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Abstract

Aspect-level sentiment classification (ALSC) aims at predict-
ing the sentiment polarity of a specific aspect term occurring
in a sentence. This task requires learning a representation by
aggregating the relevant contextual features concerning the
aspect term. Existing methods cannot sufficiently leverage the
syntactic structure of the sentence, and hence are difficult to
distinguish different sentiments for multiple aspects in a sen-
tence. We perceive the limitations of the previous methods
and propose a hypothesis about finding crucial contextual in-
formation with the help of syntactic structure. For this pur-
pose, we present a neural network model named RepWalk
which performs a replicated random walk on a syntax graph,
to effectively focus on the informative contextual words. Em-
pirical studies show that our model outperforms recent mod-
els on most of the benchmark datasets for the ALSC task.
The results suggest that our method for incorporating syntac-
tic structure enriches the representation for the classification.

Introduction
Aspect level sentiment classification (ALSC) is a fundamen-
tal task in sentiment analysis (Pang, Lee, and others 2008;
Liu 2012), which tries to infer the sentiment polarity of
a sentence toward a specific aspect term. Compared to
document-level or sentence-level sentiment classification,
the main challenge of this task is to distinguish the different
sentiments toward each aspect term when there are multi-
ple aspects in the sentence. As a concrete example shown in
Figure 1, the sentence expresses a positive sentiment on the
food of a restaurant but a negative sentiment on its service.

Recurrent Neural Networks (RNNs), equipped with atten-
tion mechanism and memory module, is the most commonly
used technique for ALSC (Wang et al. 2016b; Tang, Qin, and
Liu 2016; Ma et al. 2017; Chen et al. 2017). These methods
try to capture the semantic relationship between each con-
textual word and the aspect term along a chain of words.
However, these models still experience the problem of long-
term dependencies in the ALSC task, and cannot efficiently
identify the difference between multiple aspects existing in
a single sentence.
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The food is good but the service is slow .

positive negative

Figure 1: An example of a restaurant review with two aspect
terms having different sentiments.

To cope with the aforementioned limitation, the syntactic
structure has been introduced to the ALSC problem (Dong
et al. 2014; He et al. 2018a; Zhang, Li, and Song 2019). The
dependency tree is an important syntactic structure which
establishes relationships between “head” words and words
which modify those heads. Therefore, it can easily model
the syntactic interrelationship between each contextual word
and the aspect term.

Several recent studies explore techniques of incorporating
syntactic structure, such as the dependency tree into neural
network models. Empirical results suggest that leveraging
syntactic structure can improve the performance of neural
network models, but these models still suffer from several
drawbacks. AdaRNN (Dong et al. 2014) learns to propagate
sentiments of words toward the target over a converted de-
pendency tree. However, their method destructs the origi-
nal tree structure and cannot make good use of the natural
structural information of the dependency tree. On the other
hand, He et al. (2018a) assumes that the informative words
are close to the aspect term in the dependency tree and de-
fines an attention window to focus on closer words. This ap-
proach is not optimal and might lead to loss of information
since it is based on a user-defined window size.

In summary, the important question here is how the syn-
tactic structure can be effectively leveraged for ALSC. We
investigate the structure of the dependency tree and find that
only a specific subtree in the whole dependency tree is rele-
vant to the sentiment expressed on the aspect term. For ex-
ample, Figure 2 shows a dependency tree for the sentence
“The food is good but the service is slow.”. It can easily be
seen that the word “good” in the subtree “The food is good”
plays an important role in identifying the sentiment polarity
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The food is good but the service is slow .
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Figure 2: An example of a dependency tree.

on the aspect term “food” compared to the word “slow” in
the subtree “the service is slow”. Based on this observation,
we assume that the essential information for the ALSC task
is associated with some informative words on such a sub-
tree of the dependency tree. We formulate this assumption
in Hypothesis 1.

Hypothesis 1 The contextual features of the informative
words on the subtree of the dependency tree may contribute
significantly to identify the sentiment expressed on the spe-
cific aspect in the sentence.

To validate this hypothesis, we present a novel neural net-
work model named RepWalk, which performs a replicated
random walk on a syntax graph for ALSC. This model im-
proves the sentence representation by aggregating the cru-
cial contextual features with the help of syntactic structures.
The syntax graph induced from the dependency tree main-
tains the original structural information of the tree. Mean-
while, the replicated random walk process is able to focus
on the informative contextual words by activating the edges
in the syntax graph. We demonstrate the effectiveness of our
model on incorporating the syntactic structure and validate
the hypothesis through extensive experiments.

The main contribution can be summarized as follows:
• We assume that the essential information for the ALSC

task is associated with the informative contextual words
on the specific subtree in the whole dependency tree and
propose a hypothesis on this assumption.
• Based on our hypothesis, we present RepWalk, a novel

neural network for aspect-level sentiment classification.
The RepWalk performs a replicated random walk on the
syntax graph for learning a better sentence representation.
• We conduct extensive experiments on four widely used

benchmarks to verify the effectiveness of our model. Ex-
perimental results demonstrate that our approach achieves
better results compared to other strong competitors.

Related Work

Several approaches have been proposed to address the prob-
lem of ALSC in recent years. The works can be divided into
three trends: the rule-based methods, the semantic-based
methods, and the syntactic-based methods. In this section,
we describe these works for the ALSC task.
Rule-based methods highly depend on extensive hand-
crafted features, which leads to error propagation in these
methods, and will therefore hinder the performance of the
ALSC task. Kiritchenko et al. (2014) propose a rule-based
method which utilizes a Support Vector Machine (SVM) on

n-gram features, parse features and lexicon features. The
set of rules used to extract features in this work resulted
in the best performance for the classification task in Se-
mEval 2014. Jiang et al. (2011) generate target-dependent
and target-independent features for the ALSC task using
NLP tools. Similar to Kiritchenko et al. (2014), these fea-
tures are also derived from handcrafted rules and may surfer
from error propagation as a result of human ingenuity.
Semantic-based methods automatically learn representa-
tions for textual data with the help of the expressive power
of neural network models. Recent works such as Tang et
al.; Xue and Li (2016; 2018) have successfully adopted neu-
ral networks for ALSC. In particular, Wang et al.; Ma et
al.; Fan, Feng, and Zhao (2016b; 2017; 2018) incorporate
attention mechanism to LSTM which can help the model ex-
plicitly capture the relevance of the aspect term and the con-
textual words. Wang and Lu (2018) propose a segmentation
attention-based LSTM model with a linear-chain conditional
random field (CRF) layer, which simulates the human’s pro-
cess of sentiment inference, and Lei et al. (2019) further in-
troduce human cognitive behaviors into this task. Several ap-
proaches (Li et al. 2018; Tang et al. 2019) adopt a transfor-
mation structure to improve the accuracy and efficiency of
the neural network. On the other hand, it is worthy to men-
tion that a separate class of neural architectures, known as
MemNN or End-To-End Memory Networks has also been
used for aspect-level sentiment analysis (Tang, Qin, and
Liu 2016; Chen et al. 2017; Wang et al. 2018). Further-
more, the power of transfer learning and multi-task learn-
ing has been demonstrated in recent works (He et al. 2018b;
Li et al. 2019; Chen and Qian 2019).
Syntactic-based methods integrate the dependency tree of
sentences in neural network models with the help of modern
high-speed dependency parsers (Chen and Manning 2014).
AdaRNN (Dong et al. 2014) learns to propagate the senti-
ment of words to the target using recursive neural networks
over the syntactic structure of sentences. He et al. (2018a)
introduces a syntax-based attention mechanism based on the
assumption that informative contextual words are close to
the aspect term in the dependency tree. Hence, it defines an
attention window to focus on such words. Zhang, Li, and
Song (2019) propose a proximity-weighted convolution net-
work for a similar purpose. In this paper, we build upon these
works to integrate syntactic structure in an effective way.

Problem Statement
The ALSC task can be formulated as follows. Given a sen-
tence x = {w1, w2, · · · , wn} consisting of a series of n
words, and a specific aspect a = {wa1

, · · · , wam
} which is

a span in x, ALSC aims at predicting the sentiment polarity
of sentence x relative to the specific aspect a. This requires
us to learn a sentence representation which captures the rela-
tionship between contextual words wi and the specific aspect
term a for sentence x.

The quality of this sentence representation is crucial for
the classification performance, which can be improved by
incorporating the syntactic structure. Given a dependency
tree of a sentence x which can be converted by utilizing
recently advanced parsing technology (Chen and Manning
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2014). Each word wi has a unique head wj = h(wi) in the
tree except the root node. Moreover, each edge within the
tree is assigned a dependency label to distinguish different
dependency types of the edges.

Based on our hypothesis, we can leverage the contextual
features of the informative words on the subtree of the de-
pendency tree for a better sentence representation. To this
end, we formulate our problem on effectively aggregating
the important contextual features by finding such words.

Our Model
We propose a replicated random walk on the syntax graph
to address the problem. In the following sections, we will
present the construction of a syntax graph and illustrate the
process of the replicated random walk on the syntax graph.

The construction of a Syntax Graph

To prepare for the learning process, we construct a syntax
graph which maintains the original structural information of
the dependency tree. It ensures that the paths connecting the
aspect term (root node) and contextual words are unique,
and all other words in the context are transitively dependent
on the aspect term. We aim to find informative contextual
words along these paths in the graph.

Before constructing the syntax graph, the dependency tree
is converted to an aspect-rooted dependency tree. We tra-
verse from the first word in the aspect term to each word in
the dependency tree, at the same time reversing directions
of some edges to allow our traversal. The conversion allows
the root node of the converted tree to be the first word in
the aspect term, with the directions of some edges reversed.
We label reversed edges with different notations because
we believe that they carry different properties. For example,
r#nsubj is labeled on the edge that has the reversed direc-
tion to an edge labeled nsubj. The syntax graph is then con-
structed by adding a stop node to each original node of the
tree by means of an extension edge labeled by ext. The stop
node is a dummy node configured to support the learning
process, which represents the termination of the paths from
the aspect term to each word. A stop node is denoted by si
if it attaches to the word wi.

The syntax graph can be interpreted as a directed acyclic
graph G = (V, E) which corresponds to a sentence x, where
V is a set of nodes and E is a set of directed edges in the
graph. Let T and C be the sets of original nodes and stop
nodes in the syntax graph. We also have a mapping func-
tion π(t) : T → C maps each original node to a cor-
responding stop node. Moreover, we can get the unique
head node h(t) ∈ T for each original node t ∈ T , ex-
cept the root node in the syntax graph. Let R be a set of
distinct edge labels (e.g. det, nsubj, r#nsubj, ext, etc.). The
set of edges from the original node t to the stop node π(t)
is EC = {t ∈ T , r ∈ R : (t, r, π(t))}, and the set of
edges from the head node h(t) to the original node t is
ET = {t ∈ T , r ∈ R : (h(t), r, t)}. All nodes in the syntax
graph are the union of the two sets, V = T ∪ C. Similarly,
edges in the graph are E = ET ∪ EC . For easy understand-
ing, an example of the aspect-rooted dependency tree and
the syntax graph can be found in Figure 3.

The food is good but the service is slow .

ROOT

det

cop

r#nsubj
cc det

nsubj

cop

conj

punct

food

�foodgood

�good.

�.

ext

slow

�slow· · ·

· · · ext

but

�but

ext

is

�is

ext

cop cc conj punctext

The

�The

ext

det r#nsubj ext

Figure 3: A concrete example of the aspect-rooted depen-
dency tree (up) and the corresponding syntax graph (below).
The original text is “The food is good but the service is
slow.”, which expresses a positive sentiment on the aspect
term “food”. Notation “�” indicates a stop node.

Replicated Random Walk on the Syntax Graph

To effectively find the informative contextual words with the
help of the syntax graph, we draw on the principle of the
random walk for the ALSC task. The learning problem can
be understood on the behavior of an agent traversing from
the root node of the syntax graph, replicating itself on each
node, with the aim to traverse on all available routes reach-
ing a stop node with some probability. The word wi will be
highlighted if a replica manages to traverse onto the stop
node si along the path in the syntax graph. We refer to such
a traversal as a replicated random walk. The replicated ran-
dom walk process contains three parts: Replicate, Walk and
Stop, and the details are illustrated below.

Replicate Process To distinguish multiple aspects in the
same sentence, the travel route starts with the current aspect
word node. Because there may be multiple paths connecting
the informative words on the subtree of the dependency tree,
only one agent cannot attend to all paths. To address this
problem, the agent replicates into a total of d copies at each
node, where d is the number of the downstream edges of
this node. Then the replicas turn to each downstream edge
and embark on their itinerary.

Walk Process Each replica walks along its downstream
edge. It arrives at the next node if the edge is activated or
dies at the current node. We compute a probability for each
edge activation by measuring how likely the edge and the
informative contextual words belong to the same subtree of
the dependency tree. More specifically, we take the edge in-
formation, including node representations and edge type to
compute such a probability.

Let qj ∈ R
dq be the representation for the node j ∈ V .

9687



For any given edge e = (u, r, v) ∈ E which connects the
node u ∈ V to v ∈ V with a distinct edge label r ∈ R, where
the embedding for r is θr ∈ R

dr , we define a function p(e)
mapping each edge e to a probability value:

p(e) = σ

([
qu
qv

]T
Wpθr + bp

)
. (1)

where σ denotes the sigmoid activation function, and Wp ∈
R

2dq×dr and bp ∈ R are learned parameters.

Stop Process After walking through the travel routes from
the root node of the syntax graph, each replica ends on a stop
node in the graph with a probability or dies halfway. This
probability is the likelihood of the word being highlighted
on the subtree of the dependency tree, and we define it as
the weight of the word wi. The weight αi is computed by
multiplying the probabilities of the edges along the unique
path from the root node to each stop node si, which is a
child node of wi in the syntax graph. Thus a replica reaches
a stop node si with probability αi or dies with probability
1 − αi. Besides, the weight αi is always zero for any word
in the aspect term because we assume that no sentiment is
expressed in the aspect term. Now we denote Esi as the set
of edges in the unique path from the root node to the stop
node si. Formally, the weight αi can be calculated as:

αi =

{
0, a1 ≤ i ≤ am∏

e∈Esi
p(e), otherwise (2)

Finally, using the node representation qi of node wi, we
can compute a representation for the sentence based on the
node representations and the calculated weights:

o =

n∑
i=1

αiqi (3)

Overall Structure

We explore an RNN-based approach to contextual represen-
tation that aims to model the semantic associations within
the contextual words in sentence x and the aspect term a.
In dealing with representation learning for the sentence x,
we begin by mapping each word wi in x into its embedding
vector gi ∈ R

dw . At this point, we employ GRU networks
(Cho et al. 2014), an improved version of a vanilla RNN, to
obtain the contextual representation hi ∈ R

dh for each word
wi:

hi = [
−−→
GRU(gi);

←−−
GRU(gi)] (4)

where “;” denotes the vector concatenation.
As for the node representation in the syntax graph, the

value for the representation qi is the same as the contextual
representation hi for the word wi, and all stop nodes share
a common embedding vector which is always a zero vector
because they don’t carry any information for the prediction.

We get the sentence representation from the replicated
random walk process, and feed it to a softmax layer to pre-
dict the sentiment polarity distribution:

ŷ = softmax(WT
o o+ bo) (5)

·  ·  ·

Replicate

·  ·  ·

Replicated Random Walk on the Syntax Graph

Bi-GRU Layer

Word Embedding

Original node

Stop node

softmax

Walk

Stop

Figure 4: The overall structure of our proposed model and
an illustration of the replicated random walk process.

where ŷ is the predicted sentiment polarity distribution, Wo

and bo are learned parameters. The overall structure of our
model and an illustration of the replicated random walk pro-
cess are shown in Figure 4.

Loss Function

Suppose that the training set contains K training samples
(xk,yk). To enforce the model to attend to a few spans that
really matter for the classification, a syntactic regularization
term is designed for the weight vector αk ∈ R

n for the
n contextual words in sentence xk. The weight vector αk

corresponds to the weights of the words in the syntax graph.
We formulate the regularization term on αk as:

Lw =

K∑
k=1

‖αk‖21 (6)

The final loss function consists of the cross-entropy loss,
syntactic regularization term and the L2 regularization term:

L(ŷ,y) = −
K∑
i=1

C∑
j=1

yji log(ŷ
j
i ) + βLw + λ‖Θ‖22 (7)

where yji is the ground truth sentiment polarity, C is the
number of sentiment polarity categories, ŷji denotes the pre-
dicted sentiment polarities, Θ corresponds to all of the train-
able parameters, β and λ controls the influence of syntactic
regularization term and L2 regularization term.
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Method Rest14 Laptop Twitter Rest16
Acc F1 Acc F1 Acc F1 Acc F1

SVM-feature (Kiritchenko et al. 2014) 80.2# - 70.5# - 63.4# 63.3# - -
AdaRNN (Dong et al. 2014) - - - - 66.3 65.9 - -
LSTM (Tang et al. 2016) 74.3# 63.0# 66.5# 60.1# 66.5# 64.7# 81.9∗ 58.1∗

TD-LSTM (Tang et al. 2016) 75.6# 64.5# 68.1# 63.9# 66.6# 64.0# 82.2∗ 54.2∗

ATAE-LSTM (Wang et al. 2016b) 77.2 - 68.7 - - - 83.8∗ 61.7∗

MemNet (Tang, Qin, and Liu 2016) 81.0 - 72.2 - - - 83.0∗ 57.9∗

RAM (Chen et al. 2017) 80.2 70.8 74.5 71.4 69.4 67.3 83.9∗ 62.1∗

IAN (Ma et al. 2017) 78.6 - 72.1 - - - - -
SA-LSTM-P (Wang and Lu 2018) 81.6 - 75.1 - 69.0 - 88.7 -
PRET+MULT (He et al. 2018b) 79.1 69.7 71.2 67.5 - - 85.6 69.8
LSTM+SynATT+TarRep (He et al. 2018a) 80.6 71.3 71.9 69.2 - - 84.6 67.5
MGAN (Fan, Feng, and Zhao 2018) 81.3 71.9 75.4 72.5 72.5 70.8 84.4� 63.2�

TNet (Li et al. 2018) 80.7 71.3 76.5 71.8 75.0 73.6 86.2� 65.2�

HSCN (Lei et al. 2019) 77.8 70.2 76.1 72.5 69.6 66.1 - -
MGAN (Li et al. 2019) 81.5 71.5 76.2 71.4 74.6 73.5 - -
PWCN (Zhang, Li, and Song 2019) 81.0 72.2 76.1 72.1 - - - -
TransCap (Chen and Qian 2019) 79.3 70.9 73.9 70.1 - - - -
TNet-ATT(+AS) (Tang et al. 2019) 81.5 72.9 77.6 73.8 78.6 77.7 - -
RepWalk w/o pre-trained embedding 81.8 73.2 76.2 71.9 72.4 70.4 87.7 68.7
RepWalk w/o PoS tag embedding 81.7 73.0 75.4 71.7 72.5 70.7 87.8 66.8
RepWalk w/o dependency label 80.9 71.3 75.8 71.7 71.8 69.9 87.5 64.2
RepWalk w/o syntax graph 79.2 66.1 74.1 70.0 72.1 71.0 86.9 63.0
RepWalk w/o Bi-GRU 79.3 67.6 73.2 68.3 67.8 64.4 85.0 59.4
RepWalk 83.8 76.9 78.2 74.3 74.4 72.6 89.6 71.2

Table 1: Performance comparison of different methods on the benchmark datasets. For the baseline models, the results with ∗
are retrieved from (He et al. 2018b), the results with # are retrieved from (Lei et al. 2019), the results with � are produced with
our implementation, other results without a symbol are retrieved from the original papers. “-” means not reported. We show the
results of our model (RepWalk) in the last row, and ablated RepWalk models just above it. The best result is in bold.

Experiment

Datasets

We conduct experiments on four benchmark datasets, as
shown below, which are from the SemEval 2014 Task 4
(Pontiki et al. 2014), Dong et al. (2014) and SemEval 2016
Task 5 (Pontiki et al. 2016). These datasets are constructed
for the aspect-level sentiment analysis task.

Dataset Positive Negative Neutral
train test train test train test

Rest14 2164 728 807 196 637 196
Laptop 994 341 870 128 464 169
Twitter 1561 173 1560 173 3127 346
Rest16 1620 597 190 709 88 38
SemEval 2014 release two domain-specific datasets for

restaurants (Rest14) and laptops (Laptop). Each training
and test sample consists of a review sentence, an opinion tar-
get and the sentiment polarity towards the target. Following
previous works (Chen et al. 2017), we remove samples with
conflict polarity in the datasets. The twitter dataset is built by
Dong et al. (2014), using keywords to query the Twitter API.
Each tweet has a manually labeled sentiment polarity for the
opinion target. The dataset of SemEval 2016 is very sim-
ilar to the SemEval 2014, which is also a domain-specific
dataset for restaurants (Rest16). We also remove the sam-
ples if the opinion target has different polarities as done in

He et al. (2018a). We skip the step of the aspect-rooted de-
pendency tree conversion for samples with no opinion target
in SemEval 2016 dataset, in order to compare with the other
baseline models.

Implementation Details

In our experiments, we use the pre-trained 300-dimensional
GloVe vectors (Pennington, Socher, and Manning 2014) to
initialize the pre-trained embeddings, and randomly initial-
ize a 30-dimensional part-of-speech (PoS) tag embeddings.
Both pre-trained and PoS tag embeddings are concatenated
as word embeddings. However, we fix the pre-trained em-
beddings during optimization. The dimension of the Bi-
GRU hidden state is set to 300. We adopt Adam (Kingma
and Ba 2014) as the optimizer and follow the learning rate
used in the paper. We also apply the dropout strategy (Srivas-
tava et al. 2014) and the label smoothing technique (Szegedy
et al. 2016) to alleviate overfitting. The hyperparameters β
and λ are tuned for each dataset. We also make available our
implementation at https://github.com/hiyouga/RepWalk.

Experimental Results

In our experiments, we compare our model (RepWalk) with
a variety of baseline models as shown in Table 1. The evalua-
tion metrics are classification accuracy and Macro-averaged
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F1 score. We see that the performance of our model out-
performs recent models, including attention-based models
(Wang et al. 2016b; Ma et al. 2017; Wang and Lu 2018;
Fan, Feng, and Zhao 2018), memory-based models (Tang,
Qin, and Liu 2016; Chen et al. 2017), and those which use
syntactic information (Dong et al. 2014; He et al. 2018a;
Zhang, Li, and Song 2019), in both accuracy and Macro-F1.
However, we see that our model cannot outperform TNet (Li
et al. 2018) on the Twitter dataset. As seen clearly from our
model structure and our ablation studies, the performance of
our model is largely attributed to the information extracted
from the dependency tree. However, reviews in the Twitter
dataset are usually short and largely informal. Hence, the
syntactic tree may not always hold bringing about noise in
the dataset. We perform an analysis on the relationship be-
tween the model performance and the sentence quality to
study this further.

Ablation Study

We perform an ablation study on the benchmark datasets to
investigate the relevance of each component on model per-
formance. In particular, we observe the contribution of syn-
tactic information on model performance. The results are
shown in Table 1.

In one model ablation, we remove the pre-trained embed-
dings and only use the PoS tag embeddings as the node rep-
resentations to compute the probabilities on the edges of the
syntax graph. We refer to this ablated model as “RepWalk
w/o pre-trained embedding” in the table. RepWalk outper-
forms RepWalk w/o pre-trained embedding by leveraging
on contextual information from the pre-trained embeddings.
Nevertheless, we see that RepWalk w/o pre-trained embed-
ding outperforms LSTM+SynATT+TarRep (He et al. 2018a)
which takes into account both contextual and syntactic in-
formation. RepWalk w/o pre-trained embedding also shows
competitive performance with other strong baselines. The
results suggest that our approach for integrating syntactic
structure is very effective and that the pre-trained embed-
dings can bring about improvement.

In a similar ablation study, we simply remove the PoS tag
embeddings in the node representation of RepWalk. We refer
to this ablated model as “RepWalk w/o PoS tag embedding”
in the table. The results of the RepWalk w/o PoS tag em-
bedding demonstrate that both pre-trained embeddings and
its associated PoS tag embeddings complement each other
to enrich the representation for the classification task.

We study the importance of the edge type in the syntax
graph. For this purpose, we perform an ablation study where
we remove all labels on the edges in the syntax graph. We
refer to this ablated model as “RepWalk w/o dependency
label”. We observe that there is a significant drop in the
performance of RepWalk. The results suggest that the de-
pendency label is an essential component in the dependency
tree. Methods such as He et al.; Zhang, Li, and Song (2018a;
2019) ignore the dependency label information and therefore
cannot achieve a better performance relative to the perfor-
mance of RepWalk.

To study the overall improvement brought by the syntac-
tic information to the model, we remove the syntax graph

the food is good but the service is slow .

the food is good but the service is slow .
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host and hostess was quite rude .

host and hostess was quite rude .
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Figure 5: The underlined word denotes the aspect term.
Darker edges denote paths activated with high probability.
A word with a relatively darker shade indicates a word with
a large weight, and has a higher probability of being high-
lighted in the syntax graph.

and use a mean-pool function to distill a final embedding
from the Bi-GRU layer. We refer to such an ablated model
as “RepWalk w/o syntax graph”. The results of the RepWalk
w/o syntax graph are incomparable with the ablated models
mentioned so far, except the model performance on the Twit-
ter dataset. We can see that using syntactic information can-
not make much improvement if this feature contains lots of
noise. As for the Bi-GRU layer, when we remove this com-
ponent, the results of the RepWalk w/o Bi-GRU show that
the Bi-GRU network plays a key role in getting contextual
representation for this task.

Case Study

We visualize the syntax graph with probability values on
the edges and words of 2 samples shown in Figure 5. We
find that our model is able to capture informative contextual
words in various cases. Especially, it highlights these words
by activating the edges in the syntax graph.

As we can see from the first example, the path connecting
the adjective “good” and the target aspect “food” receives a
higher probability to be activated relative to other paths in
the syntax graph. Thus, RepWalk assigns a high weight on
the word “good”, which is the informative word expressing
sentiments on “food”. We also see that the sentiments ex-
pressed on other aspects do not affect the current prediction.

Obviously, the informative contextual word and the as-
pect term are not always directly connected in the syntax
graph. The second example shows that the model can suc-
cessfully capture the informative word concerning the as-
pect term. From these examples, we can observe that the
proposed model is capable of capturing the important con-
textual information with the help of syntactic structure so as
to perform an aspect-level sentiment classification.
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(a) The recall value on the Rest14 and
Laptop dataset.

(b) The accuracy curve under different
drop rates on the Rest14 dataset.

(c) The accuracy curve under different
drop rates on the Laptop dataset.

Figure 6: Analysis of the experimental results for understanding the model behaviour.

Understanding Model Behaviour

The replicated random walk computes a weight αi for the
word wi which indicates the importance of the contextual
feature of this word. Thus our model can focus on the
expressive words in the context. To prove the effective-
ness, we collect pairs of weights and words from the pre-
trained model on Rest14 and Laptop datasets. To evaluate
whether the words play a greater role in the classification
task, we compare the words which have been assigned high
weights in the sentence with the annotated opinion words
provided by Wang et al. (2016a). For this purpose, we adopt
the “recall” metric to measure how many opinion words
are covered by the top-1, top-2 or top-3 words with high
weights. The results are shown in Figure 6(a) as “RCL@1”,
“RCL@2” and “RCL@3” for the respective top-1, top-2 and
top-3 words. From the results, we find that lots of opinion
words are covered by the contextual words focused by Rep-
Walk. The results suggest that RepWalk can properly capture
informative contextual information which are expressive in
the sentence concerning the aspect term.

We conduct another well-designed experiment to validate
our hypothesis by investigating the relationship between
contextual words with different levels of importance and the
classifier’s performance, where contextual words are repre-
sented by their features. We first rank all contextual words
based on their weights in descending order, and evaluate the
performance of the classifier in three settings. In the first
setting, we randomly drop the words for different propor-
tions. In the second setting, we drop the words from the
bottom of the ranked list for different proportions. In the
third setting, we drop the words from the top of the ranked
list for different proportions. The performance is shown by
“Random”, “Low” and “High” curves in Figure 6(b,c) re-
spectively. Experimental results show the classifier’s perfor-
mance indeed highly depends on the contextual features of
highlighted words in the sentence.

Model Performance vs. Sentence Quality

We perform a systematic study on the unsatisfactory per-
formance of RepWalk on the Twitter dataset. Based on our
analysis, we find that errors can be broadly attributed to the
incorrect parsing tree result due to the ungrammatical sen-
tences in online posts. Similarly to Zhang et al. (2018), we

Figure 7: The relative performance of our model compared
with TNet (Li et al. 2018) and the grammatical score of the
sentences on four benchmark datasets.

use the LanguageTool1 to judge the grammatical correct-
ness of the sentences. More specifically, we use the number
of errors in spelling and grammar in the sentences to mea-
sure sentence correctness. Figure 7 shows the relative per-
formance of our model compared with TNet (Li et al. 2018)
and the grammatical score of the sentences on four bench-
mark datasets. Results suggest that sentence with incorrect
spelling and grammar will hurt the model’s performance.

Conclusion

In this paper, we propose a novel neural network model
(RepWalk) which effectively leverages syntactic structures
to improve sentence representations. Based on a replicated
random walk process, we show that our model is able to
successfully capture informative contextual features of the
sentence. We conduct experiments on benchmark datasets,
showing that our proposed method performs better than the
very recent state-of-the-art methods on most of the bench-
mark datasets for ALSC task. More importantly, we realized
that the performance of the model is hinged on the ability
to parse sentences into the correct dependency tree, where
these sentences are grammatically correct and free from
spelling errors. However, we find that reviews are largely
short and informal bringing about a bottleneck when pars-
ing into correct syntactic dependencies. This is noted on the
performance of RepWalk on the Twitter dataset. In the fu-
ture, we will explore approaches of dealing with sentences
which are largely informal or short for ALSC.

1https://languagetool.org/
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