts that

are independent of the meanings of the textual expression,
for example:
Iodine 10 mg/ml Topical Solution is a Ultracare Oral
Product

In this example Ultracare is a brand name, and it is im-
possible to infer whether the relation holds solely based
on the above text.

Research on knowledge bases usually do not make such
distinctions and KB embedding models treat each concept
as an individual entity. For text understanding, however, the
first category deserves special attention because it represents
generalizable knowledge. Such knowledge can be encoded
in word representations or context representations, which
can generalize to unseen expressions of concepts.

First, the knowledge can be generalized to different ways
of writing the same concept. Medical concepts often have
different names in different KBs, for example “Enamel Dys-
plasia,” “Enamel Agenesis,” and “Enamel Hypoplasia” can
refer to the same concept. Second, knowledge can also gen-
eralize from one concept to other concepts, such as from
“Pulmonary hypertension” to “Pulmonary Fibrosis.” As we
will show in our experiments, exploiting such generaliza-
tions is a key to learning good medical concept embeddings.

Unlike entity embeddings, knowledge in text representa-
tions is generalizable and also directly available for neural
NLP models and it can help text understanding in general.
In the medical domain, applications that involve process-
ing text such as doctor notes and electrical medical records
could benefit from a representation model that incorporate
generalizable domain knowledge.

Related Work

KB embedding models. In recent years a number of KB
embedding models have been proposed that aim at learning
entity embeddings on a knowledge graph (Cai, Zheng, and
Chang 2018). Some models make use of textual informa-
tion in KBs to improve entity embeddings, like using tex-
tual descriptions of entities as complement to triplet model-
ing (Wang and Li 2016; Xiao et al. 2017), or jointly learn-
ing structure-based embeddings and description-based em-
beddings (Xie et al. 2016; Xu et al. 2017). The latter ap-
proach learns an encoder which is similar to our work, but
the encoder is only used to encode entity descriptions. These
approaches are mainly concerned with KB representations
rather than text processing. Using text also allows for induc-
tive and zero-shot (Yang, Cohen, and Salakhutdinov 2016)
entity representations, which is also a feature of our model.

Word embedding models. One way to incorporate ex-
ternal knowledge into text representations is by learning
knowledge-enhanced word embeddings. Some use joint-
objectives to train word embeddings to simultaneously sat-
isfy co-occurrence relationships and external constraints,
like in (Yu and Dredze 2014) and (Bian, Gao, and Liu 2014).
Others rely on retrofitting, which fine-tunes word vectors
in conventional word embeddings to reflect external knowl-
edge (Faruqui et al. 2015; Nguyen, Schulte im Walde, and
Vu 2016). (Glavaš and Vulić 2018) uses a technique called
“explicit retrofitting” to learn a transformation which adds
constraints to the embeddings. However, the external knowl-
edge used in this line of work is mainly word-level lexical
resources, like WordNet (Miller 1995; Liu et al. 2015), syn-
onyms and antonyms (Nguyen, Schulte im Walde, and Vu
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2016; Ono, Miwa, and Sasaki 2015). Integrating knowledge
from a general knowledge graph is more difficult because
entities and relations do not directly correspond to words.

Concept embedding models. In the NLP community
sometimes concept embeddings are regarded as a form of
phrase embeddings (Mikolov et al. 2013b), which can be
learned by treating concepts as special words. One first an-
notate the concept mentions within a corpus, then use stan-
dard word embedding model to learn embeddings for those
“special words” (Vu and Parker 2016; Shalaby, Zadrozny,
and Jin 2018). In medical domain such method is widely ex-
plored with the help of automatic annotators and ontologies
(De Vine et al. 2014; Finlayson, LePendu, and Shah 2014;
Choi, Chiu, and Sontag 2016). (Mencı́a, de Melo, and Nam
2016) expands the method by also using relationships found
in structured text.

Contextual representation models. Recently contextual
text representation models like ELMo (Peters et al. 2018),
BERT (Devlin et al. 2018) and OpenAI GPT (Radford et
al. 2018; 2019) have pushed the state-of-the-art results of
various NLP tasks. Language modeling on a giant corpus
learns powerful representations, which provides huge ben-
efits to supervised tasks, especially where labeled data is
scarce. These models use sequential or attention networks
to generate word representations in context. In the biomedi-
cal domain there is also BioBERT (Lee et al. 2019), a BERT
model trained on PubMed articles that offers competitive re-
sults on medical text processing tasks. More recently some
enhanced BERT models propose to mark entities in training,
to make models aware of entities in text (Zhang et al. 2019;
Sun et al. 2019).

Relationship to other knowledge-enhanced NLP mod-
els. Some works have explored integrating knowledge repre-
sentation into a specific task, like question answering (Hao
et al. 2017; Mihaylov and Frank 2018) and language infer-
ence (Chen et al. 2017). These models include network com-
ponents to match entities and combine entity embeddings
with input at inference time. The model design is usually
specific to the task formulation, for example, a model de-
signed on WebQuestions cannot naturally generalize to QA
tasks where the answers are not restricted to be entities. By
contrast, our approach encodes knowledge into a general
text representation model, and no specific network structure
is needed to leverage knowledge.

Conceptual-Contextual Embeddings

In this section we detail the task used to train Conceptual-
Contetxual embeddings and the training scheme, also per-
forming evaluation within a knowledge graph for analyzing
the effectiveness of training.

Task

To encode the knowledge into a text representation model,
we use knowledge graph embedding task, like in (Bordes
et al. 2013). To show our approach is scalable to large
knowledge graphs in the medical domain, we use the UMLS
database (Bodenreider 2004) for learning to encode medical
concept embeddings.

UMLS. The Unified Medical Language System (UMLS)
(Bodenreider 2004) Metathesaurus is a large biomedical the-
saurus containing concepts and relations from nearly 200
vocabularies (knowledge bases). A statistic of the database
is given in Table 1. A concept in UMLS has one or more
names associated with it (because different source vocabu-
lary can name a concept differently). Relationships are given
as triplets (head concept, relation, tail concept).

Table 1: UMLS dataset statistics
Item #

Entities (concepts) 2,983,840
Relations (general label) 14
Relations (additional label) 936
Train triplets 23,029,716
Test triplets 8059

Concept names. For each concept we take all the names
associated with it. Among all the names, some are labeled as
“preferred name” by UMLS. We extract the first “preferred
name” as a primary name for the concept, and all the other
as name variations.

Relations. Each kind of relationship in UMLS has a gen-
eral label (REL) and an optional additional label (RELA).
General labels describe the basic nature of the relationship
(e.g., Broader, Narrower, Child of, Qualifier of ), while the
additional labels explain the relationship more exactly (e.g.,
is a, branch of, component of ). We use additional labels as
relationship labels whenever available, and use general la-
bels when additional labels are absent.

All the triplets are extracted from the UMLS Metathe-
saurus Level 0 Subset and are split into a training set T and
a testing set. For each triplet in testing set, the triplet that
describes the inverse relationship is removed from the train-
ing set (if found). We further removed concepts with non-
latin characters in their names for more meaningful results
in text-based models.

Context corpus. Learning to recognize concepts in text
requires “seeing concept names in context.” We prepared
a corpus from PubMed citations and MIMIC-III critical
care database (Johnson et al. 2016). Text is extracted from
PubMed article abstracts and clinical notes in MIMIC-III
health records. The corpus contains roughly 192 million sen-
tences. We employ Apache SolrTM to index the corpus, and
use stemming normalization to increase recall for retrieval.

Model and training

The model is illustrated in Figure 2. The core of the model is
a multi-layer bi-directional LSTM network. We make use of
BioWordVec, a pre-trained biomedical domain word embed-
ding from (Chen, Peng, and Lu 2019) to embed text inputs.

Given a triplet (h, r, t) in the training dataset T , we first
lookup the name h1...n (with length n) of the head concept h:
the primary name of the concept is used or, with probability
α, randomly replaced with one of its name variations.

Next we use the name h1...n as keywords to retrieve sen-
tences from the context corpus. We keep sentences with
keyword occurrences lie adjacent to each other (forming
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Bidirectional LSTM
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 embedding
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 embedding
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tail concept

left context right context

Figure 2: Training CC embedding model to embed concepts

Algorithm 1 Training CC embedding model
Require: Training set of triplets T = {(h, r, t)}, relations

L and concept names C = {c1...n}. Vocabulary V and
word embeddings E. Context corpus S = {s1...m}

1: loop
2: for (h, r, t) ∈ T do
3: (h′, r, t′)← sample(T, (h, r, t))
4: // sample a corrupted triplet
5: for c ∈ {h, t, h′, t′} do
6: c1...n ← lookup(C, c)
7: // lookup concept names
8: cct1...m ← retrieve(S, c1...n)
9: // retrieve context sentences

10: cct1...m ← LSTM(E(cct1...m))
11: c← selective pool(cct1...m)
12: c← c/||c||
13: end for
14: Update network w.r.t.
15: ∇[γ + d(h+ r, t)− d(h′ + r, t′)]+
16: end for
17: end loop
18: return Trained LSTM network (including modified

word embeddings)

phrases). A random sentence is selected from the top 10
ranked retrieval results as the context hct

1...m for concept h.
The context sentence hct

1...m (with length m) is then en-
coded by the LSTM network. The output sequence cct1...m of
the LSTM network is multiplied with a mask, which only
keeps the output on the positions corresponding to the con-
cept name in the sentence. The output is then max-pooled
into a single vector h and normalized to unit length, which
serves as a representation of the head concept h. The same is
performed to generate a representation t of the tail concept.

Once the head and the tail concepts are encoded into vec-
tors, we use vector addition in embedding space to model
the relationship between the concepts. The formulation in
this step is similar to TransE except that we use LSTM out-
puts in place of entity embeddings. For training the model,

negative triplets (h′, r, t′) are sampled by replacing the head
or tail with a random concept, which are then processed by
the model in the same fashion. The model is trained by min-
imizing a margin-based ranking loss:

L = ∇[γ + d(h+ r, t)− d(h′ + r, t′)]+ (1)

In experiments we use 200-dimensional word embed-
dings and 2-layer bi-directional LSTM network with also
200 dimensions. In the ranking loss L, Euclidean norm is
used in distance function d and margin γ = 0.1. Vanilla
stochastic gradient descent with learning rate l = 1.0 is used
to optimize the network. A total of 10 epochs is trained on 23
million training triplets. Note that the hyper-parameter val-
ues are largely chosen heuristically and are not sufficiently
tuned, due to efficiency reasons of the LSTM network and
the size of the UMLS.

Discriminative Training

To encode concept names into higher fidelity concept repre-
sentations, the model needs to recognize subtle differences
between terms. We add a discriminative training step for this
purpose. During training, when corrupted triplets are sam-
pled, we sample concepts with names that are similar to the
true concept instead of random sampling. This is done with
probability β = 0.5. For example, given concept “Myeloid
Leukemia” as a true tail, concept “Lymphocytic Leukemia”
would be more likely to be sampled as a corrupted tail under
discriminative training. To avoid calculating the full similar-
ity matrix between 3 million concepts, we take a crude but
fast approximation: when sampling a negative concept c′,
we randomly choose a word w from the name c1...n of the
true concept c, then randomly choose a concept c′ that also
has w in its name. The sampled negative concept c′ at least
shares one common word in its name with the true concept.

This sampling step increases the difficulty of negative
samples by making them more similar to the true triplets and
thus more challenging for ranking. This forces the model to
discriminate the semantic meaning of similar named con-
cepts. To keep the model exposed to the whole set of possi-
ble concepts, there is still 1 − β probability to sample from
any concepts.
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Table 2: Entity prediction results

Model
Mean rank Mean log(rank) Hits@10 (%) Hits@1 (%)

raw filtered raw filtered raw filtered raw filtered
TransE 213010 212298 2.90 2.90 16.7 16.7 3.3 3.3
CC-DNN 24441 23955 2.45 2.29 22.1 27.7 9.2 13.7
CC-LSTM 22888 22685 1.65 1.61 50.8 51.9 44.7 45.7
CC-LSTM (DT) 43637 43518 1.27 1.22 64.0 65.4 56.8 58.7
*DT: discriminative training

Intrinsic Evaluation

Before evaluating the learned representation on downstream
tasks, we want to first analyze to what extent our model en-
codes structured knowledge in the UMLS, also validate the
generalizability of the model.

We use the entity prediction task to measure the quality
of the embeddings produced for concept names. Entity pre-
diction is a standard task for evaluating entity embeddings,
but here we only use it for analysis purposes rather than as
a goal. For each triplet from the testing set we split from
the UMLS, either the head or the tail is replaced with every
concept in the UMLS. The true triplet is then ranked against
corrupted triplets by the model. Results of ranking perfor-
mance are shown in Table 2. We follow common practice to
report raw and filtered ranks.

TransE is listed in the table as a reference because we use
the same translational formula to model relationships. CC-
LSTM model performs surprisingly well on entity predic-
tion, given that it is ranking among 3 million concepts. Es-
pecially for the Hits@1 metric, which is equivalent to mak-
ing the “correct” prediction. The best CC model makes the
correct prediction more than half of the time, indicating its
ability at fine-grained differentiation of concept semantics.

We also include a mean log(rank) metric, for a better
representation of “the average ranking position.” When the
number of ranking candidates is extremely large, one badly
ranked example could make an otherwise good “mean rank”
drop a lot, making the metric less intuitive. It can be seen
from the mean log(rank) column, roughly, the ranks of CC-
LSTM model are generally of order 101-102 and the ranks
of TransE are generally of order 103.

In place of the LSTM network, we experimented with
using DNN to generate concept embeddings, but results
are far inferior. Contextual information is important to cor-
rectly represent a concept based on its name. Discriminative
training also substantially enhanced the performance of CC-
LSTM model.

Table 3: Performance on language-inferable and non-
language-inferable knowledge

# of examples Hits@10 (%)

LI 76 77.6
Non-LI 24 20.8
Total 100 64.0

Break-down analysis To measure the effect of semantic
generalizability on model performance, and to understand

the performance gap between the CC model and TransE, we
first sampled 100 examples from the testing set, and labeled
them to two categories: Language-inferable (LI) and Non-
language-inferable (Non-LI), following our previous defi-
nition. Performance of the CC model on each category is
shown in Table 3. First we observe that 3/4 of the triplets
contain knowledge that can be inferred from text. This
shows that in medical knowledge graphs, a majority of struc-
tured knowledge can potentially be carried by text repre-
sentations. Making use of concept names can be difference-
making in medical knowledge embeddings. In the case of
the CC model, on LI type examples it gets to 77 percent hit
at top10, while for Non-LI type the performance is much
lower and is on par with the TransE model.

Table 5: Error analysis by category
Category Percentage

Policy 3.0
Long name 2.5
UNK 7.5
SIB 5.0
Facts (Non-LI) 14.5
Other errors 5.5
Correct 62.0

On LI type knowledge the model is still quite far from
perfect. We summarize the reasons for model failure in Table
5. After examining 200 examples in the testing set, we arrive
at five common categories of difficult examples, which are:

• Policy: this category is for triplets describing knowledge
on medical policy or administration. These are not medi-
cal knowledge in the very strict sense, and the poor result
could possibly be attributed to domain mismatch of pre-
trained word embeddings.

• Long name: the name of one of the concepts in the triplet
is longer than 10 words. Because we truncate long names
to 10 words for faster training, some information is miss-
ing from the input.

• UNK: one of the concepts has more than half of out-of-
vocabulary words in its name. This typically makes the
concept indiscernible to the model.

• SIB: this category of triplets all have is sibling relation-
ship. The model seems to have some difficulty judging
whether some closely related concepts are at the same
level in the hierarchy.
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Table 4: Readmission prediction performance
Model Acc Pre-0 Pre-1 Re-0 Re-1 A.R. A.P.

(Lin et al. 2018) 0.698 0.916 0.367 0.687 0.742 0.791 0.513
LSTM 0.840 0.956 0.366 0.859 0.704 0.794 0.600
CC-LSTM 0.848 0.978 0.321 0.854 0.786 0.804 0.613
*Acc: Accuracy, Pre: Precision, Re: Recall, A.R: Area under ROC, A.P: area under PRC

• Facts (Non-LI): factual knowledge that is not inferable
form text.

These categories account for most of the errors of the CC
model on the entity prediction task. Except for the Non-LI
category, these errors are in principle resolvable with proper
modifications to the model. Overall, the CC model captures
language-inferable medical knowledge quite effectively, and
next we will show it serves as a useful text representation.

Downstream Applications

As a contextual text representation model, the CC embed-
ding model can be fine-tuned to various NLP tasks. By do-
ing so the CC embeddings introduce concept awareness and
external structured knowledge into the task model. We first
present results on two real-world medical tasks then on an-
other medical NLP benchmark task.

MIMIC-III and Derived Datasets

The MIMIC-III Critical Care Database (Johnson et al. 2016;
Goldberger et al. 2000) is a large database of electronic
health records (EHRs) of over 40,000 patients in Intensive
Care Unit. Various kinds of numerical and report data is pro-
vided. In this study we are only concerned with textual data
in EHRs. Specifically, we use the “Discharge Summary” in-
cluded in each ICU admission, which is a note written by
doctors when the patient is discharged from ICU. Here is a
snippet from one such note:

This is a 65 year old female with re-
cent history of C. diff colitis (06’)
and recent mult abx use for UTI/PNA
past couple months who presented after
a syncopal episode in the setting of
diarrhea/dehydration ...

Data pre-processing follows (Harutyunyan et al. 2017)
and (Lin et al. 2018): after data screening there are 35,334
patients and 48,393 ICU stays. The patients are split into
training (80%), validation (10%) and testing (10%) sets with
5-fold cross validation.

In the following two tasks, we add a pooling and a linear
layer on top of the CC-LSTM model to perform classifica-
tion. A plain LSTM classifier with identical structure is used
as a baseline. All models use BioWordVec as word embed-
dings. We use early-stopping on validation set to select the
best model. Reported results are averages over 5-fold splits.

Readmission Prediction

Unplanned ICU readmission rate is an important met-
ric in hospital operation. Readmission prediction can help
identify high-risk patients and reduce premature discharge

Table 6: Post-discharge mortality prediction performance

Model
30-day 1-year
A.R. A.R.

(Ghassemi et al. 2014) 0.80 0.77
(Ghassemi et al. 2014) 0.82 0.81(retrospective)
(Grnarova et al. 2016) 0.858 0.853
LSTM 0.823 0.820
CC-LSTM 0.839 0.837

(Kansagara et al. 2011). Our model predicts whether a pa-
tient is likely to be readmitted into ICU within 30 days, upon
his/her discharge.

In Table 4, we present our model results and state-of-
the-art result from (Lin et al. 2018). Lin et al. uses chart
events, demographic information and diagnosis as input to a
LSTM+CNN model. We only use written note text and none
of the numerical and time-series information. The primary
metric area under ROC clearly shows that the CC model
produces a performance boost over the baseline and sur-
passed state-of-the-art results.

Mortality Prediction

In this task we predict post ICU discharge mortality. Mortal-
ity prediction can help make better management and treat-
ment decisions in costly ICU operations (Pirracchio et al.
2015). Table 6 gives the prediction results of patient mortal-
ity within 30-day and 1-year after discharge. Note that like in
the previous task, results from other works are listed mainly
for reference rather than direct comparison, for these models
use different information from EHR as input. Although not
matching with state-of-the-art, the performance gain of the
CC model over an LSTM model is consistent.

Medical Language Inference

Natural language inference (NLI) is a task determining the
entailment relationship between two pieces of text. We use
the MedNLI dataset (Romanov and Shivade 2018) to eval-
uate language inference in the medical domain. Original
dataset contains 11232 sentence pairs for training and 1395
and 1422 pairs for development and testing. Results are
listed in Table 7.

We implemented the ESIM model (Harutyunyan et al.
2017) for NLI task, which consists of an LSTM encoder
layer and an LSTM composition layer. CC-ESIM simply re-
places the LSTM network in encoding layer with our trained
CC-LSTM. The performance gain indicates the CC embed-
dings successfully introduces external knowledge into the
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Table 7: Performance on medical language inference

Model
Dev Test
Acc Acc

ESIM 74.4 73.1(Romanov and Shivade 2018)
ESIM (our implementation) 74.8 71.3
CC-ESIM 77.1 75.2

model and benefits the task.

Conclusion

We have presented Conceptual-Contextual embeddings, a
contextual text representation model which introduces struc-
tured external knowledge into text representations. The ef-
fectiveness of the model is validated on the medical domain,
where domain knowledge is substantially associated with
text understanding. Our work serves as a bridging perspec-
tive between knowledge graph representations and unsuper-
vised text representation models.

Future work include incorporating more powerful rela-
tionship models like TransR (Lin et al. 2015) into the CC
embedding model. As our model only captures conceptual
knowledge, combining CC embeddings with general repre-
sentation models like BERT is also an interesting investiga-
tion. Under our formulation it is also straightforward to com-
bine the two into a single model with multi-task learning, to
further improve state-of-the-art text representation models.
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