
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

SG-Net: Syntax-Guided Machine Reading Comprehension

Zhuosheng Zhang,1,2,3,∗ Yuwei Wu,1,2,3,4,* Junru Zhou,1,2,3 Sufeng Duan,1,2,3

Hai Zhao,1,2,3,† Rui Wang5,†
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China

3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China
4College of Zhiyuan, Shanghai Jiao Tong University, China

5National Institute of Information and Communications Technology (NICT), Kyoto, Japan
{zhangzs, will8821}@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn, wangrui@nict.go.jp

Abstract

For machine reading comprehension, the capacity of
effectively modeling the linguistic knowledge from the detail-
riddled and lengthy passages and getting ride of the noises
is essential to improve its performance. Traditional attentive
models attend to all words without explicit constraint, which
results in inaccurate concentration on some dispensable
words. In this work, we propose using syntax to guide the
text modeling by incorporating explicit syntactic constraints
into attention mechanism for better linguistically motivated
word representations. In detail, for self-attention network
(SAN) sponsored Transformer-based encoder, we introduce
syntactic dependency of interest (SDOI) design into the
SAN to form an SDOI-SAN with syntax-guided self-
attention. Syntax-guided network (SG-Net) is then composed
of this extra SDOI-SAN and the SAN from the original
Transformer encoder through a dual contextual architecture
for better linguistics inspired representation. To verify its
effectiveness, the proposed SG-Net is applied to typical
pre-trained language model BERT which is right based on
a Transformer encoder. Extensive experiments on popular
benchmarks including SQuAD 2.0 and RACE show that
the proposed SG-Net design helps achieve substantial
performance improvement over strong baselines.

1 Introduction

Recently, much progress has been made in general-purpose
language modeling that can be used across a wide range
of tasks (Radford et al. 2018; Devlin et al. 2018; Zhang
et al. 2020b; Zhou, Zhang, and Zhao 2019; Zhang et
al. 2019). Understanding the meaning of a sentence is a
prerequisite to solve many natural language understanding
(NLU) problems, such as machine reading comprehension
(MRC) based question answering (Rajpurkar, Jia, and Liang
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2018). Obviously, it requires a good representation of the
meaning of a sentence.

A person reads most words superficially and pays more
attention to the key ones during reading and understanding
sentences (Wang, Zhang, and Zong 2017). Although a
variety of attentive models have been proposed to imitate
human learning, most of them, especially global attention
methods (Bahdanau, Cho, and Bengio 2015) equally tackle
each word and attend to all words in a sentence without
explicit pruning and prior focus, which would result
in inaccurate concentration on some dispensable words
(Mudrakarta et al. 2018).

We observe that the accuracy of MRC models decreases
when answering long questions (shown in Section 5.1).
Generally, if the text is particularly lengthy and detailed-
riddled, it would be quite difficult for deep learning model to
understand as it suffers from noise and pays vague attention
on the text components, let alone accurately answering
questions (Zhang et al. 2018). In contrast, existing studies
have verified that human reads sentences efficiently by
taking a sequence of fixation and saccades after a quick first
glance (Yu, Lee, and Le 2017).

Besides, for passage involved reading comprehension,
a input sequence always consists of multiple sentences.
Nearly all of the current attentive methods and language
models regard the input sequence as a whole, e.g., a passage,
with no consideration of the inner linguistic structure inside
each sentence. This would result in process bias caused by
much noise and lack of associated spans for each concerned
word.

All these factors motivate us to seek for an informative
method that can selectively pick out important words by
only considering the related subset of words of syntactic
importance inside each input sentence explicitly. With a
guidance of syntactic structure clues, the syntax-guided
method could give more accurate attentive signals and
reduce the impact of the noise brought about by lengthy
sentences.

So far, we have two types of broadly adopted contextu-
alized encoders for building sentence-level representation,
RNN-based and Transformer-based (Vaswani et al. 2017).
The latter has shown its superiority which is empowered
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Figure 1: (a) Example of syntax-guided span-based QA.
The SDOI of each word (e.g., free and kind) consists of
all its ancestor words and itself marked with the same
background color. (b-c) The dependency parsing tree of the
given passage sentence and question.

by a self-attention network (SAN) design. In this paper,
we extend the self-attention mechanism with syntax-
guided constraint, to capture syntax related parts with
each concerned word. Specifically, we adopt pre-trained
dependency syntactic parse tree structure to produce the
related nodes for each word in a sentence, namely syntactic
dependency of interest (SDOI), by regarding each word as a
child node and the SDOI consists all its ancestor nodes and
itself in the dependency parsing tree. An example is shown
in Figure 1.

To effectively accommodate such SDOI information, we
propose a novel syntax-guided network (SG-Net), which
fuses the original SAN and SDOI-SAN, to provide more
linguistically inspired representation for challenging reading
comprehension tasks1.

To our best knowledge, we are the first to integrate
syntactic relationship as attentive guidance for enhancing
state-of-the-art SAN in Transformer encoder. The proposed
SG-Net design is applied to pre-trained BERT (Devlin et
al. 2018) and evaluated on challenging MRC tasks, which
shows its effectiveness by boosting the strong baseline
substantially.

2 Related Work

2.1 Machine Reading Comprehension

In the last decade, the MRC tasks have evolved from
the early cloze-style test (Hill et al. 2015; Hermann et
al. 2015) to span-based answer extraction from passage
(Rajpurkar et al. 2016; Nguyen et al. 2016; Joshi et al. 2017;
Rajpurkar, Jia, and Liang 2018) and multi-choice style

1Our code is available at https://github.com/cooelf/SG-Net.

ones (Lai et al. 2017) where the two latter ones are our
focus in this work. A wide range of attentive models have
been employed, including Attention Sum Reader (Kadlec
et al. 2016), Gated attention Reader (Dhingra et al. 2017),
Self-matching Network (Wang et al. 2017), Attention over
Attention Reader (Cui et al. 2017) and Bi-attention Network
(Seo et al. 2016).

Recently, deep contextual language model has been
shown effective for learning universal language represen-
tations by leveraging large amounts of unlabeled data,
achieving various state-of-the-art results in a series of NLU
benchmarks. Some prominent examples are Embedding
from Language models (ELMo), Generative Pre-trained
Transformer (OpenAI GPT) (Radford et al. 2018) and
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al. 2018). The latest evaluation shows
that BERT is powerful and convenient for downstream tasks.
Following this line, we extract context-sensitive syntactic
features and take pre-trained BERT as our backbone encoder
to verify the effectiveness of our proposed SG-Net.

2.2 Syntactic Structures

Recently, dependency syntactic parsing have been further
developed with neural network and attained new state-of-
the-art results (Zhang, Zhao, and Qin 2016; Li et al. 2018;
Ma et al. 2018; Li, Zhao, and Parnow 2020). Benefiting from
the highly accurate parser, neural network models could
enjoy even higher accuracy gains by leveraging syntactic
information rather than ignoring it (Chen et al. 2017a;
2017b; 2018; Duan et al. 2019).

Syntactic dependency parse tree provides a form that
is capable of indicating the existence and type of
linguistic dependency relation among words, which has
been shown generally beneficial in various natural language
understanding tasks (Bowman et al. 2016). To effectively
exploit syntactic clue, most of previous works (Kasai et
al. 2019) absorb parse tree information by transforming
dependency labels into vectors and simply concatenate the
label embedding with word representation. However, such
simplified and straightforward processing would result in
higher dimension of joint word and label embeddings and
is too coarse to capture contextual interactions between the
associated labels and the mutual connections between labels
and words. This inspires us to seek for an attentive way
to enrich the contextual representation from the syntactic
source. A related work is from Strubell et al. (2018), which
proposed to incorporate syntax with multi-task learning for
semantic role labeling. However, their syntax is incorporated
by training one extra attention head to attend to syntactic
ancestors for each token while we use all the existing heads
rather than add an extra one. Besides, this work is based on
the remarkable representation capacity of recent language
models such as BERT, which have been suggested to be
endowed with some syntax to an extent (Clark et al. 2019).
Therefore, we are motivated to apply syntactic constraints
through syntax guided method to prune the self-attention
instead of purely adding dependency features.

In this work, we form a general approach to benefit from
syntax-guided representations, which is the first attempt
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Figure 2: Overview of the syntax-guided network.

for the SAN architecture improvement in Transformer
encoder to our best knowledge. The idea of updating the
representation of a word with information from its neighbors
in the dependency tree which benefits from explicit syntactic
constraints, is well linguistically motivated.

3 Syntax-Guided Network

Our goal is to design an effective neural network model
which makes use of linguistic information as effectively
as possible. We first present the general syntax-guided
attentive architecture, building upon the recent advanced
Transformer-based encoder2 and then fit with task-specific
layers for machine reading comprehension tasks.

Figure 2 depicts the whole architecture of our model.
Our model first directly takes the output representations
from an SAN-empowered Transformer-based encoder, then
builds a syntax-guided SAN from the SAN representations.
At last, the syntax-enhanced representations are fused from
the syntax-guided SAN and the original SAN and passed to
task-specific layers for final predictions.

3.1 Syntax-Guided Network

Our syntax-guided representation is obtained by two steps.
Firstly, we pass the encoded representation from the
Transformer encoder to a syntax-guided self-attention layer.
Secondly, the corresponding output is aggregated with
the original encoder output to form a syntax-enhanced
representation. It is designed to incorporate the syntactic
tree structure information inside a multi-head attention
mechanism to indicate the token relationships of each
sentence which will be demonstrated as follows.

Syntax-Guided self-attention Layer In this work, we
first pre-train a syntactic dependency parser to annotate the
dependency structures for every sentence which are then fed
to SG-Net as guidance of token-aware attention. Details of

2Note that our method is not limited to cooperate with BERT in
our actual use, but any encoder with a self-attention network (SAN)
architecture.
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Figure 3: An example of the syntactic dependency of interest
(SDOI) mask.

the pre-training process of the parser are reported in Section
4.2.

To use the relationship between head word and dependent
words provided by the syntactic dependency tree of
sentence, we restrain the scope of attention only between
word and all of its ancestor head words3. In other word,
we would like to have each word only attend to words of
syntactic importance in a sentence, the ancestor head words
in the view of the child word. As shown in Figure 3, instead
of taking attention with each word in whole passage, the
word credit only makes attention with its ancestor head
words reflects and losses and itself in this sentence, which
means that the SDOI of credit contains reflects, losses along
with itself4.

Specifically, given input token sequence S =
{s1, s2, ..., sn} where n denotes the sequence length,
we first use syntactic parser to generate a dependency tree.
Then, we derive the ancestor node set Pi for each word
si according to the dependency tree. Finally, we learn a
sequence of SDOI mask M, organized as n ∗ n matrix, and

3We extend the idea of using parent in Strubell et al. (2018) to
ancestor for a wider receptive range.

4Note that for special tokens used by BERT such as [CLS],
[SEP] and [PAD], the SDOI of these tokens is themselves alone
in our implementation, which means these tokens will only attend
to themselves in syntax-guided self-attention layer.
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elements in each row denote the dependency mask of all
words to the row-index word.

M[i, j] =

{
1, if j ∈ Pi or j = i
0, otherwise. (1)

Obviously, if M[i, j] = 1, it means that token si is the
ancestor node of token sj . As the example shown in Figure
3, the ancestors of credit (i=4) are reflects (j=2), losses (j=5)
along with itself (j=4); therefore, M[4, (2, 4, 5)] = 1 and
M[4, (0, 1, 3)] = 0.

We then project the last layer output H from the
vanilla Transformer into the distinct key, value, and query
representations of dimensions L× dk, L× dq , and L× dv ,
respectively, denoted K ′

i, Q
′
i and V ′

i for each head i. Then
we perform a dot product to score key-query pairs with the
dependency of interest mask to obtain attention weights of
dimension L× L, denoted A′

i:

Ai
′ = Softmax

(
M · (Qi

′Ki
′T )

√
dk

)
. (2)

We then multiply attention weight A′
i by V ′

i to obtain the
syntax-guided token representations:

W ′
i = A′

iV
′
i . (3)

Then W ′
i for all heads are concatenated and passed

through a feed-forward layer followed by GeLU activations
(Hendrycks and Gimpel 2016). After passing through
another feed-forward layer, we apply a layer normalization
to the sum of output and initial representation to obtain the
final representation, denoted as H ′ = {h′

1, h
′
2, ..., h

′
n}.

Dual Context Aggregation Considering that we have two
representations now, one is H = {h1, h2, ..., hn} from the
Transformer encoder, the other is H ′ = {h′

1, h
′
2, ..., h

′
n}

from syntax-guided layer from the above part. Formally, the
final model output of our SG-Net H̄ = {h̄1, h̄2, ..., h̄n} is
computed by:

h̄i = αhi + (1− α)h′
i. (4)

3.2 Task-specific Adaptation

We focus on two types of reading comprehension tasks, i.e.,
span-based and multi-choice style which can be described as
a tuple < P,Q,A > or < P,Q,C,A > respectively, where
P is a passage (context) and Q is a query over the contents
of P , in which a span or choice C is the right answer A. For
the span-based one, we implemented our model on SQuAD
2.0 task that contains unanswerable questions. Our system
is supposed to not only predict the start and end position in
the passage P and extract span as answer A but also return a
null string when the question is unanswerable. For the multi-
choice style, the model is implemented on RACE dataset
which is requested to choose the right answer from a set of
candidate ones according to given passage and question.

Here, we formulate our model for both of the two tasks
and feed the output from the syntax-guided network to
task layers according to specific task. Given the passage P ,

[CLS] P [SEP] Q [SEP]

[CLS] P || Q [SEP] C [SEP]

Span:

Choice:

the question Q, and the choice C specially for RACE, we
organize the input X for the encoder as the following two
sequences.
where || denotes concatenation.

In this work, pre-trained BERT is adopted as our
detailed implementation of the Transformer encoder. Thus
the sequence is fed to BERT encoder mentioned above to
obtain the contextualized representation H which is then
passed to our proposed syntax-guided self-attention layer
and aggregation layer to obtain the final syntax-enhanced
representation H̄ . To keep simplicity, the downstream task-
specific layer basically follows the implementation of BERT.
We outline below to keep the integrity of our model
architecture. For span-based task, we feed H̄ to a linear layer
and obtain the probability distributions over the start and end
positions through a softmax. For multi-choice task, we feed
it into the classifier to predict the choice label for the multi-
choice model.

SQuAD 2.0 For SQuAD 2.0, our aim is a span of answer
text, thus we employ a linear layer with SoftMax operation
and feed H̄ as the input to obtain the start and end
probabilities, s and e:

s, e = SoftMax(Linear(H̄)). (5)

The training objective of our SQuAD model is defined as
cross entropy loss for the start and end predictions,

Lhas = ys log s+ ye log e. (6)

For prediction, given output start and end probabilities s and
e, we calculate the has-answer score scorehas and the no-
answer score scorena:

scorehas = max(sk + el), 0 ≤ k ≤ l ≤ n,

scorena = s0 + e0.
(7)

We obtain a difference score between has-answer score
and the no-answer score as final score. A threshold δ
is set to determine whether the question is answerable,
which is heuristically computed in linear time with dynamic
programming according to the development set. The model
predicts the answer span that gives the has-answer score
if the final score is above the threshold, and null string
otherwise.

RACE As discussed in Devlin et al. (2018), the pooled
representation explicitly includes classification information
during the pre-training stage of BERT. We expect the pooled
to be overall representation of the input. Thus, the first token
representation h̄0 in H̄ is picked out and is passed to a feed-
forward layer to give the prediction p. For each instance with
n choice candidates, we update model parameters according
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to cross-entropy loss during training and choose the one
with highest probability as the prediction when testing. The
training objectives of our RACE model is defined as, L(θ) =
− 1

N

∑
i yi log pi, where pi denotes the prediction, yi is the

target, and i denotes the data index.

4 Experiments

4.1 Dataset and Setup

Our experiments and analysis are carried on two data sets,
involving span-based and multi-choice MRC and we use
the fine-tuned cased BERT (whole word masking) as the
baseline.

Span-based MRC As a widely used MRC benchmark
dataset, SQuAD 2.0 (Rajpurkar, Jia, and Liang 2018)
combines the 100,000 questions in SQuAD 1.1 (Rajpurkar et
al. 2016) with over 50,000 new, unanswerable questions that
are written adversarially by crowdworkers to look similar
to answerable ones. For the SQuAD 2.0 challenge, systems
must not only answer questions when possible, but also
abstain from answering when no answer is supported by
the paragraph. Two official metrics are selected to evaluate
the model performance: Exact Match (EM) and a softer
metric F1 score, which measure the weighted average of the
precision and recall rate at a character level.

Multi-choice MRC Our multi-choice MRC is evaluated
on Large-scale ReAding Comprehension Dataset From Ex-
aminations (RACE) dataset (Lai et al. 2017), which consists
of two subsets: RACE-M and RACE-H corresponding to
middle school and high school difficulty levels. RACE
contains 27,933 passages and 97,687 questions in total,
which is recognized as one of the largest and most difficult
datasets in multi-choice MRC. The official evaluation metric
is accuracy.

4.2 Implementation

For the syntactic parser, we adopt the dependency parser
from Zhou and Zhao (2019) by joint learning of constituent
parsing (Kitaev and Klein 2018) using BERT as sole input
which achieves very high accuracy: 97.00% UAS and
95.43% LAS on the English dataset Penn Treebank (PTB)
(Marcus, Santorini, and Marcinkiewicz 1993) test set5. Note
this work is done in data preprocessing and our parser is not
updated with the following MRC models.

For MRC model implementation, We adopt the Whole
Word Masking BERT as the baseline 6. The initial learning
rate is set in {8e-6, 1e-5, 2e-5, 3e-5} with warm-up rate of
0.1 and L2 weight decay of 0.01. The batch size is selected
in {16, 20, 32}. The maximum number of epochs is set
to 3 or 10 depending on tasks. The weight α in the dual
context aggregation is 0.5. All the texts are tokenized using

5We report the results without punctuation of the labeled and
unlabeled attachment scores (LAS, UAS).

6It is further improved as strong baseline by synthetic self
training following https://nlp.stanford.edu/seminar/details/jdevlin.
pdf.

Model
Dev Test

EM F1 EM F1

Regular Track
Joint SAN 69.3 72.2 68.7 71.4
U-Net 70.3 74.0 69.2 72.6
RMR + ELMo + Verifier 72.3 74.8 71.7 74.2

BERT Track
Human - - 86.8 89.5
BERT + DAE + AoA† - - 85.9 88.6
BERT + NGM + SST† - - 85.2 87.7
BERT + CLSTM + MTL + V† - - 84.9 88.2
SemBERT† - - 84.8 87.9
Insight-baseline-BERT† - - 84.8 87.6
BERT + MMFT + ADA† - - 83.0 85.9
BERTLARGE - - 82.1 84.8
Baseline 84.1 86.8 - -
SG-Net 85.1 87.9 - -
+Verifier 85.6 88.3 85.2 87.9

Table 1: Exact Match (EM) and F1 scores (%) on SQuAD
2.0 dataset for single models. Our model is in boldface. †
refers to unpublished work. Besides published works, we
also list competing systems on the SQuAD leaderboard at
the time of submitting SG-Net (May 14, 2019). Our model
is significantly better than the baseline BERT with p-value
< 0.01.

wordpieces, and the maximum input length is set to 384 for
both of SQuAD and RACE. The configuration for multi-
head self-attention is the same as that for BERT.

4.3 Main Results

To focus on the evaluation of syntactic advance and keep
simplicity, we only compare with single models instead of
ensemble ones.

SQuAD 2.0 Table 1 shows the result on SQuAD 2.0.
Various state of the art models from the official leaderboard
are also listed for reference. We can see that the performance
of BERT is very strong. However, our model is more
powerful, boosting the BERT baseline essentially. It also
outperforms all the published works and achieves the 2nd
place on the leaderboard when submitting SG-NET. We also
find that adding an extra answer verifier module could yield
better result, which is pre-trained only to determine whether
question is answerable or not with the same training data as
SG-Net. The logits of the verifier are weighted with scorena
to give the final predictions.

RACE For RACE, we compare our model with the
following latest baselines: Dual Co-Matching Network
(DCMN) (Zhang et al. 2020a), Option Comparison Network
(OCN) (Ran et al. 2019), Reading Strategies Model (RSM)
(Sun et al. 2018), and Generative Pre-Training (GPT)
(Radford et al. 2018). Table 2 shows the result7. Turkers

7Our concatenation order of P and Q is slightly different from
the original BERT. Therefore, the result of our BERT baseline is
higher than the public one on the leaderboard, thus our improved
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Figure 4: Accuracy for different question length. Each data point means the accuracy for the questions in the same length range
(a) or of the same number (b) and the horizontal axis in (b) shows that most of questions are of length 7-8 and 9-10.

Model RACE-M RACE-H RACE

Human Performance
Turkers 85.1 69.4 73.3
Ceiling 95.4 94.2 94.5

Leaderboard
DCMN 77.6 70.1 72.3
BERTLARGE 76.6 70.1 72.0
OCN 76.7 69.6 71.7
Baseline 78.4 70.4 72.6
SG-Net 78.8 72.2 74.2

Table 2: Accuracy (%) on RACE test set for single models.
Our model is significantly better than the baseline BERT
with p-value < 0.01.

is the performance of Amazon Turkers on a random
subset of the RACE test set. Ceiling is the percentage of
unambiguous questions in the test set. From the comparison,
we can observe that our model outperforms all baselines,
which verifies the effectiveness of our proposed syntax
enhancement.

5 Discussions

5.1 Effect of Answering Long Questions

We sort the questions from SQuAD dev set according to the
length and group them into 20 subsets split by equal range
of question length and equal amount of questions8. Then we
calculate the exact match accuracy of the baseline and SG-
Net per group, as shown in Figure 4. We observe that the
performance of the baseline drops heavily when encountered
with long questions, especially for those longer than 20
words while our proposed SG-Net works robustly, even

BERT implementation is used as the stronger baseline for our
evaluation.

8Since the question length is at variance, we depict the two
aspects to show the discovery comprehensively.

showing positive correlation between accuracy and length.
This shows that with syntax-enhanced representation, our
model is better at dealing with lengthy questions compared
with baseline.

5.2 Visualization

To have an insight that how syntax-guided attention works,
we draw attention distributions of the vanilla attention
of the last layer of BERT and our proposed syntax-
guided self-attention9, as shown in Figure 5. With the
guidance of syntax, the keywords name, legislation and
1850 in the question are highlighted, and (the) Missouri,
and Compromise in the passage are also paid great attention,
which is exactly the right answer. The visualization verifies
that benefiting from syntax-guided attention layer, our
model is effective at selecting the vital parts, guiding the
downstream layer to collect more relevant pieces to make
predictions.

5.3 Dual Context Mechanism Evaluation

In SG-Net, we integrate the representations from syntax-
guided attention layer and the vanilla self-attention layer
in dual context layer. To unveil the contribution of each
potential component, we conduct comparisons on the
baseline with:

1. Vanilla attention only that adds an extra vanilla BERT
attention layer after the BERT output.

2. Syntax-guided attention only that adds an extra syntax-
guided layer after the BERT output.

3. Dual contextual attention that is finally adopted in SG-
Net as described in Section 3.1.

9Since special symbols such as [PAD] and [CLS] are not
considered in the dependency parsing tree, we confine the SDOI of
these tokens to themselves. So these special tokens will have value
of 1 as weights over themselves in syntax-guided self-attention and
we will mask these weights in the following aggregation layer.
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Passage (extract):...30 minutes, the line of the Missouri Compromise... Question:What was the name of the legislation passed in 1850? Answer:the Missouri Compromise

Figure 5: Visualization of the vanilla BERT attention (left) and syntax-guided self-attention (right). Weights of attention are
selected from first head of the last attention layer. For the syntax-guided self-attention, the columns with weights represent
the SDOI for each word in the row. For example, the SDOI of passed contains {name, of, legislation, passed}. Weights are
normalized by SoftMax for each row.

Model EM F1

baseline 84.1 86.8
+ Vanilla attention only 84.2 86.9
+ Syntax-guided attention only 84.4 87.2
+ Dual contextual attention 85.1 87.9

Concatenation 84.5 87.6
Bi-attention 84.9 87.8

Table 3: Ablation study on potential components and
aggregation methods on SQuAD 2.0 dev set.

Table 3 shows the results. We observe that dual contextual
attention yields the best performance. Adding extra vanilla
attention gives no advance, indicating that introducing
more parameters would not promote the strong baseline.
It is reasonable that syntax-guided attention only is also
trivial since it only considers the syntax related parts
when calculating the attention, which is complementary
to traditional attention mechanism with noisy but more
diverse information and finally motivates the design of dual
contextual layer.

Actually, there are other operations for merging repre-
sentations in dual context layer besides the weighted dual
aggregation, such as concatenation and Bi-attention (Seo et
al. 2016), which are also involved in our comparison, and
our experiments show that using dual contextual attention
produces the best result.

6 Conclusion

This paper presents a novel syntax-guided framework for
enhancing strong Transformer-based encoders. We explore
to adopt syntax to guide the text modeling by incorporating
syntactic constraints into attention mechanism for better

linguistically motivated word representations. Thus, we
adopt a dual contextual architecture called syntax-guided
network (SG-Net) which fuses both the original SAN
representations and syntax-guided SAN representations.
Taking pre-trained BERT as our Transformer encoder
implementation, experiments on two major machine reading
comprehension benchmarks involving span-based answer
extraction (SQuAD 2.0) and multi-choice inference (RACE)
show that our model can yield new state-of-the-art or
comparative results in both extremely challenging tasks.
This work empirically discloses the effectiveness of
syntactic structural information for text modeling. The
proposed attention mechanism also verifies the practicability
of using linguistic information to guide attention learning
and can be easily adapted with other tree-structured
annotations.
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