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Abstract

In reading comprehension, generating sentence-level distrac-
tors is a significant task, which requires a deep understand-
ing of the article and question. The traditional entity-centered
methods can only generate word-level or phrase-level distrac-
tors. Although recently proposed neural-based methods like
sequence-to-sequence (Seq2Seq) model show great potential
in generating creative text, the previous neural methods for
distractor generation ignore two important aspects. First, they
didn’t model the interactions between the article and ques-
tion, making the generated distractors tend to be too gen-
eral or not relevant to question context. Second, they didn’t
emphasize the relationship between the distractor and article,
making the generated distractors not semantically relevant to
the article and thus fail to form a set of meaningful options. To
solve the first problem, we propose a co-attention enhanced
hierarchical architecture to better capture the interactions be-
tween the article and question, thus guide the decoder to gen-
erate more coherent distractors. To alleviate the second prob-
lem, we add an additional semantic similarity loss to push the
generated distractors more relevant to the article. Experimen-
tal results show that our model outperforms several strong
baselines on automatic metrics, achieving state-of-the-art per-
formance. Further human evaluation indicates that our gener-
ated distractors are more coherent and more educative com-
pared with those distractors generated by baselines.

Introduction

Reading comprehension (RC) is an advanced cognitive ac-
tivity of human beings, which involves interpretation of
the text and making complex inferences (Chen, Bolton,
and Manning 2016). The most popular form of assessment
for reading comprehension is Multiple Choice Question
(MCQ), since MCQs have many advantages including quick
evaluation, less testing time, consistent scoring, and auto-
matic evaluation (RAO CH and Saha 2018). Besides the ar-
ticle itself, a MCQ consists of three elements: (i) stem, the
question body; (ii) key, the correct answer; (iii) distractors,
alternative answers used to distract examinees from the cor-
rect answer. The effectiveness of MCQs depends not only
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Shyness is the cause of much unhappiness for a great many people.
Shy people are anxious and self-conscious; that is, they are over 
concerned with their own appearance and actions. … It is clear that, 
while self-awareness is a healthy quality, overdoing it is harmful. 
Can shyness be completely got rid of ,or at least reduced? … Living 
on the impossible leads to absence of inferiority. Each one of us has 
his or her own characteristics. We are interested in our own personal 
ways. The better we understand ourselves. the easier it becomes to 
live up to our chances for a rich and fulfilling life
.------question------
We can learn from the passage that shyness can
------original distractor------
help us to live up to our full development.
enable us to understand ourselves better.
have nothing to do with lack of self esteem.
------original answer------
block our chances for a successful life.
------Generated distractors of our strongest baseline------
requires a lot of wealth.
provides a lot of people 's attention.
requires a lot of people to seek help.
------Generated distractors of our proposed model------
leads people 's feeling of humor.
decides people 's own characteristics.
decides people 's emotional image and actions.

Figure 1: An example from our dataset, with the generated
distractors of our strongest baseline and our proposed model,
we use colors and underlines to indicate the semantic con-
nection between MCQ segments and the article text.

on the validity of the question and the correct answer, but
also on the quality of distactors (Goodrich 1977). Among
all methods for creating good MCQs, finding reasonable
distractors is crucial and usually the most time-consuming
(Liang et al. 2018).

In real examinations, a question for reading comprehen-
sion usually requires summarizing the article, or making
inferences about a certain detail in the article. Figure 1
shows an example of MCQ from the RACE (Lai et al. 2017)
dataset, which records real English exams for middle and
high school Chinese students. Different from the SQuAD
(Rajpurkar et al. 2016) dataset which is widely used in
RC research, in RACE the answer is a newly-generated se-
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quence with the length of a sentence other than a text span
extracted from the original text. Accordingly, the distractor
should also be a sequence of words that is fluent and gram-
matical. More importantly, the distractor should be coherent
with the question, and semantically relevant to the article.
We call this type of distractor long distractor to distinguish
it from the word-level or phrase-level distractor in fill-in-the-
blank (Liang et al. 2017) or cloze MCQs. In this paper, we
investigate the task of generating coherent long distractors
for reading comprehension MCQs.

Traditionally, distractor generation is a component of an
automatic MCQ generation system, and seldom has been
taken out as a separate task. The process of generating MCQ
(RAO CH and Saha 2018) usually consists of: (i) sentence
selection: select a sentence that contains a questionable fact
as a candidate for generating MCQs. (ii) Key selection: de-
termine which word, n-gram, or phrase in the selected sen-
tence should be blanked out. (iii) Question formation: trans-
form a declarative sentence into the interrogative form. (iv)
Distractor generation: generate distractors that are able to
confuse the examinees. Approaches for generating distrac-
tors may utilize WordNet (Miller 1995) to find synonyms or
other related words as distractors, or use an existing domain-
specific ontology to find related phrases (Stasaski and Hearst
2017; Araki et al. 2016), or adopt other similarity-based
methods like word embedding similarities (Guo et al. 2016;
Kumar, Banchs, and D’Haro 2015), and co-occurrence like-
lihoods (Hill and Simha 2016), etc. As we can see, the tra-
ditional MCQ generation is in a pipeline fashion, which
requires human-designed features and external knowledge
bases. Moreover, all the above mentioned approaches are
based on entity relations, which can only generate word-
level or phrase-level distractors and are not able to generate
long distractors.

Recently, deep neural models like Seq2Seq (Sutskever,
Vinyals, and Le 2014) have achieved great success in a lot
of Natural Language Processing (NLP) tasks, including ma-
chine translation, text summarization, headline generation
and story generation. The recent work (Gao et al. 2019)
employs a hierarchical encoder-decoder framework and pro-
poses a static attention to notice the sentences related to the
question and penalize the sentence related to the answer to
generate long distactors on RACE dataset, and the proposed
model outperforms several baselines, achieving a BLEU-4
score of 6.47 for the first distrator.

However, there is still much room for improvement in
generating distractors. First, all previous proposed neural-
based models adopt a simple Seq2Seq structure to build
a direct mapping from article to distractor, which fails to
model the interactions between the article and question, so
the generated distractors tend to be too general that is not
relevant to the theme of the article or not consistent with
the question context. Figure 1 shows an example of dis-
tractors generated by our strongest baseline, which contain
key words irrelevant to the article and question. As has
been proved previously in the RC task (Seo et al. 2016;
Xiong, Zhong, and Socher 2016), capturing the complex
interactions between article and question can improve per-
formance in selecting correct answer. Second, previous pro-

posed methods did not emphasize the relevance between the
generated distractor and article. As a result, some of gen-
erated distrators are semantically far away from the article,
thus fail to form a set of meaningful and educative options.

In this paper, we propose a Co-attention Hierarchical Net-
work to generate distractors. The basic framework is a hier-
archical encoder-decoder network with dynamic attention,
which first obtains word-level hidden representations and
then based on them to obtain the sentence-level represen-
tations. The dynamic attention combines word-level and
sentence-level attention at each decoding time step. Based
on this framework, we propose to incorporate co-attention
mechanism, i.e. article-to-question and question-to-article,
to allow the encoder better capture the rich interactions be-
tween the article and question. Further, we introduce a se-
mantic similarity loss between the generated distractor and
article into the original loss function, to guide the decoder
to generate distractors that are more relevant to the article
content.

We conduct extensive experiments on the challenging
RACE dataset. Comparing with different approaches, our
full model obtains the best results across most metrics
(BLEU and ROUGE) for all three distractors. It outperforms
the existing best method (Gao et al. 2019), achieving a new
state-of-the-art performance of BLEU-4 7.01 for the first
distractor. The ablation study validates the effectiveness of
our two proposed components. Further human evaluation
demonstrates that our model can generate better quality dis-
tractors that are more consistent with the article and have
stronger distracting ability.

Proposed Framework

Notations and Task Definition

For each sample in our dataset, we have an article that
contains k sentences T = (s1, s2, . . . , sk) and each sen-
tence si = (wi,1, wi,2, . . . , wi,l) is a word sequence where
l denotes the length of it. We also have a question Q =
(q1, q2, . . . , qm) for each sample, where m denotes the
length of the question. Our task is to generate a wrong option
(distractor) D = (d1, d2, . . . , dz) where z is the distractor
sequence length.

Formally, we define the the distractor generation (DG)
task as generating the best wrong option in reading com-
prehension, which is the conditional log-likelihood of the
predicted distractor D, given the article T and question Q,
such that:

D̄ = argmax
D

[
log P(D|T,Q)

]
. (1)

Model Overview

In this paper, we propose a co-attention hierarchical network
to generate distractors, as shown in Figure 2.

The encoder consists of three layers: 1) Hierarchical
Encoding Layer maps input word embeddings to their
word-level and sentence-level hidden representations. 2)
Co-Attention Layer couples the question and article rep-
resentations, and produces a set of question-aware feature
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Figure 2: An overview of our proposed Co-Attention Hierarchical Network (Better viewed in color)

vectors for each sentence in the article. 3) Merging Layer
then merges the sentence-level representations and question-
aware feature vectors to get the final sentence representa-
tions.

In the decoding phase, the word-level hidden representa-
tions and the final sentence representations are referenced at
every decoding time step to calculate a hierarchical atten-
tion score. We employ a language model to compress the
question into a fixed-length vector to initialize the decoder
state, to make the distractor grammatically consistent with
the question.

Moreover, we add a semantic similarity loss into the stan-
dard loss function, to enable the generated distractor more
related to the article content.

Encoding Article and Question

Hierarchical Article Encoder. For each sentence si =
(wi,1, wi,2, . . . , wi,l) in the article, we use a bidirectional
LSTM (Hochreiter and Schmidhuber 1997) (denoted as
LSTMw

enc) with hidden size r to encode this sequence into
hidden representations

hwi,t = LSTMw
enc(h

w
i,t−1, wi,t). (2)

The vector output at the ending time step of this sequence is
used as the embedding to represent the entire sentence:

ei = hwends
= hwi,l. (3)

In order to build representation eT for the current arti-
cle T , another layer of LSTM (denoted as LSTMs

enc) with
hidden size r is placed on top of all sentence embeddings,
computing representations sequentially for each time step:

hst = LSTMs
enc(h

s
t−1, et). (4)

Similarly, we use the final time step sentence-level represen-
tation hsendT

to represent the entire document:

eT = hsendT
= hsk. (5)

Let H∗ ∈ R
r×k to denote the sentence-level representations

of the article, where H∗
:t = hst .

By utilizing this hierarchical structure, we decompose a
long document into a two-level connection of relatively short
sequences, avoiding directly encoding the whole document
through a single LSTM.

Question Encoder. We use a bidirectional LSTM to en-
code the question sequence (q1, q2, . . . , qm) into hidden
representation. In our implementation, we share the same
LSTM with the word-level LSTM used in article encoding,
so

hqt = LSTMw
enc(h

q
t−1, qt). (6)

We use U∗ ∈ R
r×m to denote all word-level representations

of the question, where U∗
:t = hqt .

Co-Attention between Article and Question

To model the complex interactions between the article and
question, we adopt a co-attention mechanism (Seo et al.
2016), which is computed in two directions: from article
to question as well as from question to article. Specifically,
these two types of attention are calculated between sentence-
level representations of the article H∗ and the word-level
representations of the question U∗.

First, we let H∗ and U∗ go through a dimension transfor-
mation layer to shrink the dimension of these two represen-
tations,

H = wdH∗ + bd ∈ R
r/4×k, (7)

U = wdU∗ + bd ∈ R
r/4×m. (8)

wd and bd are trainable parameters, here we must assume
that the hidden size r is divisible by 4.

Next, both the two directions of co-attention, which will
be discussed below, are derived from a shared similarity ma-
trix, S ∈ R

k×m, between the transformed sentence repre-
sentations (H) and the transformed question representations
(U), where Sij indicates the similarity between i-th article
sentence and j-th question word. The similarity matrix is
computed by

Sij = φ(H:i,U:j) ∈ R, (9)
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where φ is a trainable scalar function that encodes the simi-
larity between its two input vectors, H:i is i-th column vector
of H, and U:j is j-th column vector of U, We set:

φ(h, u) = w�
s [h; u; h ◦ u], (10)

where ws ∈ R
3r/4 is a trainable weight vector, ◦ is elemen-

twise multiplication, [; ] is vector concatenation across row,
and implicit multiplication is matrix multiplication.

Then, the similarity matrix is normalized for each col-
umn to produce the attention weights SQ ∈ R

m×k across
the question words for each sentence in the article, and
normalized for each row to produce the attention weights
ST ∈ R

m×k across the article sentences for each word in
the question:

S
Q
:j = softmax(S:j), ∀j; (11)

ST
i: = softmax(Si:), ∀i. (12)

Article-to-question Attention. Article-to-question atten-
tion (A2Q) signifies which question words are most relevant
to each article sentence. So for j-th sentence in the article,
we sum over all question representations U:i ∈ R

r/4, ∀i ac-
cording to their normalized attention weights with that sen-

tence S
Q
ij ∈ R. Subsequently, each attended question vector

is computed by Ũ:j =
∑

i S
Q
ij U:i. Hence Ũ is a r/4-by-k

matrix containing the attended question vectors for the en-
tire article sentences.

Question-to-article Attention. Question-to-article (Q2A)
attention signifies which article sentences have the closest
similarity to each of the question words and are hence criti-
cal for locating information that is most relevant for answer-
ing that question. We obtain the attended sentence vector on
the article words by

H̃ = H(ST)�SQ ∈ R
r/4×k, (13)

where H(ST)� ∈ R
r/4×m is the weighted sum of sentence

representations for each question word, and SQ is used to
map the matrix to length k.

Finally, the sentence representations and the attention
vectors are combined together to yield G, where each col-
umn vector can be considered as the question-aware repre-
sentation of each article sentence. G is defined by

G:t = ψ(H:t, Ũ:t, H̃:t) ∈ R
dG , (14)

where G:t is the t-th column vector (corresponding to t-th ar-
ticle sentence), ψ is a trainable vector function that fuses its
(three) input vectors, and dG is the output dimension of the
ψ function. While the ψ function can be an arbitrary train-
able neural network, in our experiments we adopt a simple
concatenation as following:

ψ(h, ũ, h̃) = [h; ũ; h ◦ ũ; h ◦ h̃] ∈ R
r×k. (15)

Merging Sentence Representation

We then go through a gated connection layer to merge the
sentence contextual representations and the question-aware
representations

g = σ(G) ∈ R
r×k, (16)

Z = g ◦ H∗ + (1− g) ◦ G. (17)
Where σ is Sigmoid function, and Z is the final representa-
tion of sentence-level hidden states. This new representation
of sentence contains both sentence-level contextual informa-
tion and the article question co-attention, thus is more likely
to capture the article content that is more related to the given
question.

Hierarchical Attention Decoder

We use another uni-directional LSTM as the decoder to gen-
erate distractor.

Question Initialization. Unlike standard Seq2Seq gener-
ation task like machine translation, in which both source and
target sequence are complete sentences, our dataset contain
near half of the questions that are not complete sentences
(as shown in Figure 1 and Table 1). In order to handle this
problem, we follow previous work to use a question-based
initializer (Gao et al. 2019).

We use a uni-directional LSTM to encode the question
sequence (q1, q2, . . . , qm) into hidden representations, and
denote the hidden state of the final step as hqinit

m . Then hqinit
m

is used as the initial state the decoder. Moreover, instead of
using begin-of-sentence symbol, we use the last token in the
question qm as the initial input of the decoder.

Hierarchical Attention. We employ hierarchical atten-
tion (Ling and Rush 2017) to attend the article with different
granularity. At each decoding time-step, we parallelly cal-
culate both the sentence-level attention weight β and word-
level attention α by

βi = Z:i
�Wd1

hdt , αi,j = hwi,j
�Wd2

hdt , (18)

γi,j =
αi,jβi∑
i,j αi,jβi

. (19)

Where Wd1
and Wd2

are trainable parameters. The sentence-
level attention determines how much each sentence should
contribute to the generation at the current time-step, while
the word-level attention determines how to distribute the at-
tention over words in each sentence.

Then the context vector ct is derived as a combination of
all word-level representations reweighted by the combined
attention γ:

ct =
∑

i,j

γi,jh
w
i,j . (20)

And the attentional vector is calculated as:

h̃dt = tanh(Wh̃[h
d
t ; ct]). (21)

Finally, the predicted probability distribution over the vo-
cabulary V at the current step is computed as:

PV = softmax(WV h̃
d
t + bV ), (22)

where Wh̃, WV and bV are learnable parameters.
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Semantic Similarity Loss

We assume that in order to form a set of meaningful and ed-
ucative options, each distractor should be semantically rele-
vant to the article. So we incorporate an additional semantic
similarity loss into the original loss function.

In order to calculate the semantic similarity score, we
should first obtain the semantic representation vectors of the
generated distractor. Previous work has proved that a simple
subtraction between LSTM hidden states can represent seg-
ment sequence effectively (Wang and Chang 2016). So the
distractor representation eD is computed by:

eD = sM − eT , (23)

where sM denotes the decoder last hidden state, and eT is
the sentence-level encoder’s last hidden state, which is also
the representation of the article.

Then we compute the cosine similarity to measure the
semantic relevance between distractor and article, which is
represented with a dot product and magnitude:

cos(eD, eT ) =
eD · eT

‖eD‖ · ‖eT ‖ . (24)

Our training objective is to maximize the similarity score so
that the generated distractor have high semantic relevance
with the article. Previous work in text summarization has
proved that this cosine similarity loss can improve the se-
mantic relevance of the source text and the generated sum-
mary (Ma et al. 2017).

Finally, the model is trained to minimize the total loss:

L = −
∑

d∈V

log P(d|T,Q; Θ)− λcos(eD, eT ), (25)

where λ is a hyperparameter to balance two loss fucntions.

Experimental Settings

Dataset

We conduct extensive experiments on the RACE dataset,
which was collected from the English exams for middle and
high school Chinese students. It contains 27, 933 articles
with 97, 687 questions, which are designed by human ex-
perts for education purpose, making RACE an ideal dataset
for training model to generate questions and distrators.

Instead of using original RACE dataset which contains
samples that are not suitable for sequence generation, we use
the dataset processed by previous work (Gao et al. 2019) un-
der the following two conditions: 1) Filter out the distractors
that are semantic irrelevant to the article context. 2) Remove
the questions which require to fill in the options at the be-
ginning or in the middle of the questions. Table 1 shows the
statistics of our dataset.

Baselines and Evaluation Metrics

We compare our model with the following baselines.
• Seq2Seq: The standard sequence-to-sequence structure

with global attention mechanism (Luong, Pham, and
Manning 2015). The encoder take the whole article se-
quence as input, and use a single LSTM to encoder this
sequence.

Train Valid Test
# samples 96501 12089 12284
% incomplete-sentence questions 47.48 46.48 47.57
Avg. article length 347.21 344.78 347.66
Avg. question length 9.91 9.97 9.93
Avg. distractor length 8.50 8.50 8.54

Table 1: The statistics of our dataset.

• HRED: Vanilla hierarchical structure as described before.
It consists of A hierarchical encoder that is able to en-
code document-level input text in a way that preserve se-
mantic coherence (Li, Luong, and Jurafsky 2015), and a
decoder that utilize hierarchical attention. This structure
has been proved effective in text summarization (Ling and
Rush 2017) and headline generation (Tan, Wan, and Xiao
2017).

• HRED+copy (HCP): Incorporating pointer-generator-
network (See, Liu, and Manning 2017) with HERD to
enable the decoder to directly copy words from the source
text. Pointer-generator-network made a big improvement
in text generation tasks like text summarization, so we
consider HCP to be a strong baseline.

• HRED+static attn (HSA) (Gao et al. 2019): A static at-
tention that penalize the correlation between the answer
and generated distractors was proposed to modulate the
hierarchical attention in HERD , this model achieved
state-of-the-art performance previously on this task.

Following the previous work (Gao et al. 2019), We adopt
BLEU (Papineni et al. 2002) and ROUGE (Lin 2004) to
evaluate the performance of our models.

Implementation Details

Our training set contains 100,116 distinct words and we
keep the most frequent 50k tokens as vocabulary. Those
tokens outside the vocabulary are replaced by the UNK
symbol. The hidden unit size of all LSTMs is set to 600.
The word-level encoder and sentence-level encoder are bidi-
rectional LSTMs with their number of layer to be 2 and
1 respectively. The question initialization encoder and the
decoder are 2 layers unidirectional LSTMs. We use the
GloVe.840B.300d word embeddings and make them
trainable. For optimization in training, we use stochastic gra-
dient descent (SGD) as the optimizer and set the gradient
norm upper bound to 5.0. We set minibatch size to 10 and
the initial learning rate to 1.0 with a decay rate of 0.8. For
hyperparameter λ of semantic similarity loss, we tested in a
large range and set it to 0.0001.

During inference, we adopt beam search and set beam size
to 10. We keep the 10 best candidate distractors in decend-
ing likelihood, and utilize a Jaccard distance of 0.5 to select
three diverse distractors. Therefore, the Jaccard distance be-
tween distractor D2 and D1 is larger than 0.5, and the Jac-
card distance between distractor D3 and both D1 and D2 is
also greater than 0.5.
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BlEU-1 BlEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

1st Distractor

Seq2Seq∗ 25.28 12.43 7.12 4.51 14.12 3.35 13.58
HRED 27.96 14.41 9.05 6.34 15.55 3.97 14.68
HCP 26.13 13.26 8.81 6.68 14.60 3.72 13.84
HSA∗ 27.32 14.69 9.29 6.47 15.69 4.42 15.12
HSA 28.18 14.57 9.19 6.43 15.74 4.02 14.89
Our Model 28.65 15.15 9.77 7.01 16.22 4.34 15.39

2st Distractor

Seq2Seq∗ 25.13 12.02 6.56 3.93 13.72 3.09 13.20
HRED 27.85 13.39 7.89 5.22 15.51 3.44 14.48
HCP 24.01 10.33 5.84 3.88 13.04 2.52 12.22
HSA∗ 26.56 13.14 7.58 4.85 14.72 3.52 14.15
HSA 27.85 13.41 7.87 5.17 15.35 3.40 14.41
Our Model 27.29 13.57 8.19 5.51 15.82 3.76 14.85

3st Distractor

Seq2Seq∗ 25.34 11.53 5.94 3.33 13.78 2.82 13.23
HRED 26.73 12.55 7.21 4.58 15.96 3.46 14.86
HCP 23.93 10.68 6.34 4.38 13.71 2.84 12.84
HSA∗ 26.92 12.88 7.12 4.32 14.97 3.41 14.36
HSA 26.93 12.62 7.25 4.59 15.80 3.35 14.72
Our Model 26.64 12.67 7.42 4.88 16.14 3.44 15.08

Table 2: Automatic evaluation results of different models. * symbol indicates the results are taken from the original paper of
(Gao et al. 2019). The best performing result for each metric is highlighted in boldface.

BLEU-3 BLEU-4 ROUGE-L
HRED 9.05 6.34 14.68
+ SSL 9.51 6.88 14.59
+ Co-Attn 9.66 6.85 15.17
+ Co-Attn - Merging 9.07 6.37 14.49
Our Model 9.74 7.01 15.19

Table 3: Ablation study of our model. ”+SSL” means adding
the semantic similarity loss, and ”+Co-Attn” means adding
the co-attention network. ”-Merging” means getting rid of
the merging layer. Here we only list results of the first dis-
tractor.

Results and Analysis

Main Results

The experimental results are shown in Table 2. We also list
the results of Seq2Seq and HSA from the previous work
(Gao et al. 2019) for reference. Our model achieves the best
results across most metrics for all three distractors. As for
the first distractor that is most important in our task, our
model obtains a new state-of-the-art performance of 7.01 at
BLEU-4 metric, which outperforms the existing best result
(Gao et al. 2019) by 0.54 points.

As shown in Table 2, there is a large performance gap
between Seq2Seq and HERD, which reveals that the hier-
archical structure is indeed effective for keeping semantic
information of long sequential input. It also can be found
that incorporating copy mechanism does not improve per-
formance, we think one reason is that the copy mecha-
nism mainly handle out-of-vocabulary (OOV) words prob-
lem, and our dataset is used for education purpose, there is
only an OOV words ratio of 0.51% among all distractor’s
word occurrences.

Fluency Coherence Distracting Ability
HRED 7.81 7.38 4.93
HSA 7.93 6.86 4.28
Our Model 8.04 7.32 5.23

Table 4: Results of human evaluation.

Ablation Study

We compare the results of our full model with its ablated
variants to analyze the relative contributions of each compo-
nent. The results are shown in Table 3. It indicates that both
our proposed co-attention architecture and the semantic sim-
ilarity loss improve the performance over the basic HRED
model obviously, and combining them together helps our
full model achieve state-of-the-art performance.

We also verified the necessity of the gated connection
layer. By getting rid of merging layer and using question-
aware representation G as our sentence-level representation,
the model performance actually decrease. This shows it’s
necessary to keep the original sentence-level representation
H∗.

Human Evaluation

We also conduct a human evaluation to evaluate the gen-
erated distractors of our different models. We design three
metrics to evaluate the quality of generated distractors. For
all the metrics, we ask the annotator to score the distractors
with three gears, the scores are then projected to 0 - 10. We
employ three annotators to evaluate the distractors generated
by our three most competitive models over the first 100 sam-
ples of the test set.

• Fluency: This metric evaluates whether the distractor fol-
lows regular English grammar and whether the distractor
accords with human logic and common sense.
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Figure 3: Samples of distractors generated by our model (CHN) and two other competitive models, HRED (Li, Luong, and Ju-
rafsky 2015; Ling and Rush 2017) and HSA (Gao et al. 2019). We use colors and underlines to indicate the semantic connection
between the distractor segments and article text.

• Coherence: This metric looks for key phrases in the dis-
tractors and measures whether these key phrases are rele-
vant to the article and the question.

• Distracting Ability: This metric evaluates how likely a
distractor candidate will be chosen as distractor in real
examinations. This metric is designed to detect whether a
distractor tries to mislead the examinees to an irrelevant
topic, or in other words, distract by misleading.

The results are presented in Table 4. It is amazing to find that
vanilla hierarchical structure model HERD actually yields
quite competitive results. Our model get the highest scores
in Fluency and Distracting Ability metrics, and a nearly best
score in Coherence metric. This shows that our model is able
to generate more coherent and educative distractors. HSA
gets a low score in Distracting Ability metric, we hypothesis
that this is because static attention penalizes the correlation
between the generated distractors and the correct answer, so
the generated distractors tend to be semantically far away
from the correct answer and less relevant to the article.

Case Study

In Figure 1, We show an example of distractors generated
by our strongest baseline (HSA) and our model. This arti-
cle is about shyness and the way to overcome it. Distrac-
tors generated by HSA contain words like wealth, provides,
and seek help, which are not relevant to the content of this
article. So if examinees do not understand this article very
well, these irrelevant distractors may confuse them more,
leading them to wrongly choose these irrelevant distrac-
tors. Previous work has proved that distractors generated by
HSA are most successful in confusing the annotators (Gao
et al. 2019), we hypothesis that part of this confusing ability
comes from their misleading property, thus these distractors
do not serve a good education purpose. We also present some
general cases in Figure 3, the first article is about dining
manners. Distractor generated by HSA shares some com-
mon words with the article, but it’s semantically irrelevant to
the article. And our model (CHN) generates more coherent
distractor than HRED. The second article is about different
customs of celebrating birthday in different countries. Dis-

tractor generated by HSA is too general to be meaningful,
and the article did’nt mention or talk about birthday invita-
tions, so the distractor generated by HRED is not a good
one. While distractor generated by our model only changed
the country name in the original article sentence, examinees
need to carefully check the article content to make a judg-
ment. Therefore, it is a coherent and educative distractor.

Conclusion

In this paper, we present a Co-Attention Hierarchical Net-
work to generate coherent long distractors for reading com-
prehension multiple choice questions. A co-attention en-
hanced hierarchical architecture is exploited to model the
complex interactions between the article and question, guid-
ing the decoder to generate more coherent and consistent
distractors. Then a semantic similarity loss is incorporated
into the original loss to push the generated distractors to be
more relevant to the article content. Our model outperforms
several strong baselines including the existing best model.
The ablation study verifies the robustness of our model, and
human evaluation shows our model is able to generate more
coherent and educative distractos. For the future work, some
interesting directions include exploring more complex co-
attention structure and utilizing the information provided by
the correct answer.
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