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Abstract

Extracting relations from plain text is an important task with
wide application. Most existing methods formulate it as a su-
pervised problem and utilize one-hot hard labels as the sole
target in training, neglecting the rich semantic information
among relations. In this paper, we aim to explore the super-
vision with soft labels in relation extraction, which makes it
possible to integrate prior knowledge. Specifically, a bipartite
graph is first devised to discover type constraints between en-
tities and relations based on the entire corpus. Then, we com-
bine such type constraints with neural networks to achieve a
knowledgeable model. Furthermore, this model is regarded
as teacher to generate well-informed soft labels and guide the
optimization of a student network via knowledge distillation.
Besides, a multi-aspect attention mechanism is introduced to
help student mine latent information from text. In this way,
the enhanced student inherits the dark knowledge (e.g., type
constraints and relevance among relations) from teacher, and
directly serves the testing scenarios without any extra con-
straints. We conduct extensive experiments on the TACRED
and SemEval datasets, the experimental results justify the ef-
fectiveness of our approach.

Introduction

Relation extraction (RE), defined as the task of detecting se-
mantic relations among two entities in a sentence, is a key
component of many natural language processing (NLP) ap-
plications, such as knowledge base population (Zhang et al.
2018; Distiawan et al. 2019) and question answering (Deng
et al. 2019; Mitra et al. 2019).

Most existing work solves the RE task by fitting the out-
puts of a model to hard labels (i.e, one-hot vectors) (Zhang
et al. 2017; Zhang, Qi, and Manning 2018; Guo, Zhang,
and Lu 2019), regardless of the rich semantic correlations
among relations. For example, the relation cities of res-
idence is often considered similar to city of birth rather
than founded by, yet such information can not be carried
by hard labels (Lopez-Paz et al. 2016). With this in mind,
using soft labels (i.e, probability distributions containing
the relevance over relations) as additional supervision for
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RE is a natural choose to leverage the rich correlated in-
formation among relations. In fact, exploring the supervi-
sion with soft labels has been concerned in many machine
learning areas, especially computer vision (Park et al. 2019;
Yang et al. 2019), these successful prior work have con-
firmed that soft labels are more informative than hard labels.
But to the best of our knowledge, there are few references to
explore the supervision with soft labels in the RE task.

As suggested in (Hinton, Vinyals, and Dean 2015; Yim et
al. 2017), knowledge distillation is an effective way to ex-
plore and incorporate soft labels, which involves a teacher
network to provide soft training signals for a student net-
work. However, the performance of teacher typically deter-
mines the upper bound of student (Mishra and Marr 2018;
Clark et al. 2019). In light of this, it is necessary to train a
prominent teacher by introducing extra knowledge to gen-
erate better-informed soft labels. Inspired by previous work
which improves RE with type constraints (Vashishth et al.
2018; Lei et al. 2018), we decide to enhance the teacher net-
work with such type knowledge. To be specific, every rela-
tion puts some constraints on the type of subject and object
entities, and vice versa (Koch et al. 2014). For instance, the
relation cities of residence can only occur between a person
and a city. Nevertheless, most of prevalent approaches ac-
quire such constraints from knowledge base (e.g. Freebase),
making it hard to obtain appropriate rules and apply in real
testing scenarios, because the target relations may not be
found in existing knowledge bases in some cases. For exam-
ple, all relations in the SemEval dataset cannot be retrieved
from existing knowledge base (Hendrickx et al. 2010). To
overcome this limitation, in this paper we acquire type con-
straints directly from the corpus.

Methodologically, we explore soft labels to improve RE
from two perspectives: excavate type constraints from the
entire corpus to acquire soft rules (the global perspective),
and combine soft rules with the teacher network to generate
well-informed soft labels for each instance (the local per-
spective). For a sentence with a relational fact {subject, rela-
tion, object}, we combine the entity type of subject and ob-
ject to achieve a pattern. To exploit the type constraints with
a global point of view, we first count the co-occurrence num-
ber of patterns and relations across the corpus, and then nor-
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malize the global statistics such that each pattern has a valid
probability distribution over all relations. Finally, a pattern-
to-relation bipartite graph is constructed, with one node set
is patterns and another is relations. In this way, the weight
between pattern pi and relation rj can be formulated as the
probability that the relation of one sentence with pattern pi is
rj , and the distribution among all relations of one pattern can
be further regarded as the soft rule of mapping entity to re-
lation. To capture the relevance among relations locally, we
incorporate knowledge distillation into training procedure.
Specifically, we first combine soft rules with a Graph Con-
volution Networks (GCN) model to achieve three versions of
knowledgeable teachers with different fusion methods, then
employ the teacher to generate well-informed soft labels and
guide the optimization of a student. In addition, we present
a multi-aspect attention (MAA) mechanism for the student
network to mine some latent knowledge in the text by imitat-
ing the global branch of teacher. By this means, the student
network inherits all the knowledge from teacher and requires
no external information any more.

In summary, our contributions are as follows:

• In this paper, for the first time, we propose to supervise
RE with soft labels, which is capable of capturing more
dark knowledge than one-hot hard labels.

• By distilling the knowledge in well-informed soft labels
which contain type constraints and relevance among rela-
tions, we free the testing scenarios from a heavy reliance
on external knowledge.

• The extensive experiments on two public datasets justify
the effectiveness of our approach. The source code can be
obtained from https://github.com/zzysay/KD4NRE.

Preliminaries

In this section, we first describe how we collect and arrange
global type constraints to obtain soft rules, then briefly recall
some basics of knowledge distillation.

Type Constraints

In RE task, relations have expected types for each argument.
Entity types, whether coarse-grained (e.g., from NER tags)
or fine-grained (e.g., from Freebase), are important knowl-
edge for making decisions (Koch et al. 2014). When we fo-
cus on individual instance, the hard constraint of entity type
could help us to filter some irrelevant relations, while the rest
relations are treated equally. But in fact, when we zoom out
to consider the entire corpus, and count the co-occurrence
number of entity types and relations, we will have a more
comprehensive view of type constraints: the constraints be-
tween entity types and relations can then be represented by
its co-occurrence number with relations.

To organize the type constraints between entities and rela-
tions globally and structurally, we construct a bipartite graph
G. Specifically, for each entity pair (s, o) in the sentence, we
combine their types to achieve a pattern p. From this step,
we obtain the pattern set P = {pi} and formulate a support
set S(pi) for each pi. The support set of a pattern contains
all entity pairs corresponding to this pattern. In addition, we
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Figure 1: Toy illustration of our bipartite graph, in which left
nodes are patterns, right nodes are relations, and edges are
weighted by normalized co-occurrence statistics.

also get a set of target relations R = {rj}, and the sup-
port set S(rj) denoting the set of entity pairs having relation
rj . The co-occurrence number of pattern pi and relation rj
is defined as wij = |S(pi) ∩ S(rj)|. In other word, every
relational fact (s, rj , o) with pattern pi is counted as a co-
occurrence of pi and rj .

However, it is quite difficult to directly utilize the raw co-
occurrence counts as soft rules, since these counts have a
heavily skewed distribution that spans several orders of mag-
nitude. Following (Su et al. 2018b), for each pattern we nor-
malize its co-occurrence counts to form a valid probability
distribution over relations. In the end, the bipartite pattern-
to-relation graph G is constructed, with one node set being
the patterns, the other node set being the relations, and the
weighted edges w̄ij = P (rj |pi) = wij/

∑
j′ wij′ represent-

ing the normalized global co-occurrence statistics. Figure 1
shows an example for clarity.

Knowledge Distillation

knowledge distillation is an effective framework to transfer
knowledge from a neural network to another, which typi-
cally consists of two branches: a teacher T , which is usu-
ally a complex model or accompanied by some extra knowl-
edge, and a student S, which is a small network that learns
from the teacher (Hinton, Vinyals, and Dean 2015). In stan-
dard knowledge distillation model, the teacher network T is
trained with ground-truth (i.e., hard labels) and outputs soft
labels P̃T = softmax(Z̃T /τ), in which Z̃T is the pre-softmax
logits and τ is the temperature parameter that is normally
set to 1. Similarly, one can define P̃S = softmax(Z̃S/τ) for
the student network S. In the training stage, S is required to
match not only the ground-truth one-hot labels, but also the
probability outputs of the teacher model:

LS = (1− λ)LS
GT + λLKD (1)

where LS
GT is the ground-truth loss using one-hot labels, LKD

is the knowledge distillation loss using teacher’s soft labels
and λ is the coefficient to trade off such two terms. Typically,
LGT is often the cross entropy loss in classification problems,
and LKD is the Kullback-Leibler divergence to quantify the
difference of output distribution from student to teacher:

LS
GT = CE(G̃, P̃S) = −

∑
i
G̃(i) log P̃S(i) (2)

LKD = KL(P̃T||P̃S) =
∑

i
P̃T(i) log(P̃T(i)/P̃S(i)) (3)
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Figure 2: Plate representation of our proposed model. (a): The overview of our approach, in which the blue dashed lines indicate
loss functions. (b): The architecture of base encoder, in which the dependency tree of sentence is transformed into an undirected
graph. (c): The diagram of multi-aspect attention, it utilizes information from positions, NER tags, entities and sentences.

where G̃ is the one-hot distribution of ground-truth and G̃(i)

is the i-th element of G̃. The soft distribution P̃T outputted
by teacher model is more smooth by assigning non-zero
probabilities to more than one class and yields smaller vari-
ance in gradients, which contain hidden information (also
known as dark knowledge) about the relationship between
different classes. By learning from soft labels, the student
network inherits such dark knowledge and often has a faster
convergence speed (Chen et al. 2017).

Methodology

Figure 2(a) indicates the architecture of our approach. We
divide our approach into three components as follows:
• The Base Encoder captures both sequence-based and

dependency-based information to encode raw text. In our
model, it is the basic module of the teacher and student
networks to learn sentence representations.

• The Teacher Network aims to combine prior soft type
constraints with neural networks to achieve knowledge-
able teacher, and there are three different fusion methods.

• The Student Network can only access to raw text, and
a multi-aspect attention (MAA) mechanism is introduced
to imitate the global branch of teacher network. During
training, this network is forced to produce vectorized out-
puts that are similar to the outputs of teacher network.
Theoretically, each component can be instantiated with

any learning structure in the deep learning literature. We
present our particular implementations in the following.

The Base Encoder

Following Zhang, Qi, and Manning (2018), we implement
our base encoder with a GCN-based model, its structure is
presented in Figure 2(b). It is worth mentioning that the base
encoder can easily use other RE methods which may be left
as future work.

Let X = [x1, ..., xn] denote a sentence, where xi is the i-
th token. A subject entity s and an object entity o correspond
to two spans in the sentence: Xs = [xs1 , ..., xsn ] and Xo =
[xo1 , ..., xon ]. Given X , Xs, and Xo, the goal of base encoder
is to build a sentence representation for the RE task. For each
word xi, we transform it to a vector xi ∈ R

dw using a word
embedding matrix E ∈ R

|V|×dw , where |V| is the vocabulary
and dw is the dimension of word embeddings.

Firstly, a BiLSTM layer is adopted to capture the con-
textual information for each word. We denote all the input
vectors as X = [x1; ...; xn]. The contextualized word repre-
sentation is obtained as follows:

Hlstm = BiLSTM(X) (4)

To further capture the dependency structure over input
sentence, we adopt the graph convolution operation to model
dependency trees by converting each tree into an undirected
graph with an adjacency matrix A, where Aij = Aji = 1 if
there is a dependency edge between tokens xi and xj :

Hgcn = GCN(Hlstm,A) (5)

Note that we add self-loops to each node in the graph,
so that the information of corresponding node in the former
layer will carry over to the later one directly. Next, the sen-
tence representation is expressed as follows:

hsent = f(Hgcn) (6)

Here f : Rdh×n→R
dh is a max pooling function that maps n

hidden vectors to a sentence vector, where dh is the dimen-
sion of hidden states. We also obtain subject representation
hs from Hgcn: hs = f([hgcn

s1 ; ...; hgcn
sn ]), as well as object

representation ho similarly.
Finally, we concatenate the sentence and entity represen-

tations as the output vector of our base encoder, which can
be used for RE directly with a linear layer followed by soft-
max function:

hbase = [hsent, hs, ho] (7)
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The Teacher Network

The teacher network focuses on improving the performance
of RE with soft rules yield from the bipartite graph G, which
is constructed in the section of type constraints.

In the training stage, for the input sentence X with spec-
ified subject and object entities, we first obtain its pattern p
using the type of these two entities, and further retrieve the
corresponding global probability distribution G(p) ∈ R

dr

from G, where dr is the number of relations. Note that the
probability of NA (i.e., no relation) in G(p) is always 0,
which means that no pattern will point to NA. To elimi-
nate this limitation, we set G(p)[NA] to a constant C. In this
way, then G(p) can be viewed as global knowledge, while
the output of base encoder can be seen as local knowledge.
To acquire a knowledgeable teacher with global awareness,
we combine them in a regulable manner:

htea = F(hbase) + γ · G(p) (8)

where F : Rdh→R
dr is a linear function and dr is the num-

ber of relations. γ is the weight of global probability, which
has three different forms of implementation: γs, γv and γr:
• γs ∈ R is a fixed scalar, which is the most straightforward

method to unite the local and global knowledge, although
some manual adjustments are needed.

• γv ∈ R
dr is a trainable vector. It gives different weight to

different dimension of G(p) and is optimized via gradient
back-propagation automatically.

• γr ∈ R
dr is a trainable relation-related vector corre-

sponding to current gold relation label r, γr = Γ[r] and
Γ ∈ R

dr×dr is a relation embedding matrix. Unlike the
above two label-independent methods, each relation has
its unique weight vector, since Γ fully considers the dis-
tinctions between relations.
In that case, the teacher network has three different ver-

sions according to the different implementations of γ, we
denote them as Teacher-S, Teacher-V and Teacher-R, respec-
tively. Although Teacher-R relies on gold relation labels and
is not suitable for testing scenarios, it is still an ingenious
way to generate well-informed soft labels.

The Student Network

Recall that the mission of teacher is to generate soft labels,
while student serves testing scenarios where extra knowl-
edge and annotations are missing. Therefore, we hope stu-
dent could tap the deep potential of raw text with the guid-
ance of knowledgeable teacher. As shown in Figure 2(c),
we present a multi-aspect attention (MAA) mechanism for
the student network, which evaluates relative contribution
of each word with the consideration of multiple aspects and
further generates updated sentence representation.

Here, we define four aspects to measure the importance
of each word. Following Zhang et al. (2017), we obtain po-
sition embeddings pi = [ps

i ; po
i ] for each word xi using a

shared position embedding matrix P, based on the relative
distances from xi to subject and object entities. Besides,
named entity recognition (NER) tag is also a very useful
shallow grammatical information, which can be treated as

coarse-grained entity type. We obtain NER tag embedding
neri for xi using a NER tag embedding matrix N. In addi-
tion, we define a summary vector q = hbase, which encodes
information about the entire sentence and two entities. Fi-
nally, we use above information from different four angles
to develop the multi-aspect attention and further acquire the
updated sentence representation:

hmaa = MAA(Hgcn,P,NER, q) (9)

where P = [p1; ...; pn] and NER = [ner1; ...; nern] are the
embedding sequences of position and NER tag respectively.
The function MAA(·) refers to the multi-aspect attention,
which can be formulated as follows:

ui = v� tanh(Whh
gcn
i + Wppi + Wnneri + Wqq) (10)

ai =
exp(ui)∑n
j=1 exp(uj)

(11)

hmaa =
∑n

i=1
aih

gcn
i (12)

Here Wh ∈ R
dh×dh ,Wp ∈ R

dh×2dp ,Wn ∈ R
dh×dn ,Wq ∈

R
dh×dq and v ∈ R

dh are learnable parameters, where dp and
dn are the dimensions of position and NER tag embeddings
respectively. Additional parameters of the network include
embedding matrices P ∈ R

(2l−1)×dp and N ∈ R
|N |×dn ,

where l is the maximum sentence length and N is the set
of NER tags generated from the Stanford CoreNLP toolkit
(Manning et al. 2014). These two embedding matrices are
initialized randomly.

Finally, hmaa is fed into a linear layer and integrated with
the original logits:

hstu = F(hbase) + F(hmaa) (13)

We name F(hmaa) as auxiliary logits, it is designed to
imitate the global logits γ · G(p) of the teacher network in
the training stage. In other words, we hope that MAA has
the ability to capture some dark knowledge related to the
type constraints between entities and relations.

Objective Functions

This subsection illustrates the objective functions of teacher
and student networks, we introduce two additional loss func-
tions to help our model efficiently transfer dark knowledge
(i.e., the global type constraints and the relevance among re-
lations) from teacher to student.

The Teacher Network In vanilla knowledge distillation,
the teacher network is trained to fit one-hot labels. However,
the ultimate goal of teacher is to provide better guidances for
student, rather than achieve high accuracy simply. Inspired
by Yang et al. (2019), we introduce a top score difference
(TSD) loss to make the teacher’s distribution softer. More
concretely, we first pick up K classes with the highest con-
fidence scores from the teacher’s output, and then compute
the gap between the confidence scores of the primary class
and other K-1 classes:

LTSD = ρ1 − 1

k − 1

∑K

k=2
ρk (14)

9623



where ρk refers to the value of k-th largest element in the
output distribution of teacher. Based on the global statistics,
K is set to 3 empirically. We add the penalty term to standard
ground-truth loss LT

GT when training the teacher, facilitating
it to distribute confidence to a few secondary relations:

LT = LT
GT + LTSD (15)

The Student Network Typically, knowledge distillation
transfers dark knowledge from the final output of teacher.
Chen et al. (2017) demonstrate that using the intermediate
representation of teacher as hint can stabilize the training
process and improve the final performance of student. Here,
we utilize the Kullback-Leibler divergence to measure the
differences of corresponding branches between the teacher
and student networks as hint learning loss:

LHT = KL(LT
L||LS

L) +KL(LT
G||LS

A) (16)

where LT
L and LT

G are the local and global logits of the
teacher network respectively, LS

L and LS
A are the local and

auxiliary logits of the student network respectively. Intu-
itively, it encourages the results of MAA to be similar with
the scaled global logits of the teacher network. The loss of
knowledge distillation is calculated as the sum of LHT and
LKD with a weight factor λht. As a result, the updated loss
of student network is defined as follows:

LS = (1− λkd)LS
GT + λkdL̂KD (17)

L̂KD = LKD + λhtLHT (18)

Experiments

Experimental Settings

Datasets We conduct experiments on two widely used
benchmark datasets: (1) TACRED (Zhang et al. 2017): It is
the currently largest benchmark dataset for supervised RE,
which contains 41 relations and a specially no relation class.
Mentions in TACRED are typed, in which subject entities
falls into 2 categories, and object entities are categorized into
16 types. We report micro-averaged Precision, Recall and F1
scores on this dataset as is conventional. (2) SemEval (Hen-
drickx et al. 2010): The SemEval (i.e., SemEval 2010 task 8)
dataset contains 18 directed relations and a no relation class,
all relations in this dataset cannot be retrieved from existing
knowledge base. On SemEval, we follow the convention and
report the macro-averaged F1 scores.

Implementation Details We tune all hyper-parameters
according to the results on dev sets. For the base encoder, we
use the same configure with C-GCN (Zhang, Qi, and Man-
ning 2018). Beyond that, we set the NA probability C to 0.2,
the temperature of knowledge distillation τ to 1, the weight
factor of hint learning λht to 1.8, the weight factor of type
constraints in Teacher-S γs to 0.8. The size of position em-
bedding dp and NER tag embedding dn in MAA are both set
to 30. Inspired by Clark et al. (2019), we adopt the teacher
annealing strategy: Let λkd increases from 0 to 1 linearly
throughout the training stage of student. GloVe (Pennington,
Socher, and Manning 2014) vectors are used as the initial-
ization for word embeddings. Following Zhang et al. (2017)

Dataset #Train #Dev #Test #Relation

TACRED 68,124 22,631 15,509 42
SemEval 7,500 500 2,717 19

Table 1: Statisticses of the TACRED and SemEval datasets.

and Zhang, Qi, and Manning (2018), we augment the in-
put with part-of-speech (POS) and named entity recognition
(NER) embeddings, which are initialized randomly. For the
SemEval dataset, we use Stanford CoreNLP toolkit to gen-
erate dependency parse trees, POS and NER annotations.

Baselines We compare our model with the following base-
line models: (1) SDP-LSTM (Xu et al. 2015): It applies a
neural sequence model along the shortest dependency path
between target entities. (2) PA-LSTM (Zhang et al. 2017): It
employs a position-aware attention mechanism over LSTM
outputs, and outperforms several CNN-based models. (3) C-
GCN (Zhang, Qi, and Manning 2018): It applies a combi-
nation of pruning strategy and graph convolutions to the de-
pendency tree, which is the base encoder of our model. (4)
SA-LSTM (Yu et al. 2019): It adopts a segment attention
mechanism on top of the LSTM, and is capable of learning
relational expressions. (5) ERNIE (Zhang et al. 2019): It is
a pre-trained language model with rich knowledge informa-
tion, and outperforms BERT in RE task. (6) AG-GCN (Guo,
Zhang, and Lu 2019): It utilizes an attention guided graph
convolutional networks, which is the recent state-of-the-art
on the TACRED dataset.

Experimental Results

Table 2 and 3 summarize the comparison results on the two
datasets. We utilize Student-S/V/R to designate three differ-
ent versions of student network with Teacher-S/V/R respec-
tively. Note that Teacher-R is not suitable for testing scenar-
ios, we do not report the results in these two tables.

Performance with Type Constraints Firstly, we focus on
the performance of teacher. From the results in Table 2 and
3, we observe consistent performance gains when compar-
ing our teacher networks with base encoder (C-GCN), which
demonstrates the effectiveness of introducing soft type con-
straints. In particular, by using scalar weight γs, Teacher-
S achieves significant improvements (+1.5% on F1 for TA-
CRED and +0.6% on F1 for SemEval). When we replace γs
with γv , Teacher-V further outperforms the AG-GCN model
and achieves a new state-of-the-art. This is sensible, since
the values in soft rules and local logits are not in the same
order of magnitude, γv scales the different dimensions of
soft rules to different degrees adaptively. Furthermore, for
models without γs, the performance fluctuates only slightly
when the NA probability C varies between (0, 1], which
again confirms that γ with vector form can realize the au-
toregulation of soft rules.

Additionally, it is worth mentioning that our Teacher-R
achieves 83.5% and 94.8% F1 in the dev set of TACRED
and SemEval respectively. Although greatly promoting the
performance, it leaks the target relation label and thus cannot
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Model P R F1

SDP-LSTM (Xu et al. 2015) 66.3 52.7 58.7
PA-LSTM (Zhang et al. 2017) 65.7 64.5 65.1
C-GCN (Zhang, Qi, and Manning 2018)† 69.9 63.3 66.4
SA-LSTM (Yu et al. 2019) 69.0 66.2 67.6
ERNIE (Zhang et al. 2019) 70.0 66.1 68.0
AG-GCN (Guo, Zhang, and Lu 2019) 73.1 64.2 68.2

Teacher-S (ours) 69.5 66.3 67.9
Teacher-V (ours) 71.6 66.0 68.7�

Student-S (ours) 68.5 67.6 68.1
Student-V (ours) 71.1 66.7 68.8
Student-R (ours) 71.4 67.9 69.6�

Table 2: Results on the TACRED dataset, bold marks highest
number among all models. † marks the base encoder of our
model. � marks statistically significant improvements over
AG-GCN with p < 0.01 under a bootstrap test.

Model F1

SDP-LSTM (Xu et al. 2015) 83.7
PA-LSTM (Zhang et al. 2017) 82.7
C-GCN (Zhang, Qi, and Manning 2018)† 84.8
AG-GCN (Guo, Zhang, and Lu 2019) 85.7

Teacher-S (ours) 85.4
Teacher-V (ours) 85.9�

Student-S (ours) 85.5
Student-V (ours) 85.9
Student-R (ours) 86.8�

Table 3: Results on the SemEval dataset, bold marks highest
number among all models. † marks the base encoder of our
model. � marks statistically significant improvements over
AG-GCN with p < 0.05 under a bootstrap test.

be applied to the testing stage.

Performance with Knowledge Distillation Next, we in-
vestigate the performance of our student network, which is
hoped to inherit both local and global knowledge from the
teacher network by knowledge distillation. From Table 2, we
can see that: (1) Student-R outperforms other models in all
settings, which justifies the philosophy for choosing well-
informed soft labels as additional supervision for RE. (2) A
better teacher can educate a better student, which is a re-
spond to the point we mentioned earlier: incorporating ad-
ditional knowledge when training teacher is an efficient ap-
proach to improve the performance of student. (3) Student-S
and Student-V outperform Teacher-S and Teacher-V slightly,
indicating that knowledge in soft labels has been passed on
from the teacher network to the student network. Thanks
to the teacher annealing strategy, the student can make fur-
ther progress beyond teacher, since it ensures the student
gets rich training signals early in training, but is not lim-
ited to only imitating the teacher. However, Student-R does
not have such consistent gain over Teacher-R. The reason
behind such phenomenon is still under investigation, we pre-
sume that the student network do not has enough capability

Model F1

Student-R 69.6
– TSD loss (TSD) 68.8
– Hint learning loss (HT) 68.4
– TSD & HT 67.9
– Type constraints (TC) 68.0
– Multi-aspect attention (MAA) 68.3
– TC & MAA 67.8
– Knowledge distillation (KD) 67.5

Table 4: Results on the TACRED dataset to investigate the
influence of different model architectures.

to imitate such remarkable label knowledge.
Overall, our approach achieves quite impressive results

(+1.4% on F1) compared with AG-GCN on the TACRED
dataset. Similar results can be found on SemEval, we omit
the specific analysis due to space limitations.

Ablation Study

To study the contribution of each component in Student-R,
we run an ablation study on the TACRED dataset (see Table
4). From these ablations, we can observe that: (1) TSD loss
is a necessary component that contributes 0.8% gain of F1 to
the ultimate performance, we attribute this gain to the softer
distribution of the teacher’s output, and softer means more
informative. (2) The use of hint learning is crucial, since the
F1 drops drastically by 1.2% if it is removed, which can be
interpreted that it provides an effective guidance to clone
the teacher’s structure for student. (3) The type constraints
contributes about 1.6% F1, which indicates that it is impor-
tant to let our model aware of the global type knowledge.
(4) Removing MAA hurts the result by 1.3% F1, it shows
that the participation of multi-aspect information can indeed
help students to excavate some knowledge from raw texts.
(5) When we remove the type constraints and MAA and use
a vanilla knowledge distillation model, the score drops by
1.8%. Conversely, when we remove the knowledge distil-
lation and let the student learn from hard labels, the score
drops by 2.1%, which justifies the effectiveness of using
knowledge distillation in RE.

Effectiveness of Well-informed Soft Labels

From cases in Figure 3, we attribute the performance gain
to two design choices: (1) The introduction of soft type con-
straints. Intuitively, the global statistics over examples pro-
vide more signal than independent sentence. In this way,
combining with the soft rules can help neural networks gen-
erate reasonable and high-confidence predictions for the in-
stances with complicate semantics. (2) The application of
knowledge distillation. It is effective because that the soft
output of class distribution from the knowledgeable teacher
may carry additional information (e.g., the global awareness
and cross-category relationship), such knowledge in soft la-
bels can be successfully transferred from the teacher to stu-
dent by leveraging knowledge distillation. Overall, our main
claims about using soft labels instead of hard labels is that
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Sentences Baseline Student-R
The Urban League[OBJ-ORGANIZATION], which bought the Col-
man School[OBJ-ORGANIZATION], is confronting the community
issue directly.

no relation [0.42] org:subsidiaries [0.65]
org:subsidiaries [0.35] no relation [0.26]
org:parents [0.14] org:parents [0.03]

Wayne A. Holst[SUBJ-PERSON] teaches at the University of Cal-
gary and at St. David’s United Church[OBJ-ORGANIZATION].

per:schools attended [0.51] per:employee of [0.91]
per:employee of [0.41] per:schools attended [0.08]
no relation [0.07] no relation [0.01]

Cash Minerals Ltd.[OBJ-ORGANIZATION] released a report about
the amount of uranium found in the Yukon, where John
Graham[SUBJ-PERSON] was born and raised.

no relation [0.96] no relation [0.95]
per:employee of [0.02] per:employee of [0.03]
per:schools attended [0.01] per:schools attended [0.01]

Figure 3: Outputs of Baseline (C-GCN) and Student-R on samples from TACRED, underscore marks the ground truth.
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Figure 4: Visualization of soft rules on the TACRED dataset.
Blocks are highlighted with different degrees according to
the probabilities from pattern to relation.

a lot of helpful information can be carried in soft labels that
could not possibly be encoded with one-hot vectors.

Visualization of Soft Rules

We visualize the bipartite pattern-to-relation graph to further
show how the soft type constraints help RE boost the perfor-
mance. From Figure 4, we can clearly see that soft rules is
the refinement of hard type constraint, which can also be
regarded as some prior knowledge and help model rectify
some wrong cases and keep the right ones. For example, the
probability of the relation between a person and an organi-
zation being employee of is 0.92. It is intuitive, when we talk
about a person and an organization, our immediate reaction
is that the man is a employee of the organization, then make
further judgments based on the specific statements.

Related Work

In this paper, we deal with the supervised relation extraction
(RE) problem, which is also known as relation classification
(RC). Recently, various models are proposed based on dif-
ferent neural architectures, such as convolutional neural net-
works (Zeng et al. 2014; 2015), recurrent neural networks
(Xu et al. 2015; Zhang et al. 2017), graph convolutional
networks (Zhang, Qi, and Manning 2018; Guo, Zhang, and
Lu 2019) and transformers (Alt, Hübner, and Hennig 2019;
Zhang et al. 2019). But overall, existing approaches mostly

use hard labels (e.g., one-hot vectors) as the optimization ob-
jective in training, ignoring rich semantic relevance among
relations. Although Liu et al. (2017) introduced a soft-label
method, they aims to alleviate the wrong label problem dur-
ing training and neglect the cross-category relationships too.
Besides, there are also some efforts aimed at using external
information to boost the performance of RE, including en-
tity description (Ji et al. 2017), entity type (Vashishth et al.
2018) and relation-specific constraint (Lei et al. 2018). How-
ever, they tend to focus on the distantly supervised relation
extraction (DSRE) and acquire information from knowledge
base (KB), such heavy reliance on KB limits their scalabil-
ity. For example, all relations in the SemEval dataset cannot
be retrieved from existing KB (Hendrickx et al. 2010). To
get rid of the limitation of KB, Su et al. (2018a) explored to
consider the dependency of relation within an entity pair for
DSRE. Su et al. (2018b) proposed to combat the wrong la-
bel problem in DSRE with global statistics. However, there
is no prior study has explored to count soft labels from text
corpus with a global perspective, which is a new opportunity
to further improve the performance for RE.

Our work is also related to knowledge distillation (Hin-
ton, Vinyals, and Dean 2015). Yim et al. (2017) concluded
that it can bring three benefits: fast optimization, knowledge
transfer and performance improvement. Recently, it shines
brilliantly in various fields, especially for computer vision
(Chen et al. 2017; Mishra and Marr 2018; Park et al. 2019).
Nevertheless, in the natural language processing area, it is
still in infancy stage and used for few tasks (Liu, Chen, and
Liu 2019; Tan et al. 2019; Clark et al. 2019). In this paper,
we employ knowledge distillation to help us mine soft labels
and transfer knowledge for RE.

Conclusions and Future Work

In conclusion, we explore a new viewpoint of utilizing soft
labels to boost the performance of RE. Specifically, we first
construct a bipartite graph to discover soft rules between en-
tity types and relations from entire corpus, and then combine
soft rules with a GCN-based model to achieve knowledge-
able teacher. Furthermore, we present a multi-aspect atten-
tion mechanism to help student mine the potential of raw text
and adopt knowledge distillation to transfer dark knowledge
from teacher to student. Finally, experimental results on two
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public datasets prove the effectiveness of our model. In the
future, we plain to explore soft labels with other forms and
adapt our model to other NLP tasks.
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