
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

CFGNN: Cross Flow Graph Neural
Networks for Question Answering on Complex Tables

Xuanyu Zhang
School of Artificial Intelligence

Beijing Normal University, Beijing, China
xyz@mail.bnu.edu.cn

Abstract

Question answering on complex tables is a challenging task
for machines. In the Spider, a large-scale complex table
dataset, relationships between tables and columns can be eas-
ily modeled as graph. But most of graph neural networks
(GNNs) ignore the relationship of sibling nodes and use sum-
mation as aggregation function to model the relationship of
parent-child nodes. It may cause nodes with less degrees,
like column nodes in schema graph, to obtain little infor-
mation. And the context information is important for natural
language. To leverage more context information flow compre-
hensively, we propose novel cross flow graph neural networks
in this paper. The information flows of parent-child and sib-
ling nodes cross with history states between different layers.
Besides, we use hierarchical encoding layer to obtain contex-
tualized representation in tables. Experiments on the Spider
show that our approach achieves substantial performance im-
provement comparing with previous GNN models and their
variants.

1 Introduction

Table based question answering (TB-QA) is an important
branch of question answering on structured data. It is a
challenging task for machines to comprehend given tables
and answer corresponding questions. It can help people
obtain information easily without understanding complex
logic forms. Different from machine reading comprehension
(MRC), the answer in TB-QA may be some statistical fig-
ures, which can not be obtained directly from the origin text.
Based on this, semantic parsing (Zelle and Mooney 1996)
is used for this task. Once a natural language question is
mapped to a SQL query by semantic parsing, the answer
can be obtained indirectly by executing SQL queries on a
database engine.

Recently, with the rapid development of deep learning,
sequence-to-sequence (Cho et al. 2014) architectures are
used by many models (Yu et al. 2018a; Dong and Lap-
ata 2018; Shi et al. 2018) for neural semantic parsing and
achieve state-of-the-art results on some datasets. However,
previous datasets, such as WikiSQL (Zhong, Xiong, and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What are the average amount purchased and 
value purchased for the supplier who supplies the 
most products.

Database:

Question:

SQL: SELECT avg(total_amount_purchased) , 
avg(total_value_purchased) 

FROM product_suppliers
WHERE supplier_id =  

(SELECT supplier_id
FROM Product_Suppliers
GROUP BY supplier_id
ORDER BY count(*) DESC LIMIT 1)

department_store

product
_id

supplier
_id

total_
amount_
purchased 

total_value
_purchased

product_id product_name product_price

product_
suppliers 

products

supplier_id date_from date_to
supplier_
addresses

Table Name… Column Name

Figure 1: An example from the Spider dataset.

Socher 2018), usually contain one table in one database.
It is still difficult for models to comprehend complex rela-
tions between tables. Fortunately, Yu et al. (2018c) have de-
veloped the Spider, a large-scale cross-domain text-to-SQL
dataset with complex tables. Here is an example from the
Spider in Figure 1. Considering the structure of the database
schema, graph neural network (GNN) (Scarselli et al. 2009)
is used by Bogin, Berant, and Gardner (2019) to obtain the
representation of components of tables. The names of tables
and columns in the database are nodes. And the relation-
ships of table-column and primary-foreign key are edges in
the schema graph.

However, most of traditional GNNs (Li et al. 2016; Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Velickovic et al. 2018) usually use summation as the func-
tion of neighborhood aggregation. Although it can reflect the
relationship between parent and child nodes, the relation-

9596



ship of sibling (child-child) nodes is ignored. Especially, the
trade-off between parent-child and child-child relationship
received little attention. Moreover, when the nodes have less
degrees but more sibling nodes, it can only get very little in-
formation by previous GNN. For example, the node of col-
umn in the database schema graph may not obtain enough
updates in traditional GNNs, because it usually has one par-
ent node and no children nodes. And in the task of natu-
ral language processing (NLP), these relationships are all
important context information. To understand the complex
structure of graph like the schema of databases, humans usu-
ally consider the indirect relationship besides the relation-
ship of adjacency and affiliation, then think and inference it
again and again.

Considering the issues of previous GNNs, we propose
novel Cross Flow Graph Neural Networks (CFGNN) for
question answering on complex tables inspired by the cog-
nitive process of human beings. Cross Flow means one node
in the graph may obtain different information flows, i.e, the
flow of sibling nodes and parent-child nodes in the same
layer, and the reasoning flow between different layers of
GNNs. For one thing, we first focus on the relationship of
sibling nodes besides traditional parent-child relationship
in the graph. It can help the nodes with less degrees but
more siblings obtain more information flow. And in this task,
our approach can also effectively model the node of col-
umn in and across tables and view them as context. For an-
other thing, we use two different recurrent neural networks
(RNNs) with attention mechanism to integrate these cross
flows. One of RNNs is used as the aggregation function
among children nodes of the same parent node rather than
parent-child nodes. The other is used for aggregating flows
and reasoning between layers. And attention mechanism is
also used for supplement of the relationship between par-
ent and child nodes. In addition, to integrate the pre-trained
contextualized model, BERT (Devlin et al. 2019), with scat-
tered phrase in multiple tables of databases, we use hierar-
chical encoding layer to obtain the representation of ques-
tions, databases, tables and columns from coarse to fine. Ex-
periments on the Spider show that our approach achieves
competitive results and outperforms most kinds of GNNs.

2 Related Work

2.1 Graph Neural Networks

Recently, graph neural networks (GNNs) (Scarselli et al.
2009) attract more research interests. Given the representa-
tion of the nodes and their adjacencies, GNNs can generate
new representation for these nodes after reasoning. Many
variants of GNNs are proposed to improve different compo-
nents. Li et al. (2016) proposed gated graph neural networks
(GGNN) to use RNNs for updating the states of nodes. Re-
ferring to convolutional neural network, graph convolutional
neural networks (GCN) is proposed by Kipf and Welling
(2017). And to consider importance by attention mechanism,
graph attention networks (GAT) (Velickovic et al. 2018) is
proposed. Though effective, the aggregation functions in
these GNNs are usually used to aggregate children nodes to
parent nodes by summation, which ignores the relationship

among sibling nodes. And our proposed CFGNN can obtain
the information flow of child-child nodes by RNN besides
that of parent-child nodes by attention mechanism. Differ-
ent from previous RNNs in GNN models (Li et al. 2016;
Hamilton, Ying, and Leskovec 2017), we use padding tech-
nique for non-existent nodes to learn the difference be-
tween the original BERT sequence and each sibling RNN
sequence, which uses the identical order and the same length
for nodes. And CFGNN still can integrate and leverage these
flows between layers by another RNN.

2.2 Semantic Parsing

Semantic parsing (Zelle and Mooney 1996) aims to map nat-
ural language to another intermediate representation, such as
logic forms and code of program. By executing these scripts,
we can obtain the final answer. Traditional methods tend to
use lexicalized grammar formalisms, such as combinatory
categorial grammars (CCG) (Berant et al. 2013). Recently,
natural semantic parsing is used to generate logic forms.
Based on sequence-to-sequence (Sutskever, Vinyals, and Le
2014) model, sequence-to-tree (Dong and Lapata 2016) and
sequence-to-action (Chen, Sun, and Han 2018) are proposed
for semantic parsing. And viewed from the decoding process
of sequence-to-sequence, one is token-level decoding (Dong
and Lapata 2018), the other is grammar-level decoding (Yin
and Neubig 2017). We use the grammar-level decoder in our
model.

Semantic parsing is also a universal method for TB-QA
and KB-QA. TB-QA also can be viewed as text-to-SQL task
or natural language interface for databases. Besides mod-
els mentioned above, lots of approaches (Yu et al. 2018a;
2018b; Shi et al. 2018; Hwang et al. 2019) are proposed
according to the characteristics of SQL queries. However,
these models pay more attention on how to parse natural lan-
guages or generate logic forms. And for KB-QA or TB-QA,
reasoning on databases or knowledge graphs is also impor-
tant. So we mainly focus on the core reasoning component,
which also can be viewed as the enhancement for the en-
coder, rather than decoder for semantic parsing.

2.3 Pre-trained Contextualized Model

Recently, pre-trained contextualized models has shown to be
effective for representation of words, such as ELMo (Peters
et al. 2018), GPT (Radford et al. 2019), BERT (Devlin et al.
2019), MT-DNN (Liu et al. 2019) and so on. Take BERT for
example. It is designed to pre-train deep bidirectional rep-
resentations by jointly conditioning on both left and right
context in all layers. It brings a great improvement in natu-
ral language tasks, such as language inference and question
answering. Different from the previous work on integrat-
ing BERT for encoding text (Zhu, Zeng, and Huang 2018;
Zhang 2019) or short terms (Hwang et al. 2019; He et al.
2019; Kitaev, Cao, and Klein 2019), such as table name and
column name, we design hierarchical encoding layer to ob-
tain different levels of information in databases from coarse
to fine, which consists of RNNs at different levels.

9597



products

product_
id

product_
suppliers

supplier_id

supplier_addresses

supplier_id
date_from

total_amount
_purchased

product_namepr

duct
pliers

m

ppp
total_
value_
purchased

product_
suppliers

otalto
aluevasupplier_addresses

products

product_
id

Figure 2: The architecture of our proposed CFGNN.

3 Methodology

In this section, we will first introduce our proposed CFGNN
in detail. And then we formulate the task of question an-
swering on tables. At last, we will illustrate the overview
structure of our end-to-end model.

3.1 Cross Flow Graph Neural Network

CFGNN is a novel graph neural network proposed by us.
Although the Spider is a unique complex and cross-domain
dataset with multiple tables in TB-QA, which can be mod-
eled as graph, we still introduce our GNN by general repre-
sentation. It can also be applied to other areas if the data can
be represented as graph.

Assuming we have a graph G = (V, E). Nodes are v ∈ V
and edges are e = (v, v′) ∈ V × V . The D-dimensional
vector of node v can be represented as hv ∈ R

D. For gener-
alization, we focus on directed graphs, so (v, v′) represents
a directed edge v → v′. v′ is the neighbour node or child
node of v. For undirected graphs, just add another edge in
the opposite direction.

Inspired by recent research on GNNs (Li et al. 2016; Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Velickovic et al. 2018), we first use bi-directional RNN as
the aggregation function for the flow of child-child nodes.
That is to say, RNNs consider nothing about parent nodes.
The RNN across different nodes share the same parameters.
The process is shown in Eq. 1. To learn the difference rather
than the order between different child-to-child sequences in
the same graph, each sibling RNN has the same number and

order of nodes. The nodes that do not appear in the sibling
sequence are replaced by padding tokens.

−→
h k

u,i =
−−−→
RNN(

−→
h k

u,i−1,Wkhk−1
u,i )

←−
h k

u,
|N(v)|−i−1

=
←−−−
RNN(

←−
h k

u,
|N(v)|−i

,Wkhk−1
u,
|N(v)|−i−1

)
(1)

where i ∈ [1, |N(v)|), u ∈ N(v) and hk
u,i denotes the em-

bedding of the i-th neighbour node u of node v at layer k.
And N(v) means the neighbours of node v. Wk is trainable
parameter at layer k. Arrows represent RNN in different di-
rections.

Then we concatenate them together to h̄
k
v in Eq. 2.

h̄
k
v = [

−→
h k

u,|N(v)|−1,
←−
h k

u,0] (2)

Next we model the flow between parent nodes and child
nodes. We use an attention mechanism to obtain the neigh-
bour information for parent node v.

ĥ
k

v = γ(
∑

u∈N(v)

αv,uWkhk−1
u )

αv,u =
eβ(gT [Wkhv,W

khu]
∑

u′∈N(v)

eβ(gT [Wkhv,W
khu′ ])

(3)

where γ and β represent non-linear activation function. And
g is a trainable vector for all layers.

Finally, as shown in Eq. 4, we concatenate the representa-
tion of child-child flow and parent-child flow and feed them
to another RNN for reasoning flow between different lay-
ers. The states of all node in the graph are updated with
history reasoning flow, current child-child flow and parent-
child flow. This is why we call it Cross Flow.

hk
v =
−−−→
RNN(hk−1

v , [h̄
k
v ; ĥ

k

v ]) (4)

In this paper, we use Gated Recurrent Unit (GRU) (Cho
et al. 2014) as RNN in our whole model. The general repre-
sentation is as follows. zt and rt are gates and ht represents
the hidden states.

zt = σ(Whzht−1 + Wxzxt + bz)

rt = σ(Whrht−1 + Wxrxt + br)

ĥt = Φ(Wh(rt � ht−1) + Wxxt + b)

ht = (1− zt)� ht−1 + zt � ĥt

(5)

Figure 2 is an example for this task. At layer 1, the cen-
ter blue node, which represents the table term product sup-
pliers, is in the progress of cross flow. The purple curve in
the child-child sublayer at layer 1 denotes the bi-directional
RNN among the neighbour nodes of the center. The orange
lines in the parent-child sublayer at layer 1 denotes the atten-
tion of the center node. These two flows cross at the same
layer. And the flows of current and history cross between
different layers.

9598



…

…

pr
od

uc
t

su
pp

lie
rs

[S
EP

]

pr
od

uc
t

id [S
EP

]

… [S
EP

]

su
pp

lie
r

ad
dr

es
se

s

… [S
EP

]

…

Question

Database

Table Column Table

Contextualization Model

RNN …
…

RNN RNN

RNN RNN
[C

LS
]

w
ha

t

is …

…

[S
EP

]

RNN

Intermediate 
State

Reasoning
Layer

Hierarchical
Encoding

Layer

Answer
Layer

……

…

……

RNN

Figure 3: The overview of our model.

3.2 Formulation

Given a question with m words Q = {wi}mi=1 and a database
with l tables D = {Tk}lk=1, machines need to find the
corresponding answer A. As the answer can be obtained
from executed SQL queries S, we can formula the task to
p(S|Q,D). And Ck

j is the j-th term of the k-th table Tk in
database. hk

j,i denotes the i-th token of Ck
j . In one table, the

first term is table name, followed by other columns name.
Besides, ckj , the encoding of Ck

j , can also be represented as
{cj}nj=1 ignoring the tables they belong to, where n is the
number of all table names and column names. Tables in the
same database are connected with each other by the relation-
ship of primary and foreign key.

3.3 Model Structure

Although we use sequence-to-sequence structure for neural
semantic parsing, the encoder part is more complicated than
previous models. Thus we view the decoder as the answer
layer and split the encoder to hierarchical encoding layer
and reasoning layer. The overview of our model is shown
in Figure 3. We will elaborate them from bottom to up.

Hierarchical Encoding Layer This layer is designed to
provide representation of each component in tables. Because
the structure of tables in databases is complex, it is very im-
portant for the whole model to obtain contextualized rep-
resentation. Considering the schema of databases, we use
coarse-to-fine hierarchical encoding to integrate the latest

contextualized model BERT (Devlin et al. 2019) inspired by
related work (Hwang et al. 2019; He et al. 2019). As shown
in Figure 3, we first concatenate the question with all the
names of tables and columns table by table, because the ti-
tle and columns of the same table are adjacent and people
tend to put related columns together (e.g. “date from” and
“date to” in Figure 1). And [SEP] is used as the special to-
ken to separate the question, table names and column names.
The final sentence fed to the BERT model is: [CLS], w1,
w2, · · · , wm, [SEP], h0

0,0, h0
0,1, [SEP], h0

1,0, h0
1,1, [SEP],

· · · , [SEP], hk
j,i, · · · , [SEP], where h0

0,0 and h0
0,1 are to-

kens of the first table name, h0
1,0 and h0

1,1 are tokens of the
first column name of the first table.

Comparing with the original way of appending a thin
layer after BERT structure, it is too deep to fine-tune our
proposed architecture with BERT. Inspired by recent re-
search on whether to fine-tune (Peters, Ruder, and Smith
2019) and related methods (Zhu, Zeng, and Huang 2018;
Zhang 2019), we feed this long sentence to the weight-fixed
BERT model directly for contextualized embedding. Similar
to ELMo (Peters et al. 2018), we use function embBERT

i =

γ
∑D

d=0 αdf(h
d
i ) to utilize hidden states of all layers, where

γ is designed to scale the vector according to the task and αd

is softmax-normalized weight for the d-th layer. These two
weights are trainable. And hd

i comes from the d-th layer of
the i-th token in BERT. For long sentences, which exceeds
the maximum length of pre-trained BERT, we split the sen-

9599



tence with some coverage and combine them. To solve the
index problem of WordPiece (Wu et al. 2016), we choose
the first token as f function. Generally, the first token is the
root of the word and can represent main meaning.

Then the output of pre-trained BERT model is refined by
RNN, which is the coarsest encoding. After that, we use an-
other RNN to encode the question and terms in tables, sep-
arately. Then we can obtain the embedding ei for each to-
ken wi in the question and ekj,i for each token hk

j,i in the
databases. For databases, the finest encoding is conducted
among tokens in one table or column name by RNN. The
representation of each term Ck

j in databases is the average
of embedding of all tokens: ckj = 1

I+1

∑I
i=0 e

k
j,i.

Reasoning Layer This layer aims to refine the represen-
tation of questions and terms in databases for answer layer.
We first enhance the representation by some features and in-
teraction between questions and databases. Then we use the
multi-layer RNN and GNN for reasoning, separately.

For the representation of column name, column type is a
useful feature, such as number, text and so on. Following Kr-
ishnamurthy, Dasigi, and Gardner (2017) and Bogin, Berant,
and Gardner (2019), we assign trainable embeddings for col-
umn type. Then we concatenate type embeddings with the
representation of table terms cj and obtain new representa-
tion ĉj for the database. And For the question, we can ob-
tain the database-aware representation for each token of the
question (shown in Eq. 6).

sij = ei
Tcj

aij = exp(sij)/
∑n

k=1
exp(sik)

hattn
i =

∑n

j=1
aijcj

(6)

Besides, we also use other matching features, which can
also be viewed as the process of entity linking on terms of
databases. Then we use a bi-directional RNN to refine states
to obtain the new representation of the question ĥi in Eq. 7.

ĥi = BiRNN(ĥi−1, [ei, h
attn
i ]) (7)

Next our proposed CFGNN is used for reasoning on the
database. As shown in Figure 2, the blue node represents
tables and the green nodes represents the columns. Follow-
ing Bogin, Berant, and Gardner (2019), we use three types
for edges between nodes: table-column and column-table
for columns in the table; foreign-primary key and primary-
foreign key for columns; foreign-primary key and primary-
foreign key for tables. It means if two columns are con-
nected by foreign-primary key, we will add bi-directional
edges both for two columns and for two tables they belong
to. And different types have different weights for mapping
the representation of nodes.

We can obtain the last layer of GNN h̄k for each term in
Eq. 8. For the question, we refine it again by another RNN
in Eq. 9. Lastly, we concatenate it with the representation of
the database by attention and obtain h̃i for answer layer in
Eq. 10. And aij is the same as that in Eq. 6.

c̄j = CFGNN(ĉj) (8)

h̄i = BiRNN(h̄i−1, ĥi) (9)

hgnn
i =

∑n

j=1
aij c̄j

h̃i = [h̄i;h
gnn
i ]

(10)

Please note that tables and columns are fed to both BERT
of hierarchical encoding layer and the sibling RNN of rea-
soning layer in the identical order for the same sample. Be-
cause not all nodes appear in each sibling sequence, the
whole model needs to learn the difference between the orig-
inal sequence fed to BERT and different sibling sequences
by padding on missing nodes.

Answer Layer In this layer, we use intermediate state af-
ter reasoning to generate logic forms, which are expressed
by λ-DCS (Liang, Jordan, and Klein 2011) language. Fol-
lowing (Pasupat and Liang 2016; Krishnamurthy, Dasigi,
and Gardner 2017; Yin and Neubig 2017; Bogin, Berant,
and Gardner 2019), we use grammar-based LSTM de-
coder and similar types and production rules of the logic
form language. The production rules can be divided into
table-dependent rules and table-independent rules. Table-
dependent rules are designed to generate entities contained
in tables, such as column. And Table-independent rules are
for generating nonterminals or keywords of SQL queries.
The embedding of them are all trainable. And the decoder
generates the logic form from top to down. Giving the first
root action, the decoder generate others according to produc-
tion rules. Like generating natural languages, at each step of
decoding, the LSTM cell takes the embedding of the previ-
ous rule and output new one by softmax.

4 Experiments

4.1 Dataset and Metrics

We use the Spider (Yu et al. 2018c), a large-scale, complex
and cross-domain text-to-SQL dataset annotated by human,
for our evaluation. To best of our knowledge, it is also the
unique TB-QA dataset on multiple tables, the schema in
which can be modeled as graph. The source of data comes
from six datasets. There are 11,840 questions, 6,445 unique
complex SQL queries, and 206 databases with multiple ta-
bles in this dataset. We follow division of origin dataset and
use development set for our experiments, which ensures the
database schema used in training not appear in evaluation.

We follow the official evaluation metric proposed by Yu
et al. (2018c): component matching and exact matching.
component matching compares the different parts of SQL
queries, such as SELECT, WHERE and so on. According to
the complexity of SQL queries, four levels are divided for
evaluation: easy, medium, hard, extra hard.

4.2 Implementation Details

We use BERTLARGE model to obtain the contextualized be-
fore the hierarchical encoding layer. The size of the con-
textualized embedding is 1024. The dimension of type and

9600



Model Test Dev
Easy Medium Hard Extra Hard All All

Seq2Seq1 22.0% 7.8% 5.5% 1.3% 9.4% 1.9%
Seq2Seq+Attention 32.3% 15.6% 10.3% 2.3% 15.9% 1.8%
Seq2Seq+Copying 29.3% 13.1% 8.8% 3.0% 14.1% 4.1%
SQLNet2 34.1% 19.6% 11.7% 3.3% 18.3% 10.9%
TypeSQL3 47.5% 38.4% 24.1% 14.4% 33.0% 8.0%
SyntaxSQLNet4 48.0% 27.0% 24.3% 4.6% 27.2% 24.8%
RCSQL5 - - - - 24.3% 28.8%
Schema GNN6 61.8% 44.7% 26.5% 14.6% 39.4% 40.7%
CFGNN (ours) 67.0% 47.8% 33.8% 19.1% 44.1% 48.7%

Table 1: Accuracy of Exact Matching on SQL with different hardness levels. These
models are: Dong and Lapata (2016) 1, Yu et al. (2018b) 2, Yu et al. (2018a) 3, Yu et al.
(2018b) 4, Lee (2019) 5, Bogin, Berant, and Gardner (2019) 6

Method SELECT WHERE GROUP BY ORDER BY KEYWORDS
Seq2Seq 13.0% 1.5% 3.3% 5.3% 8.7%
Seq2Seq+Attention 13.6% 3.1% 3.6% 9.9% 9.9%
Seq2Seq+Copying 12.0% 3.1% 5.3% 5.8% 7.3%
SQLNet 44.5% 19.8% 29.5% 48.8% 64.0%
TypeSQL 36.4% 16.0% 17.2% 47.7% 66.2%
SyntaxSQLNet 62.5% 34.8% 55.6% 60.9% 69.6%
RCSQL 68.7% 39.0% 63.1% 63.5% 76.5%
Schema GNN 80.9% 40.7% 67.4% 70.1% 77.0%
CFGNN (ours) 81.1% 42.9% 73.0% 73.7% 80.6%

Table 2: F1 scores (test set) of Component Matching on SQL.

Question:
What is the id and type code for the template used by the most 
documents? 
Return the id and type code of the template that is used for the 
greatest number of documents. 
Schema:
templates: template_id, template_type_code …
documents: document_id, template_id, document_name …
paragraphs: paragraph_id, document_id, paragraph_text …
Gold Answer / CFGNN:
SELECT documents.template_id, templates.template_type_code
FROM documents JOIN templates ON documents.template_id
=  templates.template_id GROUP BY documents.template_id
ORDER BY count (*) DESC LIMIT 1 
Schema GNN:
SELECT templates.template_id, templates.template_type_code
FROM templates GROUP BY templates.template_id ORDER BY 
count (*) DESC LIMIT 1

Figure 4: Case study for CFGNN.

rule embedding is 200. We maximize the log-likelihood of
the gold sequence for training. The hidden size of RNN is
200 throughout our model. The output dimensions of for-
ward and backward RNN are set to 100. We use ELU (Clev-
ert, Unterthiner, and Hochreiter 2016) as non-linear activa-

tion function for GNN. The number of reasoning layers for
questions and databases are set to 2. To prevent overfitting,
we use dropout technique, and set it to 0.4. The Adamax
(Kingma and Ba 2015) is used as our optimizer with 0.004
learning rate.

4.3 Results

We submit our code and model anonymously for the score
of the hidden test set on Spider. As shown in Table 1, our full
model achieves 44.1% (test set) and 48.7% (dev set) in exact
matching on all SQL queries, which outperforms the previ-
ous Schema GNN model (Bogin, Berant, and Gardner 2019)
by 4.7% (test set) and 8.0% (dev set). As shown in Table 2,
our model also have outstanding performance on different
SQL components in F1 score. 1 And we find SELECT and
KEYWORDS perform best compared to other parts in com-
ponents matching. Besides, for a fair comparison, we also
reimplement the Schema GNN model proposed by Bogin,
Berant, and Gardner (2019) and integrate it with our de-
signed hierarchical encoding layer. 2 As shown in Table 3
and 4, the performance of our model is over Schema GNN

1We only list some related models, which are published before
our model is submitted on the Spider leaderboard. There are still
some models perform better than ours recently.

2The results of Schema GNN we reimplemented are shown on
Table 3 and 4, which is slightly different from origin version.

9601



Method Easy Medium Hard Extra Hard All
RCSQL 53.2% 27.0% 20.1% 6.5% 28.8%
Schema GNN 64.8% 41.6% 29.3% 15.9% 40.9%
CFGNN (ours) 69.2% 50.9% 34.5% 27.6% 48.7%

w/o parent-child flow 68.8% 46.8% 26.4% 21.2% 44.5%
w/o child-child flow 62.8% 44.5% 27.0% 22.9% 42.5%
w/o reasoning flow 66.8% 48.4% 27.0% 21.2% 44.8%
w/o graph structure 68.0% 47.0% 21.8% 15.9% 42.7%
replace CFGNN with GNN 58.8% 39.5% 27.0% 14.1% 37.9%
replace CFGNN with GAT 67.2% 46.8% 28.7% 20.6% 44.4%
replace CFGNN with GGNN 62.8% 39.8% 29.9% 19.4% 40.3%

Table 3: Ablation studies on accuracy of Exact Matching (dev set).

Method SELECT WHERE GROUP BY ORDER BY KEYWORDS
RCSQL 68.7% 39.0% 63.1% 63.5% 76.5%
Schema GNN 75.0% 42.8% 71.6% 67.9% 83.1%
CFGNN (ours) 81.9% 52.5% 71.5% 76.6% 82.9%

w/o parent-child flow 81.1% 44.2% 70.9% 73.1% 82.6%
w/o child-child flow 78.3% 46.5% 72.8% 69.1% 82.5%
w/o reasoning flow 82.3% 48.6% 73.2% 65.8% 80.9%
w/o graph structure 79.9% 45.8% 72.1% 65.0% 81.0%
replace CFGNN with GNN 73.9% 42.6% 66.9% 65.8% 82.8%
replace CFGNN with GAT 80.1% 43.5% 73.2% 70.0% 81.9%
replace CFGNN with GGNN 71.9% 45.1% 68.8% 68.3% 82.7%

Table 4: Ablation studies on F1 scores of Component Matching (dev set).

model with BERT on both accuracy of exact matching and
F1 scores of component matching.

4.4 Ablation Study and Case Study

To study how each component contributes to the perfor-
mance, we conduct an ablation analysis in Table 3. We can
observe that all kinds of flows in the CFGNN can help our
full model gain more improvement on accuracy. Especially,
we can find that child-child flow, i.e., RNN aggregation
among sibling nodes rather than parent-child nodes, makes
important contributions to the performance of our model.
Without it (h̄k

v in Eq. 4), the accuracy of exact matching
drops 6.2% on all SQL queries and drops 6.4% and 7.5% on
easy and hard queries, separately. Besides, without parent-
child and reasoning flow (flow between layers), the accu-
racy also drops 4.2% and 3.9%, separately. And from Table
4, we also can observe that F1 scores on some components
are improved greatly with different flows, such as WHERE
and ORDER BY.

Because we mainly focus on the GNN, we also compare
our proposed CFGNN with other related GNNs, i.e., GNN
(Scarselli et al. 2009), GAT (Velickovic et al. 2018), GGNN
(Li et al. 2016) with 3 layers. Experiments show that our
model outperforms these GNNs in different dimensions. Al-
though GAT performs better on GROUP BY, the overall ac-
curacy is still lower than our proposed model.

We also study some cases between different config-
urations. The most common situation is that our pro-
posed CFGNN model can comprehend columns and se-

mantic relations across different tables more profoundly
with cross flow. Here is an example in Figure 4. In the
graph, templates and documents.template id are sibling
nodes (children of documents). Meanwhile, documents and
templates.template type code are sibling nodes (children of
templates). Our cross flow strengthens their connection and
representation.

5 Conclusion

In this paper, we propose a novel GNN, i.e., cross flow
graph neural networks (CFGNN), for question answering
on complex tables. Unlike other GNNs which only con-
sider the relationship of parent-child nodes, CFGNN can
utilize the context of child-child nodes and aggregate them
with reasoning flow between different layers. Two differ-
ent RNN flows and attention flows in CFGNN interact with
each other. In addition, we use the hierarchical encoding
layer to obtain contextualized representation at different lev-
els in tables. We believe that cross flow in GNN is a gen-
eral approach. We will study further the capability of our
approaches on other tasks in the future.

6 Acknowledgments

We thank Zhichun Wang, Ben Bogin and anonymous re-
viewers for their help and comments. We also thank the au-
thors of the Spider for evaluating our model on the test set.
This work is supported by the National Key Research and
Development Program of China (No.2017YFB1402105).

9602



References

Berant, J.; Chou, A.; Frostig, R.; and Liang, P. 2013. Se-
mantic parsing on freebase from question-answer pairs. In
EMNLP, 1533–1544.
Bogin, B.; Berant, J.; and Gardner, M. 2019. Represent-
ing schema structure with graph neural networks for text-to-
SQL parsing. In ACL, 4560–4565.
Chen, B.; Sun, L.; and Han, X. 2018. Sequence-to-action:
End-to-end semantic graph generation for semantic parsing.
In ACL, 766–777.
Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing phrase representations using RNN encoder–decoder for
statistical machine translation. In EMNLP, 1724–1734.
Clevert, D.-A.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and accurate deep network learning by exponential linear
units (elus). In ICLR.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In NAACL, 4171–4186.
Dong, L., and Lapata, M. 2016. Language to logical form
with neural attention. In ACL, 33–43.
Dong, L., and Lapata, M. 2018. Coarse-to-fine decoding for
neural semantic parsing. In ACL, 731–742.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS.
He, P.; Mao, Y.; Chakrabarti, K.; and Chen, W. 2019. X-sql:
reinforce schema representation with context. arXiv preprint
arXiv:1908.08113.
Hwang, W.; Yim, J.; Park, S.; and Seo, M. 2019. A compre-
hensive exploration on wikisql with table-aware word con-
textualization. In KR2ML Workshop at NeurIPS.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In ICLR.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Kitaev, N.; Cao, S.; and Klein, D. 2019. Multilingual con-
stituency parsing with self-attention and pre-training. In
ACL, 3499–3505.
Krishnamurthy, J.; Dasigi, P.; and Gardner, M. 2017. Neural
semantic parsing with type constraints for semi-structured
tables. In EMNLP, 1516–1526.
Lee, D. 2019. Clause-wise and recursive decoding for com-
plex and cross-domain text-to-SQL generation. In EMNLP-
IJCNLP, 6047–6053.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2016.
Gated graph sequence neural networks. In ICLR.
Liang, P.; Jordan, M.; and Klein, D. 2011. Learning
dependency-based compositional semantics. In ACL, 590–
599.
Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Improv-
ing multi-task deep neural networks via knowledge distil-
lation for natural language understanding. arXiv preprint
arXiv:1904.09482.

Pasupat, P., and Liang, P. 2016. Inferring logical forms from
denotations. In ACL, 23–32.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. In NAACL.
Peters, M. E.; Ruder, S.; and Smith, N. A. 2019. To tune or
not to tune? adapting pretrained representations to diverse
tasks. In RepL4NLP-2019, 7–14.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. OpenAI Blog 1:8.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
IEEE Transactions on Neural Networks 20(1):61–80.
Shi, T.; Tatwawadi, K.; Chakrabarti, K.; Mao, Y.; Polozov,
O.; and Chen, W. 2018. Incsql: Training incremental text-
to-sql parsers with non-deterministic oracles. arXiv preprint
arXiv:1809.05054.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In NIPS, 3104–
3112.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. In ICLR.
Wu, Y.; Schuster, M.; Chen, Z.; et al. 2016. Google’s
neural machine translation system: Bridging the gap be-
tween human and machine translation. arXiv preprint
arXiv:1609.08144.
Yin, P., and Neubig, G. 2017. A syntactic neural model for
general-purpose code generation. In ACL, 440–450.
Yu, T.; Li, Z.; Zhang, Z.; Zhang, R.; and Radev, D. 2018a.
TypeSQL: Knowledge-based type-aware neural text-to-SQL
generation. In ACL, 588–594.
Yu, T.; Yasunaga, M.; Yang, K.; Zhang, R.; Wang, D.; Li, Z.;
and Radev, D. 2018b. SyntaxSQLNet: Syntax tree networks
for complex and cross-domain text-to-SQL task. In EMNLP,
1653–1663.
Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li,
Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; Zhang, Z.; and Radev,
D. 2018c. Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-
to-SQL task. In EMNLP, 3911–3921.
Zelle, J. M., and Mooney, R. J. 1996. Learning to parse
database queries using inductive logic programming. In Pro-
ceedings of the national conference on artificial intelligence,
1050–1055.
Zhang, X. 2019. MCˆ2: Multi-perspective convolutional
cube for conversational machine reading comprehension. In
ACL, 6185–6190.
Zhong, V.; Xiong, C.; and Socher, R. 2018. Seq2sql: Gen-
erating structured queries from natural language using rein-
forcement learning. In ICLR.
Zhu, C.; Zeng, M.; and Huang, X. 2018. Sdnet: Contextual-
ized attention-based deep network for conversational ques-
tion answering. arXiv preprint arXiv:1812.03593.

9603


