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Abstract

The rapid proliferation of knowledge graphs (KGs) has
changed the paradigm for various AI-related applications.
Despite their large sizes, modern KGs are far from com-
plete and comprehensive. This has motivated the research
in knowledge graph completion (KGC), which aims to in-
fer missing values in incomplete knowledge triples. However,
most existing KGC models treat the triples in KGs indepen-
dently without leveraging the inherent and valuable informa-
tion from the local neighborhood surrounding an entity. To
this end, we propose a Relational Graph neural network with
Hierarchical ATtention (RGHAT) for the KGC task. The pro-
posed model is equipped with a two-level attention mecha-
nism: (i) the first level is the relation-level attention, which is
inspired by the intuition that different relations have different
weights for indicating an entity; (ii) the second level is the
entity-level attention, which enables our model to highlight
the importance of different neighboring entities under the
same relation. The hierarchical attention mechanism makes
our model more effective to utilize the neighborhood infor-
mation of an entity. Finally, we extensively validate the supe-
riority of RGHAT against various state-of-the-art baselines.

Introduction
Nowadays, large-scale knowledge graphs (KGs) have be-
come one of the most important resources for enhancing
AI-related applications, such as information retrieval (Dal-
ton, Dietz, and Allan 2014), question answering (Ferrucci
et al. 2010), and information extraction (Mintz et al. 2009).
Indeed, KGs can be represented as multi-relational directed
graphs composed of entities as nodes and relations as edges.
The information of real-world entities and relations is mod-
eled in the form of knowledge triples, which are denoted
as (h, r, t), where h and t correspond to the head and
tail entities and r denotes the relation between them, e.g.,
(Paris, capital of, France). Despite the success and popular-
ity of modern KGs such as Freebase (Bollacker et al. 2008),
Yago (Suchanek, Kasneci, and Weikum 2007), Gene Ontol-
ogy (Ashburner et al. 2000) and NELL (Carlson et al. 2010),
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their coverage is still far from complete and comprehensive,
which motivates the research in knowledge graph comple-
tion (KGC), i.e., to predict the missing values in incomplete
knowledge triples. More formally, the goal of KGC is to pre-
dict either the head entity in a given query (?, r, t) or the tail
entity in a given query (h, r, ?).

In literature, state-of-the-art KGC models usually based
on knowledge graph embedding (Bordes et al. 2013;
Wang et al. 2014; Yang et al. 2015; Schlichtkrull et al.
2018). Specifically, these models first learn the latent low-
dimensional representations of entities and relations in the
KG, and then predict the missing values in incomplete
knowledge triples based on linear or neural network models
with corresponding representations. However, most of these
models treat the triples in KGs independently, and fail to pay
attention to the local neighborhood of an entity, which may
also contain plenty of valuable and inherent information.

In this paper, we aim to take full advantage of the local
neighborhood information of each entity for enhancing the
KGC task. Specifically, we treat the neighborhood of an en-
tity as a hierarchical structure. Figure 1 shows an example
of an entity and its neighborhood. From the left part of Fig-
ure 1, it can be seen the central entity e1 is surrounded by
three neighboring relations r1, r2 and r3, and each relation
links e1 to one or more neighboring entities. We find the lo-
cal neighborhood of e1 can be viewed as a hierarchical struc-
ture, which is shown in the right part of Figure 1, where Nh,r

denotes the set of neighboring entities of entity h under re-
lation r. The intuition underlying our model is that (i) not all
neighboring relations are equally relevant for representing
the central entity, and (ii) not all neighboring entities in each
Nh,r are equally important in indicating the central entity.

Under the above observation, here we propose a novel
neighborhood-aware model, named Relational Graph neu-
ral network with Hierarchical ATtention (RGHAT) for KGC.
In RGHAT, we design a novel hierarchical attention mech-
anism to compute different weights for different neighbor-
ing relations and entities. Specifically, inspired by that the
importance of different relations differ greatly in indicat-
ing an entity, RGHAT first computes the weights for dif-
ferent neighboring relations, which is the first-level atten-
tion. Next, RGHAT computes the attention scores for dif-
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Figure 1: From star-graph to a hierarchical structure: an example of local neighborhood. Nh,r denotes the set of neighboring
entities of entity h under relation r.

ferent neighboring entities under each relation, which is the
second-level attention. Finally, each entity aggregates infor-
mation and gets updated from its neighborhood based on the
hierarchical attentions.

In particular, the advantages of our RGHAT model can be
summarized as follows.

• First, different from most existing KGC models, our
model explicitly takes advantage of the local neighbor-
hood information of each entity.

• Second, the hierarchical structure can be viewed as an in-
tegration of local neighboring information, and integrat-
ing related information into groups has already been veri-
fied to be beneficial to provide more information and yield
better results in machine learning problems (Yuan and Lin
2006; Yang et al. 2016).

• Third, in RGHAT, the hierarchical attention mechanism
provides a fine-grained learning process for the model,
which increases the interpretability of our model. More-
over, under this setting, the weights of neighboring triples
with the same relations can be trained in a collective way,
making the results of our model more stable and more
consistent with human intuition.

Finally, extensive experiments on a number of popu-
lar benchmark datasets clearly validate the effectiveness of
RGHAT against various state-of-the-art baselines.

Related Work
Recent years have witnessed increasing interest in the KGC
problem. Among all the KGC methods, the most success-
ful ones learn distributed representations for entities and re-
lations in KGs, and predict missing values in incomplete
knowledge triples using linear or neural network based op-
erations. These models roughly fall into three categories:
(i) Translation-based models, which view relations as trans-
lations from a head entity to a tail entity. TransE (Bordes
et al. 2013) is one of the most widely used KGC models,
which views a relation as a translation from a head entity
to a tail entity on the same low-dimensional hyperplane,
i.e., h + r ≈ t when (h, r, t) holds. TransH (Wang et al.
2014) introduces a mechanism of projecting entities into
relation-specific hyperplanes that enables different roles of
an entity in different relations. TransR (Lin et al. 2015b)

embeds entities and relations into separate entity space and
relation-specific spaces. (ii) Tensor factorization based mod-
els, which assume the score of a triple can be factorized into
several tensors. RESCAL (Nickel, Tresp, and Kriegel 2011)
utilizes the score function f(h, r, t) = hMrt to compute the
scores of knowledge triples, and assumes that positive triples
have higher scores than negative ones. DistMult (Yang et al.
2015) extends RESCAL and sets the relation-specific matrix
Mr to be diagonal. ComplEx (Trouillon et al. 2016) em-
beds entities and relations into complex vectors instead of
real-valued ones. (iii) Neural network based models, which
utilize deep neural networks to embed KGs. ConvE uses
a convolutional neural network based structure, while R-
GCN (Schlichtkrull et al. 2018) and Nathani’s (Nathani et
al. 2019) use graph neural network (GNN) based structures
to model KGs.

Though the number of KGC models is large, very few
of them utilize the local neighborhood information of an
entity. Garcı́a-Durán et al. (2015) and Lin et al. (2015a)
leveraged path information to embed entities and relations.
Schlichtkrull et al. (2018) extended the widely used graph
convolutional network to relational graphs, and achieved
promising results with the information from local neighbor-
hood. Bansal et al. (2019) and Nathani et al. (2019) further
distinguished the weight of neighboring nodes, and yielded
state-of-the-art performance for KGC. Along this line, we
propose RGHAT, which views the local neighborhood of an
entity as a hierarchical structure, and effectively compute
proper attention weights for neighboring entities and rela-
tions.

Integrating information into groups or hierarchies has
shown to be beneficial for machine learning problems. Yuan
et al. (2006) extended lasso to group lasso by selecting fea-
ture groups instead of individual features. Evgeniou (2004)
proposed regularized multi-task learning, in which similar
tasks are clustered into groups, and variables of tasks from
the same group share information with each other. Yang et
al. (2016) regarded text as word-level and sentence-level
structures, and proposed hierarchical attention networks for
document classification. In this paper, we propose to treat
the neighboring entities under the same relation as a group,
and aggregate information from local neighborhood in a hi-
erarchical way.
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Figure 2: Subgraph of a KG containing existing triples (solid
lines) and the inferred ones (dashed lines).

Methodology
In this section, we provide the technical details of the pro-
posed RGHAT model. First, we introduce the overall frame-
work of the proposed model. Then detailed descriptions of
each step are given. Finally, we provide the loss function and
training details.

Overview
A KG is viewed as a graph G = {(h, r, t)} ⊆ E × R × E ,
where E and R are the entity (node) set and relation (edge)
set respectively. Given a KG, we can infer missing links
based on existing triples in the KG. Figure 2 provides a
subset of a KG. In Figure 2, missing links (represented in
dashed lines) such as (New York, part of, USA) can be in-
ferred based on existing triples (represented in solid lines)
including (Donald Trump, born in, New York) and (Donald
Trump, president of, USA).

The proposed model RGHAT follows an encoder-decoder
framework. Figure 3 shows the framework of a single-layer
RGHAT model. To get multi-layer RGHAT, we just need
to stack the encoder into multiple layers. The encoder first
views the local neighborhood of an entity as a hierarchi-
cal structure, and computes the relation-level attention and
entity-level attention for the neighborhood. Next, the two
attention scores are combined into a triple-level attention
score, and the final score is fed forward to the information
aggregator, which can effectively aggregate local neighbor-
hood information into the central entity. Finally, the encoder
outputs the entity embeddings to the decoder. The decoder
is a KGC model, which can be substitute by a number of
existing KGC models. This setting guarantees the flexibil-
ity and extendibility of our model. In this paper, we choose
ConvE (Dettmers et al. 2018) as our decoder. In the follow-
ing, we will introduce the details of the encoder and decoder.

Encoder
In this section, we give detailed descriptions of the hierar-
chical attention mechanism and the information aggregator.

Relation-level Attention The relation-level attention is
inspired by the fact that the weights of different relations dif-
fer greatly in indicating an entity. For example, intuitively,
the relation has players is more indicative than the relation
based in city when representing the basketball team Los An-
geles Lakers, since the players of a team can uniquely iden-
tify the team, while there may be more than one team that
are based in the same city.

The neighboring entities and relations can be represented
as a number of (h, r, t) triples. In this paper, for an entity
e1, we transform the triple (e2, r, e1) into (e1, r

−1, e2). In
this way, each entity can always act as the head entity of the
neighborhood triples. And we only need to aggregate infor-
mation from tail entities to the head entity.

For entity h, the relation-level attention indicates the
weight of each relation when representing the entity, which
is defined as

ah,r = W1

[
h ‖vr

]
, (1)

αh,r = softmaxr(ah,r) =
exp(σ(p · ah,r))∑

r′∈Nh
exp(σ(p · ah,r′))

, (2)

where ‖ represents the concatenation operation, h ∈ R
d is

the embedding of the entity h, and d is the embedding size.
W1 ∈ R

d×2d, vr ∈ R
d and p ∈ R

d are training parameters,
in which vr is a relation-specific parameter representing the
characteristics of a relation. Nh represents the neighboring
relations of entity h. σ represents the LeakyReLU function
with negative input slope as 0.2. After the above calculation,
we get the relation-level attention score αh,r, which repre-
sents the weight of relation r when representing entity h.

Entity-level Attention The entity-level attention is in-
spired by the intuition that the weights of neighboring en-
tities under the same relation may also be different. For in-
stance, the relation has players links Los Angeles Lakers to
different players, among all these players, top stars may be
more indicative than other players.

The proposed model first views the neighboring entities
under the same relation as a group, then computes the entity-
level attention as follows,

bh,r,t = W2

[
ah,r ‖ t

]
, (3)

βr,t = softmaxt(bh,r,t) =
exp(σ(q · bh,r,t))∑

t′∈Nh,r
exp(σ(q · bh,r,t′))

,

(4)
where t ∈ R

d is the embedding of the entity t, and t is a tail
entity under relation r. Nh,r represents the tail entities of
entity h under relation r. W2 ∈ R

d×2d and p ∈ R
d are the

training parameters. bh,r,t can be regarded as the representa-
tion of the neighboring triple (h, r, t). βr,t is the entity-level
attention score, which denotes the weight of entity t among
all the tail entities under relation r when representing h.

After obtaining the relation-level attention and the entity-
level attention, the two scores are further combined into a
triple-level attention score, which is computed as follows,

μh,r,t = αh,r · βr,t, (5)
where the triple-level attention score μh,r,t represents the
weight of the triple (h, r, t) when representing h. The hier-
archical attention mechanism provides a fine-grained learn-
ing process for the attention score, which increases the in-
terpretability of the model. Moreover, it is worth noting that
the relation-level attention αh,r is explicitly shared by all
the neighboring triples under relation r, which facilitates
the knowledge sharing among these triples, and enables the
weights of neighboring triples with relation r to be trained
in a collective way.
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Figure 3: The overall framework of a single-layer RGHAT model.

Information Aggregator The information aggregator ag-
gregates information from the local neighborhood to the
central entity, and gets the neighborhood-based representa-
tion for entity h, which is computed as

ĥ =
∑
r∈Nh

∑
t∈Nh,r

μh,r,tbh,r,t. (6)

Though ĥ incorporates the information from its local neigh-
borhood, it lacks valuable information from itself. To this
end, we further combine the neighborhood-based represen-
tation ĥ with the input representation h, and get the output
representation h′. In this paper, we design three combination
ways for ĥ and h,
• Additive combination:

h′ = σ(W3(h+ ĥ)), (7)

where W3 ∈ R
d′×d is the training parameter, which

projects the combination of ĥ and h to the output space,
and d′ is the size of the output space.

• Multiplicative combination:

h′ = σ(W4(h� ĥ)), (8)

where � denotes the Hadamard (element-wise) multipli-
cation, and W4 ∈ R

d′×d is the training parameter.
• Bi-interaction combination:

h′ =
1

2

(
σ(W3(h+ ĥ)) + σ(W4(h� ĥ))

)
, (9)

which is a combination of the above two methods.
As suggested by the graph attention network (Veličković

et al. 2018), we also utilize the multi-head atten-
tion (Vaswani et al. 2017) to stabilize the learning process
and encapsulate more information about the neighborhood.
Specifically, K dependent attention mechanisms calculate
the embeddings, which are then concatenated, resulting in
the following representation

h′ =

K

‖
k=1

h′
k, (10)

where h′
k is the output representation of the k-th head. In

the final layer of the encoder, we average the embeddings
from multiple heads instead of concatenating them, which is
shown as

h′ =
1

K

K∑
k=1

h′
k. (11)

A single-layer encoder aggregates information from 1-
hop neighbors to the central entity in 1 training iteration.
With the numbers of layers and iterations increase, our
model can effectively aggregate information from multi-hop
neighbors, which provide valuable information for repre-
senting the central entity. Finally, the encoder outputs the
new entity embedding h′ to the decoder.

Decoder
The decoder can be substituted by a number of existing KGC
models. Particularly, we use ConvE (Dettmers et al. 2018)
as the decoder in this paper. It is worth noting that we also
tried different models as the decoder, but found that using
ConvE achieved the best performance. ConvE models the
interactions between input entities and relations by convo-
lutional and fully-connected layers. Given (h, r, t) triples,
ConvE first reshapes the embedding of h and r into 2D ten-
sors, then computes the scores of knowledge triples based
on the reshaped tensors. The score function of ConvE is

f(h, r, t) = ReLU
(
vec(ReLU([h̄; r̄] ∗ ω))Q

)
t, (12)

where h̄ and r̄ are 2D reshapings of h and r: if h, r ∈ R
d′

,
then h̄, r̄ ∈ R

d1×d2 , where d′ = d1d2. ω denotes a set of
filters, and ∗ denotes the convolution operator. vec(·) is a
vectorization function, and Q is the weight matrix. ConvE
assumes that positive triples have higher scores than negative
ones.

The loss function of the proposed RGHAT model is de-
fined as follows,

L =
∑

(h,r,t)∈Tt

− 1

N

N∑
i=1

(y(h,r,ti) · log(g(f(h, r, ti)))+

(1− y(h,r,ti)) log(1− g(f(h, r, ti)))), (13)
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where y(h,r,ti) is the label (1 or 0) of the triple (h, r, ti). N
denotes the number of candidates for the tail entity, and g is
the sigmoid function. The learning process of the proposed
model is carried out using the Adam optimizer (Kingma and
Ba 2014).

Experiments
In this section, we evaluate the performance of RGHAT on
the task of knowledge graph completion.

Datasets
We evaluate the RGHAT model on four popular bench-
mark datasets FB15k (Bordes et al. 2013), WN18 (Bordes
et al. 2013), FB15k-237 (Toutanova and Chen 2015) and
WN18RR (Dettmers et al. 2018). FB15k is a subset of the
widely used KG Freebase (Bollacker et al. 2008), which
contains a large number of general knowledge facts. WN18
is a subset of WordNet, a KG featuring lexical relations be-
tween words. FB15k and WN18 are the most widely used
datasets in the task of KGC. Recent studies (Toutanova and
Chen 2015; Dettmers et al. 2018) found that the two datasets
contain inverse relations. Under the circumstances, FB15k-
237 and WN18RR were proposed, which removed the re-
verse relations in FB15k and WN18, and are regarded as
more challenging datasets. The statistics of the datasets are
summarized is Table 1.

Table 1: Statistics of the Four Datasets.
Dataset |E| |R| #triples in Train/Valid/Test
FB15k 14,951 1,345 483,142 / 50,000 / 59,071
WN18 40,943 18 141,442 / 5,000 / 5,000
FB15k-237 14,541 237 272,115 / 17,535 / 20,466
WN18RR 40,943 11 86,835 / 3,034 / 3,134

In order to further analyze the performance of RGHAT
on entities with different degrees. We split the entities into
three sets according to their degrees in the training set. The
first set Etrain

1 is made up of entities with top 10% degree
values, the second set Etrain

2 consists of entities with top
10% to 50% degree values, and the third set Etrain

3 includes
the remaining entities. Then, we obtain three sets from the
test set in the following way. For each triple (h, r, t) in the
test set, if h ∈ Etrain

1 and t ∈ Etrain
1 , then (h, r, t) ∈ T test

1 .
The second and third set T test

2 and T test
3 can be obtained

in the same way with Etrain
2 and Etrain

3 . We run our models
on T test

1 , T test
2 and T test

3 to further test the performance.
The number of triples in T test

1 , T test
2 and T test

3 are shown
in Table 2.

Table 2: Statistics of T test
1 , T test

2 and T test
3 .

Dataset |T test
1 | |T test

2 | |T test
3 |

FB15k 8299 8839 2110
WN18 333 706 206
FB15k-237 2566 2691 799
WN18RR 213 461 243

Baselines
To demonstrate the effectiveness of our model, we compare
results with the following baselines.

• TransE (Bordes et al. 2013): one of the most widely used
KGC models.

• DistMult (Yang et al. 2015): a popular tensor factoriza-
tion based model which uses a bilinear score function to
compute scores of knowledge triples.

• ComplEx (Trouillon et al. 2016): an extension of Dist-
Mult which embeds entities and relations into complex
vectors instead of real-valued ones.

• RotatE (Sun et al. 2019): a state-of-the-art model which
defines each relation as a rotation from the head entity to
the tail entity in the complex vector space.

• ConvE (Dettmers et al. 2018): a popular convolutional
network based model.

• ConvKB (Nguyen et al. 2018): another state-of-the-art
convolutional network based model.

• R-GCN (Schlichtkrull et al. 2018): an extension of
graph convolutional network, which can effectively model
multi-relational data.

• A2N (Bansal et al. 2019): a recent model that learns
query-dependent representations of entities based on a
GNN structure.

• Nathani’s (Nathani et al. 2019): a recent model that mod-
els the local neighborhood via graph attention network.

Experimental Settings
In the training stage, we adopt a two-layer RGHAT to train
the entity and relation embeddings. For the encoder, the em-
bedding size of entities is set as 100 for both the input and
output layer. The number of heads for the multi-head at-
tention mechanism is set as 8. And the bi-interaction com-
bination is utilized by the information aggregator. In addi-
tion, a dropout with the rate as 0.5 is applied to each input
layer of the encoder and the the normalized attention coef-
ficients following graph attention network (Veličković et al.
2018). For the decoder, we also set the embedding size of
entities and relations as 100 to be consistent with the en-
coder. A dropout with the rate as 0.3 is applied to the feature
maps. During the training procedure, the learning rate is set
as 0.0005 for FB15k and FB15k-237, and 0.0001 for WN18
and WN18RR. We apply L2 regularization with λ = 0.0005
for all the training parameters. And all the training parame-
ters are randomly initialized.

In the test phase, we replace the head and tail entities with
all the entities in KG in turn for each triple in the test set.
Then we compute a score for each corrupted triple, and rank
all the candidate entities according to the scores. Specifi-
cally, positive candidates are supposed to precede negative
ones. Finally, the rank of the correct entity is stored. We
compare our models with baselines using the following met-
rics: (1) Mean Rank (MR, the mean of all the predicted
ranks); (2) Mean Reciprocal Rank (MRR, the mean of all the
reciprocals of predicted ranks); (3) Hits@n (the proportion
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Table 3: Experimental results on FB15k and WN18. ¶ indicates the results are taken from (Sun et al. 2019). The results of
R-GCN are directly taken from the original paper.

FB15k WN18
Hits@N Hits@N

MR MRR @1 @3 @10 MR MRR @1 @3 @10

TransE (Bordes et al. 2013)¶ - 0.463 0.297 0.578 0.749 - 0.495 0.113 0.888 0.943
DistMult (Yang et al. 2015)¶ 42 0.798 - - 0.893 665 0.797 - - 0.946
ComplEx (Trouillon et al. 2016)¶ - 0.692 0.599 0.759 0.840 - 0.941 0.936 0.945 0.947
RotatE (Sun et al. 2019)¶ 40 0.797 0.746 0.830 0.884 309 0.949 0.944 0.952 0.959
ConvE (Dettmers et al. 2018)¶ 51 0.657 0.558 0.723 0.831 374 0.943 0.935 0.946 0.956
R-GCN (Schlichtkrull et al. 2018) - 0.696 0.601 0.760 0.842 - 0.819 0.697 0.929 0.964
RGHAT (Ours) 37 0.812 0.760 0.843 0.898 342 0.954 0.949 0.951 0.964

Table 4: Experimental results on FB15k-237 and WN18RR. ¶ indicates the results are taken from (Sun et al. 2019). § indicates
the results are taken from (Nathani et al. 2019). The results of A2N are directly taken from the original paper.

FB15K-237 WN18RR
Hits@N Hits@N

MR MRR @1 @3 @10 MR MRR @1 @3 @10

TransE (Bordes et al. 2013)¶ 357 0.294 - - 0.465 3384 0.226 - - 0.501
DistMult (Yang et al. 2015)¶ 254 0.241 0.155 0.263 0.419 5110 0.43 0.39 0.44 0.49
ComplEx (Trouillon et al. 2016)¶ 339 0.247 0.158 0.275 0.428 5261 0.44 0.41 0.46 0.51
RotatE (Sun et al. 2019)¶ 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571
ConvE (Dettmers et al. 2018)¶ 244 0.325 0.237 0.356 0.501 4187 0.43 0.40 0.44 0.52
ConvKB (Nguyen et al. 2018)§ 216 0.289 0.198 0.324 0.471 1295 0.265 0.058 0.445 0.558
R-GCN (Schlichtkrull et al. 2018)§ 600 0.164 0.10 0.181 0.30 6700 0.123 0.08 0.137 0.207
Nathani’s (Nathani et al. 2019)§ 210 0.518 0.46 0.54 0.626 1940 0.44 0.361 0.483 0.581
A2N (Bansal et al. 2019) - 0.317 0.232 0.348 0.486 - 0.45 0.42 0.46 0.51

RGHAT (Ours) 196 0.522 0.462 0.546 0.631 1896 0.483 0.425 0.499 0.588

of ranks not larger than n). Lower values of MR and larger
values of MRR and Hits@n indicate better performance. We
report results in the “filtered” setting (Bordes et al. 2013).

Experimental Results
Experimental results are shown in Table 3 and Table 4.
From Table 3 and Table 4, we have the following find-
ings. (i) The results indicate that RGHAT significantly and
consistently outperforms all the state-of-the-art competitors
on four benchmark datasets. In both Table 3 and Table 4,
RGHAT achieves the best results on most metrics. The ex-
perimental results clearly demonstrate the effectiveness of
the proposed model. (ii) Specifically, comparing RGHAT
with the decoder only model ConvE, we find that RGHAT
achieves substantial improvements against ConvE on all the
metrics, e.g., on FB15k-237, RGHAT outperforms ConvE
with a margin as large as 0.206 on MRR. This result verifies
the effectiveness of the encoder, and indicates the informa-
tion learned from local neighborhood is valuable. It is worth
noting that we also tried different models as the decoder of
RGHAT including DistMult and ConvKB, and found using
ConvE achieved the best performance. Specifically, when
using DistMult as the decoder, the result of RGHAT is bet-

ter than R-GCN, which also utilizes a DistMult Decoder;
when using ConvKB as the decoder, RGHAT also signif-
icantly outperforms all the baselines, including Nathani’s,
which also uses ConvKB as the decoder. These results indi-
cate the superiority of our encoder, and again validates the
effectiveness of RGHAT.

In addition, in order to further analyze the effect of lo-
cal neighborhood information on entities with different de-
grees, we compare the performance of RGHAT with the de-
coder only model ConvE, and the results are shown in Ta-
ble 5 and Table 6. From these two tables, we have the fol-
lowing findings. (i) The proposed model clearly outperform
ConvE across the board, which indicates entities with dif-
ferent degrees can all benefit from the local neighborhood
information. (ii) We find that RGHAT achieves the great-
est improvements against ConvE on triples with high-degree
entities. Taking the metric of MRR as an example, RGHAT
gets the improvements of 0.174, 0.151 and 0.134 on T test

1 ,
T test
2 and T test

3 of FB15k, respectively, compared to the
decoder only model ConvE. The results indicate that high-
degree entities can better benefit from the local neighbor-
hood information. We conjecture the reason lies in that high-
degree entities are surrounded by more neighboring triples,
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Table 5: Experimental results on T test
1 , T test

2 and T test
3 of FB15k and WN18.

FB15k WN18

T test
1 T test

2 T test
3 T test

1 T test
2 T test

3

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

ConvE 0.669 0.842 0.643 0.826 0.628 0.807 0.949 0.959 0.941 0.956 0.933 0.942
RGHAT 0.843 0.922 0.794 0.884 0.762 0.851 0.962 0.975 0.949 0.968 0.936 0.948

Table 6: Experimental results on T test
1 , T test

2 and T test
3 of FB15k-237 and WN18RR.

FB15k-237 WN18RR

T test
1 T test

2 T test
3 T test

1 T test
2 T test

3

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

ConvE 0.332 0.511 0.324 0.498 0.308 0.464 0.436 0.531 0.431 0.521 0.412 0.487
RGHAT 0.539 0.654 0.522 0.626 0.488 0.574 0.492 0.602 0.477 0.579 0.451 0.534

Table 7: Case study for entity Los Angeles Lakers.
Head Entity Los Angeles Lakers

Relation sports team location, αh,r = 0.0475
Tail Entity Los Angeles, βr,t = 1.0, μh,r,t = 0.0475

Relation sports team roster/player, αh,r = 0.2153

Tail Entities

Magic Johnson, βr,t = 0.3082, μh,r,t = 0.0664
Kobe Bryant, βr,t = 0.2864, μh,r,t = 0.0617
Lamar Odom, βr,t = 0.0564, μh,r,t = 0.0121

...

Relation sports team roster/position, αh,r = 0.0098

Tail Entities
power forward, βr,t = 0.2661, μh,r,t = 0.0026
shooting guard, βr,t = 0.2428, μh,r,t = 0.0024

...

Table 8: Case study for entity Tom Hanks.
Head Entity Tom Hanks

Relation award winner−1, αh,r = 0.1292

Tail Entities

56th Golden Globe Awards, βr,t = 0.1261, μh,r,t = 0.0163
59th Golden Globe Awards, βr,t = 0.1332, μh,r,t = 0.0172
66th Golden Globe Awards, βr,t = 0.1196, μh,r,t = 0.0155

...

which provide more information than the neighborhood of
low-degree ones.

Case Studies

We also provide some case studies for RGHAT. Table 7
shows some neighboring relations with corresponding tail
entities for the head entity Los Angeles Lakers. αh,r, βr,t

and μh,r,t represent the relation-level, entity-level and the
triple-level attention scores, respectively. From Table 7,
we find that the relation sports team roster/player plays a
more important role than sports team location, and both
the two relations are much more important than the re-
lation sports team roster/position. Among the tail entities
of sports team roster/player, we find top basketball players

Magic Johnson and Kobe Bryant are the most weighted1.
These observations are in line with our intuition, which indi-
cates that the proposed model is capable to well distinguish
the importance of local neighborhood. Moreover, the hierar-
chical attention mechanism increases the interpretability of
our model, making it possible for us to tell how an entity
aggregates information from the neighborhood.

Furthermore, we find an interesting phenomenon when
comparing results of RGHAT with the recent neighborhood-
aware model Nathani’s (Nathani et al. 2019). It is observed
that Nathani’s tends to assign totally different weights to
triples that are intuitively similar in importance, e.g., in the
results of Nathani’s, the weights of triple (Los Angeles Lak-
ers, sports team roster/player, Magic Johnson) and (Los An-
geles Lakers, sports team roster/player, Kobe Bryant) are
0.0759 and 0.0108, respectively. The former is almost 7
times of the latter, which is obviously inconsistent with
our intuition. Our model assigns the weights of 0.0664 and
0.0617 to the two triples (see Table 7), which is considered
to be more suitable and is consistent with our intuition. The
same phenomenon are observed by the entity Tom Hanks.
Our model RGHAT assigns similar weights for the 3 triples
in Table 8. While Nathani’s assigns 0.0253, 0.0177, 0.0026
for the three triples, and the weight of the first triple is al-
most 10 times of the third one. These observations indicate
that compared to other state-of-the-art neighborhood-aware
models, on account of our utilizing the hierarchical atten-
tion mechanism, the weights of neighboring triples with the
same relations can be computed in a collective way, making
our model more stable than state-of-the-art competitors and
more consistent with human intuition.

Conclusion
In this paper, we proposed a novel neighborhood-aware
model RGHAT for the KGC task. RGHAT is equipped with
a hierarchical attention mechanism, which can effectively
aggregate the local neighborhood information of each entity.

1In Freebase, the tail entities of sports team roster/player in-
clude all the players that have played for the team.
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Particularly, the hierarchical attention mechanism provides a
fine-grained learning process for the proposed model, which
increased the interpretability of RGHAT. Moreover, further
analysis showed the results of RGHAT were more consis-
tent with human intuition compared to other neighborhood-
aware models. Finally, extensive experiments on popular
benchmarks clearly validated the superiority of RGHAT
against various sate-of-the-art baselines.
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