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Abstract

Conventional interactive machine translation typically re-
quires a human translator to validate every generated target
word, even though most of them are correct in the advanced
neural machine translation (NMT) scenario. Previous studies
have exploited confidence approaches to address the inten-
sive human involvement issue, which request human guid-
ance only for a few number of words with low confidences.
However, such approaches do not take the history of human
involvement into account, and optimize the models only for
the translation quality while ignoring the cost of human in-
volvement. In response to these pitfalls, we propose a novel
interactive NMT model, which explicitly accounts the history
of human involvements and particularly is optimized towards
two objectives corresponding to the translation quality and
the cost of human involvement, respectively. Specifically, the
model jointly predicts a target word and a decision on whether
to request human guidance, which is based on both the par-
tial translation and the history of human involvements. Since
there is no explicit signals on the decisions of requesting hu-
man guidance in the bilingual corpus, we optimize the model
with the reinforcement learning technique which enables our
model to accurately predict when to request human guidance.
Simulated and real experiments show that the proposed model
can achieve higher translation quality with similar or less hu-
man involvement over the confidence-based baseline.

Introduction
Recent years have witnessed a breakthrough in neural ma-
chine translation (NMT) (Bahdanau, Cho, and Bengio 2015;
Vaswani et al. 2017), but its translation quality is still in-
capable of satisfying the requirements in many industrial
applications. Interactive machine translation (IMT) (Foster,
Isabelle, and Plamondon 1997; Langlais, Foster, and La-
palme 2000), where human and machines collaborate to
translate in a joint strategy, has thereby drawn much re-
search attention (Green et al. 2014; Wuebker et al. 2016;
Knowles and Koehn 2016; Peris, Domingo, and Casacuberta
2017). In the conventional IMT, a user and machine collab-
oratively generate the translation from left-to-right: at each
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time the user validates all words in a prefix and corrects one
of them, and then the machine generates new words based on
the corrected prefix until the translation process is finished.

Despite its appealing performance, the user has to val-
idate all words generated by a machine although most of
them are actually correct, leading to considerable human in-
volvement (Ueffing and Ney 2005). Many efforts (González-
Rubio, Ortiz-Martı́nez, and Casacuberta 2010b; Cheng et
al. 2016; Knowles and Koehn 2018) thereby have been
made to reduce human involvement based on the notion of
confidence estimation (Blatz et al. 2004; González-Rubio,
Ortiz-Martı́nez, and Casacuberta 2010a; Lam, Kreutzer, and
Riezler 2018). They query for human guidance for few of
those words with low confidences so that prevent manu-
ally validating other words with high confidences. How-
ever, in these confidence based approaches, the confidence
model is either an external classifier (Ueffing and Ney 2005;
Cheng et al. 2016) or inherited from the standard translation
models (Knowles and Koehn 2018) and they do not take the
human guidance into account at all. Moreover, their learn-
ing objectives for both the confidence and translation models
completely ignore human guidance. As a result, their perfor-
mance could be limited, failing to catch the long-term influ-
ence of human involvement.

In this paper, we propose a novel interactive machine
translation to jointly predict a word and a decision on when
to request human guidance, which not only reduces human
involvement but also generates excellent translations. We
cast the query action as a special token in the output dic-
tionary. At each time, the proposed NMT model predicts
either a target word or the special token which indicates a
request for the correct word from human. Furthermore, our
NMT model is trained towards two objectives, i.e., improv-
ing translation quality and reducing human involvement re-
quired. Since there is no explicit signals on the decisions
of requesting human guidance in the bilingual corpus, we
employ the reinforcement learning (RL) technique to opti-
mize the joint model which is able to predict when to re-
quest human guidance. Unfortunately, the reward includes
two objectives which are somehow contradictory with each
other: a higher translation quality often requires more human
guidance, the standard RL learning algorithm (Bahdanau et
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al. 2017) produced highly unstable results and was found
not applicable in our preliminary experiments. To put RL
into practice in our scenario, we additionally propose simple
yet effective techniques into the standard RL training algo-
rithm. Simulated and real experiments demonstrate that our
proposed approach obtains higher BLEU while using less
human involvement compared to the confidence based ap-
proach.

This paper makes the following contributions:

• It proposes a joint interactive NMT model for the
paradigm which takes historical human involvement into
account in architecture and is optimized to human in-
volvement besides translation quality.

• It studies the behavior of reinforcement learning on the
setting where its reward balances two contradictory objec-
tives and highlights two important techniques in making
RL successful.

• The proposed approach obtains better balance between
translation quality and human involvement on both sim-
ulated and real experiments than the confidence based ap-
proach.

Preliminaries

NMT Model

We consider the problem of learning to generate the out-
put sentence Y = 〈y0, · · · , y|Y|−1〉 with length T being the
target language based on an input X = 〈x0, · · · , x|X|−1〉
in the source language. Typical methods are based on the
encoder-decoder framework with attention mechanism. The
encoder first maps the source sentence X into a set of rep-
resentations by mixing the information in different tokens.
Then, at each decoding step t, the next output token is pre-
dicted according to P (yt | Y<t,X). Y<t = 〈y0, · · · , yt−1〉
is the hypothesis generated by the model, containing output
tokens at each time-step, and V is the target-side vocabulary
containing all candidate output tokens. Models are usually
trained in a teacher-forcing manner, based on the maximum
likelihood estimation (MLE) loss along the ground-truth ref-
erence.

Currently, the model showing the highest performance is
Transformer, proposed by Vaswani et al. (2017) and thus we
employ it as the testbed in our experiments. Different from
previous models such as RNN-based (Cho et al. 2014) and
Convolution-based (Gehring et al. 2017), it relies purely on
the self-attention structure in both encoding and decoding
process, which can mix the features in different time-step
positions more efficiently. Our methods utilized this model
as the backbone structure.

Confidence-based Baseline INMT

In this paper, we follow the conventional interactive ma-
chine translation to set the baseline which generates a trans-
lation from the the left-to-right (Foster, Isabelle, and Pla-
mondon 1997). Conventional interactive machine transla-
tion requires human translators to validate all words in
the prefix and then decide to correct a word accordingly.
To further reduce human involvement, confidence based

approaches have been proposed which focus on some of
those words with low confidence and request human trans-
lator to type the correct words (Ueffing and Ney 2005;
González-Rubio, Ortiz-Martı́nez, and Casacuberta 2010b;
Cheng et al. 2016).

We develop our confidence baseline on top of the ad-
vanced Transformer. Similar to (Knowles and Koehn 2018),
the generative story of our confidence based IMT can be de-
scribed as follows. Suppose Y<t has already been gener-
ated, and the next token is obtained through two steps:

1. Generate a token yt by the NMT model;

2. Reset the token yt via an oracle O (for example, a human
translator) if the P (yt | Y<t,X) ≤ η, where η is a pre-
defined threshold to control the frequency of requesting
human guidance.

Unfortunately, there are at least two pitfalls in the base-
line which might lead to limited performance. On one hand,
the NMT model is insensitive to the human guidance in the
prefix Y<t, i.e. it completely ignores which tokens in Y<t

have been modified by the oracle O. On the other hand, the
training objective of the model is the standard MLE, which
does not take the human guidance into account.

Proposed INMT Methodology

In this section, we illustrate how we embed each query of
human guidance as a special token in the output dictionary,
and accordingly design our INMT model which takes histor-
ical queries of human guidance into account.

Joint INMT Model

To account human guidance in the architecture, we propose
an improved INMT model which models it explicitly. The
improved model is on top of the oracle O besides X and
jointly predicts both translation and interaction. Specifically,
we append a special token “〈orc〉” to the target vocabulary:
V ′ = V ∪ {〈orc〉}. The joint model parameterized by θ is
defined as follows:

P (Y′ | X, O; θ) =
∏
t

P
(
y′t | Y′

<t, O(Y′
<t),X; θ

)
(1)

where y′t can be a real word in the vocabulary V or the spe-
cial token “〈orc〉”, and O(Y′

<t) denotes the token sequence
which is obtained by the oracle after specifying all “〈orc〉” in
Y′

<t in the incremental manner to facilitate the left-to-right
decoding strategy. For example, in Table 1, Y′

<3 =“He is
〈orc〉” and O(Y′)<3 =“ He is my ” . By introducing the spe-
cial token, our model can jointly translate and predict when
to query for human guidance: if the predicted y′t is in V , and
our model does not to query the oracle, otherwise it needs
the query from the oracle O.

To further define the network architecture of our model in
Eq. (1), we mainly employ the same networks as in Trans-
former (Vaswani et al. 2017), to encode X into the repre-
sentation vectors using self attention but with two signifi-
cant differences. Firstly, since Y′

<t may include “〈orc〉” for
multiple times, it is inferior to predict y′t by directly feeding
Y′

<t into the model compared to standard transformer, and
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Notation Value
Y′ He is 〈orc〉 colleague 〈orc〉 whom I traveled for 〈orc〉 three weeks .

O(Y′) He is my colleague with whom I traveled for about three weeks .

Table 1: The examples. Y′ denotes a translation from our joint model, in which “〈orc〉” indicating that this token should be
corrected by an oracle O. O(Y′) denotes the corrected translation by O.

thus we feed O(Y′
<t) into the decoder instead. In addition,

to take the human guidance in the history into account, we
represent Y′

<t with a binary sequence to indicate whether
y′i = 〈orc〉 or not for all i < t, and then we employ the
technique to encode this binary sequence similar to position
embedding in (Gehring et al. 2017). For example, in Table 1,
Y′

<5 = ‘He is 〈orc〉 colleague 〈orc〉”, then O(Y′
<4) =“He

is my colleague with“0 0 1 0 1”, both of which are actually
encoded in our network to predict y′5.

Proposed INMT Protocol

The generative story of our INMT for translation is achieved
by the following two steps:
• generate a token y′t from the joint model defined in

Eq. (1).
• reset y′t by requesting the oracle O if y′t = 〈orc〉.

In our protocol, we predict when to request human in-
volvement by adding a special token in the target dictionary,
and thus enlarge the output dimensions of the actor by 1 ac-
cordingly. our protocol advantages can be summarized: 1) it
only introduces three extra embedding parameters (one for
the special tokens and two for binary code) compared to the
standard transformer; 2) takes the cost of human involve-
ment from the history into account.

Training via Reinforcement Learning

In the confidence based INMT baseline, its translation model
is trained only for translation quality and thus is insensi-
tive to the cost of human involvement. In this section, we
thereby propose to optimize the joint INMT model towards
both objectives (i.e., translation quality and human involve-
ment). Since there is no explicit signals on the decisions of
requesting human guidance in the bilingual corpus, we opti-
mize the model with the actor-critic algorithm such that our
model is able to predict when to request human guidance. To
the best of our knowledge, it is the first time to train transla-
tion models towards such both goals for interactive machine
translation.

However, it is far from trivial to train the INMT model via
the actor-critic algorithm, because in our scenario the two
goals are contradictory somehow: reducing the cost human
involvement typically leads to worse translation quality. In
the rest of this section, we will presents the components of
our actor-critic algorithm and particularly we will analyze
the issues suffered in our preliminary experiments in details
and propose effective techniques to address them.

Pretraining

Suppose we are given a bilingual training corpus
{〈Xn,Yn〉 | n = 1, · · · , N}, where Yn is the reference

of source sentence Xn and N is the size of the corpus. For
each bilingual sentence 〈Xn,Yn〉, there is no special token
“〈orc〉” in the reference Yn, and thus we can not train the
joint INMT to predict “〈orc〉” by using the bilingual corpus
alone.

To address this, we propose to train it in a simple
knowledge-transfer way. To this end, we firstly train a stan-
dard Transformer model on the given bilingual corpus, and
then use the trained model to modify the reference sen-
tence Yn to Y′n which includes “〈orc〉”. Specifically, we
use the trained model to rescore each token ynt in the ref-
erence Yn. If the model score of ynt is less than or equal
to η, we set y′nt = 〈orc〉; otherwise y′nt = ynt . This proce-
dure is similar to the baseline INMT protocol except that the
former rescores the reference translation Y instead of a gen-
erated translation in the latter. Table 1 shows an example for
〈Y′,Y,A〉 according to the reference. In this way, we can
convert the bilingual corpus including a set of {〈Xn,Yn〉 |
n = 1, · · · , N} into the corpus {〈Xn,Yn,Y′n〉 | n =
1, · · · , N}. Note that in the converted corpus we memorize
Yn such that it can recover “〈orc〉” in Y′,n by looking up
Yn instead of query the oracle O.

Finally we pretrain our critic model over the converted
corpus in a teacher-forcing manner by maximize the follow-
ing objective:∑

t

logP (y′nt | Y′n
<t,Y

n
<t,X

n; θ). (2)

where the above model P is defined in Eq. (1) but it is con-
ditioned on Yn

<t rather than Y′n
<t and thus it does not need

the oracle during the pretraining. We expect this pretrained
model to capture the intrinsic structure in deciding when the
human-input is needed, which may provide a reasonable ini-
tialization for our RL algorithm.

Simulated Oracle and Reward

During the training, we have to sample a translation Y′ for
each source bilingual sentence 〈Xn,Yn〉 following the gen-
erative story presented in our INMT protocol last section.
Since it is too costly to employ a human translator as the
oracle O, we instead provided a simulated oracle to mimic
a human translator. Suppose at the timestep t, all tokens in
Y′

<t are not equal to 〈orc〉 but y′t = 〈orc〉, we simulate O to
reset y′t as a new token in V such that the following holds:

y′t = argmax
y∈V

pBLEU(Y′
<t ◦ y)

where pBLEU denotes the partial BLEU score (Liu and
Huang 2014), and Y<t ◦ y denotes the new prefix which
extends Y<t with a token y.

Traditionally, reward R is defined using BLEU score.
However, since our goal is to maximize translation quality
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while minimizing the number of human involvement, we in-
troduce a penalty term to balance the accuracy and human
involvement. In our scenario, we implement it in a most in-
tuitive and simple way:

R(Y′,Yn, O) = BLEU(O(Y′),Yn)−λ×
∑
t

δ
(〈orc〉, y′t

)

where O(Y′) denotes the translation hypothesis where all
“〈orc〉” have been reset by the simulated oracle O, δ(y, y′)
returns 1 if y = y′ or 0 otherwise, and BLEU denotes
sentence-wise BLEU+1 as in (Bahdanau et al. 2017), and
λ is a hyperparameter to balance the both factors.

Critic Model and Its Updating

The reward can only be computed after the hypothesis sen-
tence is finished, but if these rewards are delayed until the
end, the algorithm will degrade, as reported in (Bahdanau et
al. 2017; Nguyen, Daumé, and Boyd-Graber 2017). There-
fore, a proper way to estimate the reward for intermediate
steps is important for this method to coverage. As directly
applying Monte Carlo search often yields high variance and
results in instability during training when the search space
is large, we use a critic model to approximate the average
future reward.

Formally the critic model is defined by

V
(
Y′

<t, O(Y′
<t),Y

n;φ
)

where Y′ is a translation of the source sentence Xn and φ is
the parameter of V . V is defined by the network which is al-
most the same as the joint model defined in Eq. 1 except two
differences: its inputs include Yn rather than the source sen-
tence Xn; in addition, its output is not a distribution over a
vocabulary but a number which estimates the average future
rewards at current time step t.

The critic model is trained to approximate the reward
of the proposal with respect to ground-truth using minimal
square loss as follows:∑

t

Gt(Y
′,Yn;φ)2 (3)

where Gt is defined by:

Gt(Y
′,Yn, O;φ) = R(Y′,Yn, O)

− V
(
Y′

<t, O(Y′
<t, ),Y

n;φ
)
.

Note that as critic model is only needed at the training phase,
it will not cause a problem that the input contains ground-
truth Yn during testing phase.

Updating Actor Model

With critic model φ fixed, the actor model θ (i.e. our joint
NMT model in Eq.(1)) can be updated following the stan-
dard advantage policy-gradient criteria (Sutton, Barto, and
others 1998). However, since training INMT in our scenario
is much difficult than training automatic NMT due to the two
contradictory goals, we found that the standard actor-critic
algorithm in (Bahdanau et al. 2017; Wu et al. 2018) fails

in our preliminary experiments and we observed two severe
issues leading to its failure.

The first issue is that our actor model suffers from so-
called ‘catastrophic forgetting’: the change of the actor
model after RL training begins is drastic, and consequently
it soon loses the ability to give credential predictions in the
following batches. This contributes to its ineffectiveness in
exploring, and the actor will gradually degrade and get lower
performance. To address this issue, we introduce two MLE
auxiliary objectives and update actor model θ via the regu-
larized policy gradient:

∇θ

[
logP

(
y′t | Y′

<t, O(Y′
<t),X

n; θ
)
Gt(Y

′,Yn;φ)

+ λ1

∑
t

logP (ynt | Y′n
<t,Y

n
<t,X

n; θ)

+ λ2

∑
t

logP (y′nt | Y′n
<t,Y

n
<t,X

n; θ)

]
. (4)

where P parameterized by θ is defined in Eq. (1), and
〈Xn,Yn,Y′n〉 is the converted data from 〈X,Y〉 during
pretraining. The loss corresponding to λ1 can guide the ac-
tor to produce correct tokens and the loss The loss corre-
sponding to λ1 can guide the query for human’s guidance
at proper juncture respectively, making the updated θ more
meaningful in exploration.

The second issue is that during training the actor model
tends to change drastically after the RL training begins and
thus the critic model V will soon be outdated, and incapable
of giving accurate estimation of future rewards. To address
this, we adopt a strategy of asynchronous updates between
critic and actor models: we update critic model for three
times while updating actor model once. This simple method
shows a much more stable training trajectory. We attribute it
to the reason that the value model can see more samples in
the second way, and the variance introduced by sampling is
alleviated.

The full training algorithm for our model is shown in Al-
gorithm 1, in which the inputs are a threshold, two auxiliary
weights and a bilingual dataset and the output is the actor
model θ used for inference.

Experiment

We conduct both simulated experiments and real exper-
iments. For the simulated experiments, we employ the
bilingual datasets from IWSLT14 German-English (De-
En), IWSLT14&15 Chinese-English (Zh-En), and IWSLT17
French-English (Fr-En); while for real experiments, we only
use the De-En dataset. Note that in the simulated experi-
ments, we use the simulated oracle with partial BLEU as de-
scribed in previous section to mimic human translators while
in the real experiments, we use the human translators as the
oracle.

Setup

Data and Preprocessing For the IWSLT14 De-En
dataset, we follow the procedures in (Ott et al. 2019) and
use BPE (Sennrich, Haddow, and Birch 2016) to process the
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Algorithm 1 RL for Proposed INMT Model

Require:
{〈Xn,Yn〉 | n = 1, · · · , N}.

1: Initialize the actor model θ by pretraining;
2: Set asynchronous update variable α = 0;
3: while Not Converged do
4: α = α+ 1;
5: Receive a random converted example 〈Xn,Yn,Y′n〉;
6: Sample Y′ for Xn from the actor model θ;
7: Update the critic model φ by one-step gradient over

Eq. (3);
8: if α mod 3 == 0 then
9: Update the actor model θ by one-step gradient ac-

cording to Eq. (4);
10: end if
11: end while

source and target sentences. Data is tokenized and cleaned
using Moses toolkit (Koehn et al. 2007). Similar steps
are performed for IWSLT17 Fr-En. For the Zh-En dataset,
we mainly adopt the same data-split method as Nguyen,
Daumé, and Boyd-Graber (2017) and Li et al. (2019), ex-
cept that we use both their ‘Supervised training’ and ‘Bandit
training’ sets as the training set. We use the Stanford Chi-
nese word segmenter (Chang, Galley, and Manning 2008)
to segment Chinese sentences. Besides, BPE is also adopted
for both source and target sentences.

Baseline Since our aim is to demonstrate that our joint
model with RL training is able to obtain better translation
with less human involvement than the confidence based ap-
proach, we implement both approaches on top of the same
NMT framework and employ the left-to-right interactive de-
coding strategy. The confidence baseline INMT protocol is
the one we proposed in Section 2, which is directly based
on the standard transformer. In addition, to further show the
effectiveness our RL training, we use the pretrained joint
model as our second baseline, which learns when to inter-
act in a knowledge-transfer way, as defined in Section 4.

Model Configuration Both the NMT model and the critic
model are built upon ‘transformer iwslt de en’ setting as de-
fined in (Ott et al. 2019) for all three datasets, which is
recommended for IWSLT datasets. Concretely, we use six
self-attention layers for both encoding and decoding, and the
embedding dimension is set to 512. For training our model,
the BLEU score in our reward is the sentence-wise BLEU+1
which is a common practice when sentence-level BLEU is
considered (Bahdanau et al. 2017). We train our models by
the Adam Optimizer (Kingma and Ba 2015) with β1 = 0.9,
β2 = 0.999 and set the maximum tokens in a batch to 4000.
For the pretraining process, we adopt a warm-up of 4000
steps and set the initial learning rate to 0.0003. Before the
RL training begins, the actor model is initialized with pa-
rameters of the pretrained model, and the reward model is
pretrained with learning rate 0.005 for one epoch. Then, we
continue the training with learning rate 0.0001 for the ac-

tor and 0.0005 for the reward model. The scale λ of the
query penalty in the reward function is set to 0.015(we found
the improvement to be stable when it is between 0.015 and
0.02). And weight λ1, λ2 of two auxiliary losses are initial-
ized to 0.1 at the beginning and lowered by approximately
0.6 after each epoch.

Evaluation The comparison between our approach and
baseline approaches is not straightforward, as it is in essence
a multi-goal task and particularly our two goals are contra-
dictory. A quick idea is to take several different interpolation
coefficients and evaluate against the interpolated goal, but
this idea is not applicable because our approach can directly
optimize towards it by casting this interpolation coefficient
as λ in the reward, making the comparison unfair. Inspired
by Duh et al. (2012), we employ the following criterion to
conclude that one approach A is better than the approach B
if and only if the approach A achieves higher BLEU while
using less human involvement than the approach B. Since
the baselines and our approach adopt the different ways to
control the level of human involvement, it is not easy to
maintain the similar human involvement for three different
approaches. Therefore, in the simulated experiments, we in-
dependently running all three approaches with different hy-
perparameters and draw a piece-wise linear curve similar to
ROC curves (Bradley 1997) for each approach in terms of
both goals, then we validate whether the criterion is satis-
fied by picking points from the curve 1. To reduce the cost
in the real experiments, we pick one setting for the baseline
and one setting for our approach from the simulated exper-
iments, and then validate whether the criterion is satisfied
during the real human-computer interaction.

Results and Analysis

Simulated Scenario The performance of each approach
on three datasets are shown in Figure 1. It can be seen that in
IWSLT14 De-En, our RL-based method shows an improve-
ment of average 2 BLEU points over the baselines when us-
ing the same amount of human guidance. The improvement
is more significant when query frequency is below 18 per-
cent, with a gap of over 3 points. When the human effort
is involved in over 22 percent of tokens, the gap drops a
little, becoming 1.5. This result shows that despite the base-
line approaches are already 11.5 BLEU points better than
the traditional transformer when having an average guid-
ance frequency of 0.16, their interaction policies are still
sub-optimal. Our approach, which uses RL to directly trade
off between human effort and translation quality, can outper-
form them with a large margin. Similar results can be found
in Zh-En and Fr-En datasets, with an average improvement
of 1.1 and 1.7 BLEU scores under the same query frequency
respectively, as also shown in Figure 1.

Figure 1 has shown the gains in directly learning when to
query for human guidance. To better understand the learn-
ing process, we also provide an example of the curves over

1For both baselines, the variant hyperparameter was η taken
from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. For our approach, we ini-
tialized it with different pretrained models.
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Figure 1: Comparison of different approaches. The x-axis refers to the frequency of making queries, with 1 meaning guidance
is required at every time-step. The y-axis is the BLEU score.

Figure 2: Progresses of the BLEU scores (upper) and the
query times (lower) during training.

BLEU scores and query times during training in Figure 2.
We can see clearly that the change of model’s behavior in
the first several epochs is drastic. The model tends to opti-
mize towards relying more on human guidance in the begin-
ning, and the translation quality soars rapidly. After arriving
at certain point, it will stop this tendency, and seek to reduce
the human efforts while keeping a high translation quality.

methods BLEU query freq
NMT 39.48 0

Base protocol 46.06 0.10
RL approach 49.33 0.10

Table 2: Comparison of different approaches in real IMT
scenario, where human translators serve as the oracle.

Real Scenario To validate whether our RL-based method
can really reduce the amount of human involvement, we also
perform an experiment to test its usage in the real human-

computer interaction scenario. Since it is costly to conduct
IMT experiments for all test sentences on the real scenario,
we sample 400 samples from IWSLT14 De-En and then
ask two human translators to conduct the human-computer
translation. Each human translator has to interact with two
INMT systems 2 (i.e. confidence-based and our RL-based)
to translate one source sentence twice. To make the com-
parison fairer, when translating one source sentence we sup-
ply both systems to each translator in a random order such
that the translator does not perceive which system it is. We
record the BLEU scores of translation and query frequencies
for each human translator, and find that the result from one
translator correlate well with that from the other. Then we
average both the BLEU scores and query frequencies as our
final result, which is shown in Table 2. It could be seen that
our RL approach can get higher BLEU score with similar
human involvement.

Analysis on Queried Tokens

We try to look into what sorts of tokens are queried more fre-
quently. We split all words into two sets, frequent tokens and
infrequent tokens, and show the policy over several samples
in Table 3 and 4. Here, we use recall to measure the ability
of each model to successfully predict the ground-truth token,
i.e. the possibility that this token is generated by a transla-
tion model during decoding. Here, TFM refers to standard
transformer model without human intervention.

First, it can be seen that the policy is closely related to the
effectiveness of the translation model. For tokens that a tra-
ditional transformer can translate well, the query frequency
is low. While for those which has a low recall by TFM, the
query frequency becomes high. This further illustrates the
efficiency of our interaction approach.

Second, it is shown in Table 3 that the model is more
uncertain over its output when the ground-truth of that to-
ken does not have a specific meaning. It is not because they
are under-represented in the dataset, but because they can
be used in many conditions and have complex usages. On

2Since the pretrained model is comparable to the confidence-
based baseline, and thus we only compare with the latter in the real
scenario.
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Token thank but ago tell said up down out @@ ing
Query freq 0.006 0.046 0.054 0.057 0.060 0.437 0.444 0.468 0.468 0.469

recall by TFM 0.986 0.912 0.907 0.697 0.817 0.237 0.190 0.254 0.155 0.220
recall by Ours 0.986 0.946 0.898 0.786 0.872 0.502 0.479 0.436 0.409 0.485

Table 3: Examples of the interaction policy over frequent tokens.

Token gulf mechanic empathy constant reward eland tives ayer escent tish
Query freq 0 0 0 0 0 1 1 1 1 1

recall by TFM 1 0.67 1 0 0.67 0 0 0 0 0
recall by Ours 1 0.67 1 0 0.67 0.5 0.5 0.5 1 1

Table 4: Examples of the interaction policy over infrequent tokens.

the contrary, for tokens have less ambiguity, the model will
safely believe its prediction. For infrequent tokens, as shown
in table 4, similar behavior can be observed. The model be-
come confused and does not know what to predict when
coming across meaningless tokens generated by BPE. For
tokens with a clearer meaning, although they are also rare
during training, the model can successfully predict them by
itself.

Related Work

Interactive-predictive MT reaches back to early IBM-
type (Foster, Isabelle, and Plamondon 1997) and phrase-
based MT (Barrachina et al. 2009; Green et al. 2014).
These methods seek to reduce human’s effort in correcting
model’s translation by making human and machine collab-
orate on a joint iterative strategy. Advances have been in-
troduced by utilizing a richer variety forms of feed-backs,
like using judgements on the quality of partial translation re-
sults Lam, Kreutzer, and Riezler (2018), using guidance on
the segments instead of on the prefix Peris, Domingo, and
Casacuberta (2017), using human’s correction of the left-
most wrong word Azadi and Khadivi (2015), etc. Another
track of works dedicates to exploit more information from
the feed-back. For example, Koehn (2009) propose to sug-
gest more than one suffix for users to validate, Peris and
Casacuberta (2018b) adopts online learning techniques to
improve the system with the user feedback, and Peris and
Casacuberta (2018a) uses active learning to choose the sen-
tences that can gain more knowledge from users. However,
few of these works address the problem of ‘when to query’.

In active learning domain, there are a few works seek-
ing to evaluate the model’s uncertainty towards its transla-
tion result. For example, González-Rubio, Ortiz-Martı́nez,
and Casacuberta (2012) uses the distribution of confidence
score, and Peris and Casacuberta (2018a) propose to use the
attention coverage and distraction. However, their methods
are all based on heuristic criterion, instead of directly bal-
ancing the gain and penalty in obtaining human’s guidance.

Ibraheem, Altieri, and DeNero (2017) is close to our
work in the sense that they also employ reinforcement learn-
ing to learn an interaction policy. However, they fix the trans-
lation model and only model the human actions as a bi-
nary variable over the attention vector.Therefore, their train-
ing process is more stable, but also resulting in the gains

of only about 12 BLEU points over the standard TFM with
80% query frequency. On the other hand, we train both the
translation and human action in a unified model and design a
more complex guidance form, leading to a large action space
and making our approach more difficult than theirs. But, the
benefit of our work is that it can obtain more BLEU im-
provement with much less human involvement (with query
frequency about 20%).

Conclusion and Future Work
Confidence-based interactive machine translation is effec-
tive to reduce the human involvement because it only re-
quires human translators to correct few of those words
with low confidence while avoiding the validation for other
words. In this paper, we propose a novel approach to IMT
which does not require human translators to validate all out-
put words but only focus on some words. Our approach
relies on a novel neural model which considers human in-
volvement in its architecture and is optimized towards both
translation quality and the cost of human involvement via re-
inforcement learning. Simulated and real experiments show
that the proposed approach outperforms the confidence base-
line with a margin in translation quality by using similar or
less human involvement. Since the training efficiency is rel-
atively low compared to that of the standard NMT model,
in the future, we plan to accelerate our approach and then
apply it to large scale translation tasks.
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