
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Planning and Acting with
Non-Deterministic Events: Navigating between Safe States

Lukáš Chrpa
Faculty of Electrical Engineering

Czech Technical University in Prague

Jakub Gemrot, Martin Pilát
Faculty of Mathematics and Physics

Charles University

Abstract

Automated Planning addresses the problem of finding a se-
quence of actions, a plan, transforming the environment from
its initial state to some goal state. In real-world environments,
exogenous events might occur and might modify the envi-
ronment without agent’s consent. Besides disrupting agent’s
plan, events might hinder agent’s pursuit towards its goals and
even cause damage (e.g. destroying the robot).
In this paper, we leverage the notion of Safe States in dynamic
environments under presence of non-deterministic exogenous
events that might eventually cause dead-ends (e.g. “damage”
the agent) if the agent is not careful while executing its plan.
We introduce a technique for generating plans that constrains
the number of consecutive “unsafe” actions in a plan and a
technique for generating “robust” plans that effectively evade
event effects. Combination of both approaches plans and ex-
ecutes robust plans between safe states. We empirically show
that such an approach effectively navigates the agent towards
its goals in spite of presence of dead-ends.

Introduction
Automated planning seeks to find a sequence of actions
transforming an environment from a given initial state to a
desired goal state (Ghallab, Nau, and Traverso 2004). Plan-
ning and acting in real-world scenarios (Ingrand and Ghal-
lab 2017) poses a challenge as plan execution might not go
as planned as, for example, exogenous events might occur
during the plan execution. It is often known what can hap-
pen and under which circumstances (e.g. failure to establish
communication, or a blocked passage). Such information
can be encoded into a domain model as events, so the system
that plans and executes the plan can reason with them.

The concept of events in planning is not new (Dean
and Wellman 1990) and was used in some systems such
as Circa (Musliner, Durfee, and Shin 1993). These sys-
tems, however, reason with a very small state space.
Markov Decision Process (MDP)-based approaches con-
sider events (Mausam and Kolobov 2012) while provid-
ing the most promising action in a given state. Monte-
Carlo Tree Search (MCTS) approaches provide similar ben-
efits, however, the success rate tends to drop for problems

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with dead-ends (Patra et al. 2019). Fully Observable Non-
Deterministic (FOND) planning assumes non-deterministic
action effects. The well known PRP planner (Muise, McIl-
raith, and Beck 2012) handles non-determinism by attempt-
ing to “close” states from which there does not yet exist a
plan. PRP has been adapted to deal with multi-agent plan-
ning problems (Muise et al. 2016) and, in a similar spirit,
it can be extended to deal with problems with events. How-
ever, considering that any subset of applicable independent
events can occur in a single step makes non-deterministic
branching exponential with respect to the number of events.

The success of FF-replan (Yoon, Fern, and Givan
2007) in the International Planning Competition 2006
(it was an unofficial winner of the probabilistic track)
indicates that the problem can be addressed by the
Planning/Execution/Replanning (PER) approach (Komenda,
Novák, and Pechoucek 2014) that interleaves planning, plan
execution and re-planning if the agent is in an unexpected
state or cannot execute the following action. However, in do-
mains with dead-ends such an approach might not be effec-
tive (and might even be dangerous). A recent work concern-
ing reasoning about “dangerous states” (those close to dead-
ends) has improved the success rate of the PER approach al-
beit not providing guarantees of dead-end avoidance (Chrpa,
Gemrot, and Pilát 2017).

In this paper, we focus on single-agent planning in fully
observable environment with deterministic action effects
and non-deterministic exogenous events where we, roughly
speaking, adapt the PER approach to reason with “safe
states” (Cserna et al. 2018) in order to avoid reaching dead-
end states. A safe state, the notion adopted from Cserna et
al. (2018) who use it for online planning, stands for a state
that cannot be transformed into a dead-end state by events
only. In contrast to “dangerous states” reasoning (Chrpa,
Gemrot, and Pilát 2017), we do not quantify “danger”, our
idea is to allow replanning episodes only in safe states and
executing safely applicable sequences of actions, that is, af-
ter such a sequence is executed (and it is always possible
despite event occurrence) the agent is in the safe state. To
find safely applicable sequences of actions, or robust plans
in other words, inspired by Palacios and Geffner (2009),
we present a compilation of the problem of finding robust

9802



plans in the presence of non-deterministic events into classi-
cal planning problems. On top of that, to generate an initial
plan, we propose a compilation of the planning problem that
limits the number of consecutive “unsafe” actions in a solu-
tion plan. Hence the safe states are close to each other and
much more likely to be connected by robust plans. We em-
pirically show that our safe state reasoning technique effec-
tively and safely navigates the agent towards its goals con-
trary to the traditional PER approach or the dangerous state
reasoning (Chrpa, Gemrot, and Pilát 2017).

Preliminaries

Classical planning, in particular, assumes a static, deter-
ministic and fully observable environment; a solution plan
amounts to a sequence of actions. Technically, a classical
planning domain model is a tuple D = (L,A), where L
is the set of propositional atoms used to describe the state
of the environment, i.e., a set of propositions from L that
are true, and A is the set of actions over L. An action is
a tuple a = (pre(a), del(a), add(a)), where pre(a), del(a)
and add(a) are sets of atoms from L representing a’s pre-
condition, delete, and add effects, respectively. We assume
that del(a) ∩ add(a) = ∅. An action a is applicable (or ex-
ecutable) in a state s if and only if pre(a) ⊆ s. If possi-
ble, application (or execution) of a in s, denoted as γ(s, a),
yields the successor state of the environment (s \ del(a)) ∪
add(a), otherwise γ(s, a) is undefined. The notion of ac-
tion application can be extended to sequences of actions, i.e.,
γ(s, 〈a1, . . . , an〉) = γ(. . . γ(s, a1) . . . , an).

A classical planning problem is a tuple P = (D, I, G),
where D is a planning domain model, I is the initial state of
the environment, and G is the goal, generally in the form of a
set of propositions. A solution plan (for a planning problem)
is a sequence of actions such that their consecutive applica-
tion starting in the initial state results in a state satisfying the
goal (i.e., a goal state). A sequence of states visited during
the execution of the solution plan is called state trajectory.

Events Similarly to the definition of an action, an event
is a tuple e = (pre(e), del(e), add(e)), where pre(e), del(e)
and add(e) are sets of atoms representing e’s precondition,
delete, and add effects, respectively. We assume that del(e)∩
add(e) = ∅. Applicability of an event in a state as well as the
result of an application (or execution) of an event is defined
in the same way as for actions. In contrast to actions that are
executed by agents, events can occur regardless of agent’s
consent. Technically, an event can (but does not necessarily
have to) occur in a state where event’s preconditions are met
modifying the state of the environment according to event’s
effects. A planning domain model, in this case, is a triple
D = (L,A,E), where L is the set of propositions, A and
E is the set of actions and events over L, respectively. A
planning problem, P = (D, I, G), is defined analogously to
the classical planning case.

We say that events ei, ej are independent if and only if
del(ei) ∩ (pre(ej) ∪ add(ej)) = ∅ and del(ej) ∩ (pre(ei) ∪
add(ei)) = ∅.

The following assumption simplifies the reasoning by
considering single-agent scenario such that actions of the

agent and events of the environment alter like in a two-
players game. The process hence follow the pattern in which
the agent can apply an action (not necessarily has to), then
the environment can trigger (apply) a set of independent
events (not necessarily has to), and so on. It should be noted
that the set of events defined in the problem does not have
to contain events that are independent with each other, how-
ever, in the environment turn only a subset of independent
events (from the set of all events defined in the problem) can
be selected. The reason for selecting only events that are in-
dependent with each other is to avoid conflicts between pre-
conditions and effects when events are simultaneously ap-
plied. Formally:
Assumption 1. Let D = (L,A,E) be a planning do-
main model. Let noop be an action and an event such that
pre(noop) = del(noop) = add(noop) = ∅. In a current
state s ∈ 2L, the agent can apply an action a ∈ A∪ {noop}
such that a is applicable in s. After that, a (randomly se-
lected) set of independent events Ei ⊆ E ∪ {noop}, ap-
plicable in γ(s, a), is applied resulting in a state s′ =
γ(γ(s, a), Ei) which will become a new current state. We
denote s′ as a successor state of s, a.

The set of all resulting states of application
of an action a in a state s (a is applicable in s)
under Assumption 1, denoted as δ(s, a), is de-
termined as δ(s, a) = {γ(s, 〈a,Ei〉) | Ei ⊆
E ∪ {noop}, Ei is a set of independent events applicable
in γ(s, a)}. If a is not applicable in s, then
δ(s, a) is undefined. We can generalise the no-
tion of resulting states for sequences of actions, i.e.,
δ(s, 〈a1, . . . , an−1, an〉) =

⋃
s′∈δ(s,〈a1,...,an−1〉) δ(s

′, an).
We say that a state s′ ∈ 2L is reachable from a state
s ∈ 2L with respect to D and Assumption 1 if and only if
there exists a sequence of actions π such that s′ ∈ δ(s, π).
Otherwise, we say that s′ is unreachable from s.

Analogously to FOND planning, we can define strong
(a)cyclic plans for solving problems with non-deterministic
events (Cimatti et al. 2003). Finding strong (a)cyclic plans
give us guarantees that the agent eventually reaches its goal
(in the case of strong cyclic plans under fairness assumption
that each non-deterministic alternative can occur). However,
the “non-deterministic branching”, i.e., the number of alter-
natives that might occur after agent’s action, might be expo-
nential with respect to the number of events (assuming most
of them are independent). That, in practice, might be fea-
sible only for toy problems. Alternatively, a PER approach
(e.g. FF-Replan (Yoon, Fern, and Givan 2007)) can be ex-
ploited to deal with non-determinism such that effects of
events are ignored during the planning stage. During plan
execution re-planning can be triggered after an event occurs,
or when the next action becomes inapplicable (Komenda,
Novák, and Pechoucek 2014).

Dead-end States Let P = (D, I, G) be a planning prob-
lem over the planning domain model D = (L,A,E). We
say that a state s is a dead-end state if and only if every goal
state sG (sG ⊇ G) is unreachable from s.

In other words, our definition of dead-end states says that
the agent cannot reach the goal by any means. With dead-

9803



ends, the PER approach becomes unsafe. Practically speak-
ing, the agent (robot) might even get damaged, or destroyed.

Conditional Effects Standard action (and event) defi-
nition can be extended by Conditional Effects that cap-
ture possible state changes if some extra condition is
met in the current state. Formally, a conditional effect
of an action (or event) x is specified as ceff (x) =
(cond(x), cdel(x), cadd(x)) where cond(x) is a set of
atoms representing a condition and cdel(x), cadd(x)
are sets of atoms representing conditional delete and
add effects respectively. In plain words, if a condi-
tion in a current state is met, then the effects take
place in the resulting state after action application.
Action (or event) definition can be extended as fol-
lows x = (pre(x), del(x), add(x), ceff 1(x), . . . , ceff k(x)),
where ceff 1(x), . . . , ceff k(x) are conditional effects of x.
Applicability of x in a state s is still determined as whether
pre(x) ⊆ s. The result of application of x in s is

s\(del(x)∪
⋃

condi(x)⊆s

cdeli(x))∪add(x)∪
⋃

condi(x)⊆s

caddi(x)

In a nutshell, conditional effects do not influence action
(or event) applicability in a given state but modify the result-
ing state if the conditions are met in the current state. How-
ever, conditional effects influence the relation of indepen-
dence between actions/events (Rintanen 2008). Conditional
effects can be compiled away, i.e., an equivalent classical
representation can be obtained, however, the representation
either grows exponentially or the length of solution plans
grows polynomially (Nebel 2000). For the sake of clarity,
we will use conditional effects in our compilation to robust
plan generation.

In this paper, we leverage conditional effects only for the
compilation of the problem finding robust plans into classi-
cal planning (described later).

Case Studies

AUV Sampling We introduce a simplified variant of task
planning for AUV, inspired by the recent work of Chrpa et
al. (2015). It simulates the situation where an AUV has to
perform sampling of some objects of interest while there
might be ships passing by that might endanger the AUV. We
have a 4-grid environment, an AUV, ships and several re-
sources. Resources can be found on given cells. Each cell is
either free, has the AUV on it, or the ship on it (presence of
a resource does not interfere with any cell status). The AUV
can move to an adjacent cell, if the cell is free. The AUV
can sample a resource if it is at the same cell. The task for
the AUV is to sample the resources and return back to the
place of origin.

Ships, however, are not controlled by the agent, i.e., ships
are controlled by the environment. Ships can move only on
some cells from the grid or might not be present in the area.
Each ship can enter the area at its entry cells, can move to
adjacent cells it is allowed to move, and leave the area at its
exit cells. A ship can appear in its entry cell, if the ship is
not already in the area. A ship can leave the area, if it is in

its exit cell. Two “move” events are considered, move-ship-
to-free and move-ship-to-auv. Both require that the ship
can move to the destination cell. The effect of both events is
that the ship moves to the destination cell. If the ship moves
to a free cell, then besides the cell becoming not free for a
moment, nothing else happens. However, if the ship moves
to the cell with the AUV, then the AUV is destroyed (and
can no longer perform any action).

The AUV has to avoid being next to any ship that can
move onto the cell AUV is at, or in any ship’s entry point (if
the ship is not yet in the area).

The “Perestroika” domain The Perestroika domain we
introduce here is inspired by the well known Perestroika
game (also known as a Toppler game)1. In our domain, an
agent has to navigate through a 4-grid of solid and shrink-
ing platforms and collect all resources that can be placed
on solid platforms. Solid platforms remain stable, i.e., they
do not change its size nor disappear. On the contrary, the
shrinking platforms can have large, medium or small shape
and they can disappear completely.

The agent can perform two types of actions. It can move
to a neighbouring platform (if it has not disappeared) and/or
collect a resource if the resource is on the same platform as
the agent. Each shrinking platform is affected by five events.
Two events change the shape of the platform from large to
medium and from medium to small, respectively. Two events
make the platform disappear if it has a small shape – the
difference is whether the platform is empty or the agent is on
it. In the former case, the platform only disappears whereas
in the latter case it also kills the agent. The last event allows
the platform to reappear in a large shape.

The agent cannot move to or stay on small shrinking plat-
forms and must always have an escaping way to a nearby
solid platform to avoid being “trapped” on a shrinking plat-
form.

Towards Safe Use of Classical Planning

To achieve its goal, the agent has to avoid reaching a dead-
end state during plan execution. Whereas if the environment
is static, dead-end states are implicitly avoided during plan
execution as plans do not contain actions leading to dead-
ends, non-deterministic events might get the agent into dead-
end states. We can adopt the concept of robust plans from
conformant planning (Palacios and Geffner 2009) that if ex-
ecuted guarantee reaching a goal state despite uncertainty of
the environment.

However, robust plans might only exist in a very restricted
number of cases. By looking at both AUV and Perestroika,
we can observe that with an increasing number of steps (ex-
ecuted actions), uncertainty of the environment rises, i.e.,
ships might possibly be at many locations, or shrinking plat-
forms might have any shape (or not being there). This ob-
servation gives us an intuition that robust plans are likely to
exist only if they are short.

Inspired by the work of Vernhes, Infantes, and Vi-
dal (2013) concerning splitting classical planning problems

1https://en.wikipedia.org/wiki/Perestroika (video game)

9804



into a sequence of smaller problems, we propose an ap-
proach that iteratively plans and executes robust plans be-
tween safe states which cannot be turned to dead-end states
by applying only events. To reflect the above observation,
safe states should be “close” to each other, so they can be
connected by robust plans. To do so, we propose an ap-
proach to generate an initial plan in which the lengths of
possibly unsafe action sequences are bounded. The proposed
approaches are described in detail in the following sections.

Finding Robust Plans

Events are responsible for “plan branching” that is, roughly
speaking, considering all alternatives that might be intro-
duced by event occurrences.

The key feature of robust plans is that they evade event
effects. In plain words, events can occur but their effects will
not affect plan execution. Technically speaking, regardless
of event occurrences the agent will keep applying the same
actions as if no event occurred.
Definition 2. Let D = (L,A,E) be a planning domain
model and P = (D, I, G) be a planning problem. Let
π = 〈a1, . . . , an〉 be a (finite) sequence of actions. If ∀s ∈
δ(I, π) : G ⊆ s, then we say that π is a robust plan for P .

Computing robust plans according to the above definition
is impractical as all the alternatives (resulting states of action
application) have to be considered. Informally said, it will
not make much difference than computing strong (cyclic)
plans. On the other hand, with a pessimistic assumption how
events can modify the environment we are able to compute
robust plans in a similar fashion like classical plans.
Proposition 3. Let D = (L,A,E) be a planning domain
model and P = (D, I, G) be a planning problem. Let π =
〈a1, . . . , an〉 be a (finite) sequence of actions such that G ⊆
γ(I, π) (i.e., a solution plan for the underlying classical
planning problem), and s0 = I, s1 = γ(s0, a1), . . . , si =
γ(si−1, ai), . . . , sn = γ(sn−1, an) ⊇ G be a state trajec-
tory. We define pi+ and pi− as sets of atoms that in the i-
th step might be added, respectively deleted by events that
could have occurred before. Then, we define Ei as a set of
events that might occur in the i-th step. Atoms pi+ and pi−,
and events Ei are computed as follows:
• E0 = p0+ = p0− = ∅ (no event can occur before agent’s

first action)
• Ei = {e | e ∈ E, pre(e) ⊆ ((si−1 ∪ pi−1

+ ) \ del(ai)) ∪
add(ai)},

• pi+ = (pi−1
+ \ del(ai) ∪

⋃
e∈Ei add(e)),

• pi− = (pi−1
− \ add(ai) ∪

⋃
e∈Ei del(e)).

If for each 1 ≤ i ≤ n it is the case that pre(ai) ∩ pi−1
− = ∅

and G ⊆ sn \ pn−, then π is a robust plan for P .

Proof (Sketch). The sets of atoms pi+ and pi− represent how
a state in the i-th step might differ from si. Optimistically,
atoms in si ∪ pi+ might be true in the i-th step while, pes-
simistically, atoms si \ pi− are only true in the i-th step.
Events that might be applicable in the i-th step (Ei) are de-
termined from the optimistic assumption. On the other hand,

action (ai) applicability in the i-th step is determined from
the pessimistic assumption.

It can hence be derived from the proposition assumption
that in each step ai remains applicable and that after all ac-
tions are applied the goal is satisfied. Hence, π is a robust
plan for P (the agent applies actions consecutively regard-
less of event occurrence)

The above proposition illustrates how to find a robust plan
by “enhancing” a classical planner. An enhanced classical
planner keeps track of atoms that might be true or false in
the given step (i.e., it computes the pi+ and pi− sets). Then,
the planner determines action applicability by whether its
precondition is met in a current state (si) minus “might be
false” atoms (pi−). If a planner reaches a goal state (minus
pn−), then the found plan is a robust plan. Such an approach
is sound, however, not complete as it considers pessimistic
assumption of how events can influence action applicability.

Compiling Event Evasion into Classical Planning

In the spirit of works of Palacios and Geffner (2009) and
Grastien and Scala (2017) in Conformant planning, generat-
ing robust plans that are not affected by non-deterministic
events by standard planners is possible if the problem of
finding such plans in encoded as a classical planning prob-
lem (with conditional effects).

LetD = (L,A,E) be a domain model andP = (D, I, G)
be a planning problem. We define LAE = {p | p ∈ (G ∪⋃

a∈A pre(a))∩⋃e∈E pre(e)} that represents atoms that are
required by action(s) or a goal as well as event(s). We define
L′AE such that L ∩ L′AE = ∅ and there exists a bijective
mapping between LAE and L′AE . In plain words, L′AE con-
sists of “twins” of LAE that will be used to distinguish be-
tween atoms required by actions (LAE) and events (L′AE).
For the sake of clarity, we denote that p ∈ LAE maps to
p′ ∈ L′AE and vice versa.

We introduce two atoms, (a-tn) and (e-tn) (we assume
they are not present in L∪L′AE) for determining action and
event “turn”. For each action a ∈ A we construct an action
aC as follows.

pre(aC) = pre(a) ∪ {(a-tn)}
del(aC) = del(a) ∪ {(a-tn)} ∪ {p′ | p ∈ LAE ∩ del(a)}

add(aC) = add(a) ∪ {(e-tn)} ∪ {p′ | p ∈ LAE ∩ add(a)}
Then, we construct an action aE that considers possible ef-
fects of events (encoded as conditional effects) as follows
(let LA = {p | p ∈ G ∪⋃

a∈A pre(a)}).
pre(aE) = del(aE) = {(e-tn)}
add(aE) = {(a-tn)}
∀e ∈ E : construct ceff e(aE) such that

conde(aE) = (pre(e) \ LAE) ∪ {p′ | p ∈ LAE ∩ pre(e)}
cdele(aE) = del(e) ∩ LA

cadde(aE) = (add(e) \ LA) ∪ {p′ | p ∈ LAE ∩ add(e)}
The action and event turn alternates such that one action

can be applied in the action turn while in the event turn all

9805



applicable events are considered (via conditional effects). To
simulate the p− and p+ sets (as in Proposition 3) that pes-
simistically influence action applicability and optimistically
influence event applicability, respectively, we have to dis-
tinguish between atoms that are required by actions (or a
goal) LA and atoms required by both actions (or a goal) and
events LAE (LAE ⊆ LA). Atoms in LA are still considered
in event delete effects while they are not considered in event
add effects (pessimistically, event can only make an action
inapplicable). For atoms in LAE , we consider two “clones”,
p, present in preconditions of actions, and p′, present in pre-
conditions of events. Whereas effects of actions contain both
clones (action effects affect both action and event applica-
bility), add effects of events contain only p′ atoms (affecting
only event applicability) while delete effects of events only
p atoms (affecting action applicability). Atoms that are not
required by actions (or a goal) are considered only in add
effects of events (affecting event applicability).

The classical domain model is then constructed as DC =
(L ∪ L′AE ∪ {(a-tn), (e-tn)}, {aC | a ∈ A} ∪ {aE}). The
classical planning problem is then constructed as PC =
(DC , I ∪{p′ | p ∈ LAE ∩ I}, G). A solution plan for PC (if
exists) consists of a sequence of actions in which the aC ac-
tions alternate with the aE action. Removing all occurrences
of the aE action and replacing the aC actions by the corre-
sponding a actions while keeping the same order results in a
robust plan.

Planning with Safe States

The notion of “safe” states has been used by Cserna et
al. (2018) to avoid dead-ends in online planning. For plan-
ning with events, the notion has been introduced by Chrpa,
Gemrot, and Pilát (2017) as a complement to “dangerous
states”.
Definition 4. Let D = (L,A,E) be a planning domain
model and P = (D, I, G) be a planning problem. We say
that a state s ∈ 2L (with respect to P) is safe if and only if
there does not exist a sequence of events from E such that
their consecutive application in s results in a dead-end state.

Consequently, only agent’s actions applied in safe states
can result in unsafe or even dead-end states. However, stay-
ing only in safe states might not be possible in order to
achieve a given goal and the agent has to traverse unsafe
states. In the AUV example, the AUV might have to move
through cells ships can enter. Similarly, the Perestroika agent
might have to cross shrinking platforms. Unsafe states can
turn into dead-end states by sequences of events (e.g., a
shrinking platform can eventually disappear killing the agent
staying on it). Hence, rather than focusing on the next ac-
tion it is more informative to consider whether applying a
sequence of actions always results in a safe state despite vis-
iting unsafe states in between.
Definition 5. Let D = (L,A,E) be a planning domain
model, P = (D, I, G) be a planning problem and s ∈ 2L be
a state. Let 〈a1, . . . , ak〉 be a sequence of actions applicable
in s and their application results in sk. Let pi−, pi+ be sets of
atoms defined as in Proposition 3. If for each 1 ≤ i ≤ k it is
the case that pre(ai) ∩ pi−1

− = ∅ and sk under a pessimistic

assumption reflecting pk−, pk+ is a safe state, then we say that
〈a1, . . . , ak〉 is safely applicable in s.
Remark 6. Safe states can be, for instance, represented
by DNF formula (similarly to dead-end traps (Lipovetzky,
Muise, and Geffner 2016)). Let l+ and l− be positive and
negative literals that refer to atoms that if true and false, re-
spectively, in a state, then the state is safe. In this case, we
understand by “s being safe under a pessimistic assumption
reflecting p−, p+” that l+ ⊆ s \ p− and l− ∩ (s ∪ p+) = ∅.
Definition 7. Let D = (L,A,E) be a planning domain
model, P = (D, I, G) be a planning problem. We say that
an action a ∈ A is safe if and only if for each s ∈ 2L in
which a is applicable γ(s, a) is a safe state. An action that
is not safe is called unsafe.

Determining whether an action a is safe with respect to
the DNF formula representing safe states regardless of a par-
ticular state is it applied can be done accordingly to the fol-
lowing lemma (it is a pessimistic assumption that might not
identify all safe actions).
Lemma 8. Let a be an action and a formula containing a
conjunction of literals representing a safe state, where l+

and l− are positive and negative literals such that l+ ⊆
(pre(a) \ del(a)) ∪ add(a) and l− ⊆ del(a). Then a is safe.
Proof (Sketch). It can be immediately seen from the as-
sumption that the l+ literals are either true prior a’s ap-
plication, or become true after it (and they are not deleted)
and the l− literals are deleted by a.

The above lemma can be exploited for determining the
subset of “safe” actions from the set of actions defined in a
given domain model. The remaining actions are considered
as “unsafe”.

Generating plans such that we limit the number of con-
secutive unsafe actions (denoted as unsafeness limit) can
be done by remodelling the planning task as follows (still
within classical planning). Given the unsafeness limit d, we
extend the language by d + 1 atoms representing “unsafe-
ness credits”, i.e., (uc-0),(uc-1),. . . ,(uc-d). Then, we mod-
ify each safe action a as follows:
• add(a) = add(a) ∪ {(uc-d)}
• del(a) = del(a) ∪ {(uc-0), . . . , (uc-d-1)}
Each unsafe action a is “cloned” d times, and each clone ak,
where 1 ≤ k ≤ d, is modified as follows:
• pre(ak) = pre(a) ∪ {(uc-k)}
• del(ak) = del(a) ∪ {(uc-k)}
• add(ak) = add(a) ∪ {(uc-k-1)}
One can immediately see that at most d unsafe actions can be
planned in a row since after that none of the unsafe actions
is applicable as the number of unsafeness credits drops to
zero (and no unsafe action remains applicable after that) and
that the “credit counter” is reset to maximum (d) after a safe
action is planned.

Safe states, in contrast to the traditional PER approach,
provide a tool for reasoning about how dead-end states can
be avoided. From a given plan, we can identify the longest
sequence of safely applicable actions that if applied in the

9806



Algorithm 1 Enhancing the PER approach by Safe State
reasoning

1: Generate a robust plan π
2: if π exists then
3: Execute π and terminate with success
4: end if
5: d← 1
6: repeat
7: Generate π with unsafeness limit of d
8: d← d+ 1
9: if d > threshold then

10: Terminate with failure
11: end if
12: until π exists
13: s← I
14: while G ⊆ s do
15: k ← max{i | 〈a1, . . . ai〉 ∈ π safely applicable in s}
16: if k > 0 then
17: Execute (apply) 〈a1, . . . ak〉 in s
18: else
19: Generate a robust plan π′ to the next safe state

(according to π)
20: Execute π′ if it exists, otherwise execute noop
21: end if
22: s← observe the current state
23: π ← the rest of the solution plan (ak+1 onwards)
24: end while

current state (their application always succeed), the resulting
state is safe as well. The idea is formalized in Algorithm 1
which provides a high-level routine for incorporating safe
state reasoning into the PER approach. Initially, we try to
extract a robust plan, if found we can safely execute it, oth-
erwise, we plan with increasing unsafeness limit until we
find a plan (or fail if we reach the threshold)2. Then, until
the goal is achieved, the agent selects the maximum k such
that the first k actions from the plan are safely applicable
in the current state (Line 15), executes those first k actions
(under Assumption 1) or adapts the plan by generating a ro-
bust plan to the next safe state (explained below) if k = 0
(Line 19), or performs noop if such a robust plan does not
exist (Line 20). Then the agent observes the current state af-
ter that (Line 22) and continues the loop. From Definition 5
it implies that if the initial state is safe, then after each it-
eration the agent remains in the safe state, although during
the iteration the agent might find and execute a robust plan
which transits through unsafe states.

If not possible to extract any safely applicable sequence
from the current plan (i.e., k = 0 in Line 15), we can ad-
just the plan by finding a robust plan to the next safe state
(Line 19) as follows. Let s be the current state, G be the
goal, 〈ai, . . . , an〉 be the current plan (from s to G). Then
we perform the following steps.

1. Find j (i < j ≤ n) such that applying 〈ai, . . . , aj〉 would

2Alternatively, as proving plan non-existence might be more
difficult, we can generate plans with decreasing unsafeness limit
(starting at the threshold) until no plan is found or time expires.

� �

�

�

�

� �

�

�

�

� �

�

�

Figure 1: A sample AUV planning problem with a plan
(left), a safely applicable part of the plan (middle), and a
robust plan between safe states (dashed) connected with an-
other safely applicable part of the plan (right). ”$” denotes
a cell with resource, thin arrows denote where the ship can
move and thick arrows denote AUV’s plan (or a part of it).

result in a safe state if the whole sequence was applicable.

2. Construct a planning problem with the same
domain model, s as the initial state, and⋃

i≤q≤j(add(aq)\
⋃

q<r≤j del(ar))∩(
⋃

j<q≤n(pre(aq)\⋃
j<r<q add(ar)) ∪G \⋃j<r≤n add(ar))) as the goal.

3. Generate a robust plan for the new planning problem and
merge it with 〈aj+1, . . . , an〉 (the rest of the current plan).

In Figure 1, a sample planning problem in the AUV do-
main is depicted in which the AUV (in the bottom right cor-
ner) has to sample all resources (denoted by $) and return
back to the location of origin. The plan that might be gen-
erated (with unsafeneess limit 1) is shown in Figure 1 left.
Safe state reasoning as shown in Algorithm 1 leads to se-
lecting a sequence of safely applicable actions from the plan
as shown in Figure 1 middle. The unsafe state at the bottom
can be safely passed through since the ship cannot be there
before or at the same time as the AUV (the ship needs 8
steps to interfere with the AUV’s path while the AUV needs
5 steps to cross ship’s path). However, the unsafe state on
the left cannot be safely passed through since the ship has
enough time to interfere with the AUV. Hence, the AUV af-
ter executing the safely applicable action subsequence has
to observe the current state and perform the safe state rea-
soning again from the current state. As depicted in Figure 1
right the algorithm finds a robust plan around the ship as it
threatens AUV’s original plan. As the ship can move only
forwards, the robust plan avoid the ship by passing it from
behind.

Experimental Evaluation

For our experimental evaluation, we specified 6 problems for
each domain. The AUV-1 problem is the same as depicted
in Figure 1. AUV-2 has two ships moving “to the cross”
while AUV-3 has three ships moving in adjacent columns
(in the middle) such that the middle ship moves in the oppo-
site direction than the other two (everything else is the same
as in AUV-1). AUV-4-6 are proportionally scaled to 16x16
grid (the number of ships and resources remain the same).
Perestroika-1-3 are on 5x5 grid such that in Perestroika-
1 and 3 solid platforms are on coordinates that are either

9807



Algorithm PER-APP PER-EVENT DANG LIMIT
Problem PT ACT SR PT ACT SR PT ACT SR PT ACT SR
AUV-1 226 37.32 76 3307 36.66 88 1364 41.81 100 410 38.60 100
AUV-2 418 39.16 49 3940 35.91 57 1582 45.79 98 678 32.89 100
AUV-3 352 37.64 50 5078 39.68 47 1620 45.13 80 2198 40.44 100
AUV-4 664 75.12 98 32518 109.56 93 1539 75.99 100 1603 75.39 100
AUV-5 943 75.61 85 39642 101.57 67 2946 78.70 98 2416 77.32 100
AUV-6 848 75.02 83 43604 98.87 61 2681 78.10 97 6982 73.79 100
Perestroika-1 544 21.58 24 2714 24.13 15 6497 60.84 100 600 28.78 100
Perestroika-2 425 22.89 18 2661 23.00 10 7694 68.73 90 699 31.20 100
Perestroika-3 488 26.57 14 3143 27.23 13 7322 72.69 95 577 33.88 100
Perestroika-4 889 40.00 1 N/A N/A 0 15883 118.54 100 2139 56.49 100
Perestroika-5 1327 42.67 3 6327 46.00 1 21479 153.07 83 2198 57.99 100
Perestroika-6 764 22.21 19 3009 14.63 8 14170 111.78 95 633 15.84 100

Table 1: The results of the compared algorithms over 100 runs on 6 problems from the AUV and Perestroika domains. PT
denotes the average time spent by planning (milliseconds), ACT denotes the average number of actions needed to solve the
problem, and SR denotes the number of successful runs.

both odd or both even. In Perestroika-2, shrinking platforms
are on even rows and even columns. In all problems, the
agent starts in a corner. In Perestroika-1-2, resources are lo-
cated in the other corners and in the middle of the grid. In
Perestroika-3, resources are located on all solid platforms.
Perestroika-4-6 are proportionally scaled to 9x9 grid3.

We compare our approach (Algorithm 1) that limits the
number of consecutive steps in unsafe states (denoted as
LIMIT henceforth) to the more traditional PER techniques
of replanning either in case the next actions is not ap-
plicable (PER-APP) or whenever an event occurs (PER-
EVENT), and to the technique based on state dangerous-
ness (DANG) (Chrpa, Gemrot, and Pilát 2017). In this case,
whenever the dangerousness of the state after applying the
next action in the current plan would be lower than 2, we
replace the current plan by a plan to the closest safe state.
Once this state is reached, we again plan to the goal. We
used the well known LAMA planner (Richter and Westphal
2010) for plan generation for all the methods.

The results of the experiments are shown in Table 1. We
made 100 independent runs of each method for each prob-
lem and we show the time spent by planning by each of the
methods, the number of actions (including no-op actions),
needed to solve the problem (counted only for successful
runs) and the number of successful runs. We can see that our
LIMIT method is able to solve all the problems successfully
in all runs in contrast to other methods. Whereas the DANG
method succeeded in four of the problems and in the others
the success rate was above 80%, the PER methods failed in
the larger Perestroika problems.

Larger planning times of the LIMIT approach in AUV-3
and AUV-6 problems (in contrast to DANG) are the result
of attempts to find an initial plan (it can be found for the un-
safeness limit of 3). Quality of plans in the AUV domain
is comparable. On the other hand, in Perestroika, LIMIT
clearly outperforms DANG both in planning time and qual-

3Our implementation and benchmark problems are available at
https://github.com/martinpilat/jPDDL

ity of plans. The reason is that a large shrinking platform
produces the “threshold” dangerousness of 2 (after stepping
on the platform it can shrink to medium and then it might
take 2 steps to disappear).

We have also encoded the problems as FOND planning
problems and used the PRP planner (Muise, McIlraith, and
Beck 2012) to generate strong cyclic plans. Only AUV-1 was
solved (in 987 seconds), the other problems were unsolved
(in 1800s) although all the problems are solvable.

Limitations of the Safe State Approach

The Safe State Reasoning (LIMIT) approach relies on
whether “unsafe” states can be traversed by “robust” plans.
For example, crossing three shrinking platforms in Pere-
stroika cannot be done by a robust plan (the last platform
even if large at the beginning might disappear just while
the agent is on it). However, a strong cyclic plan exists –
the agent might move on the first platform if it is large or
medium, then if the second platform is medium or large
and the third platform is large, the agent can safely cross
them, otherwise the agent waits on the first platform and if
it shrinks to a small size, the agent steps back. Noteworthy,
REPLAN or DANG might succeed in some cases for this
problem as they “take chance”.

Also, if there is no way to generate robust plan (Line 19
of Algorithm 1) such as in the above example, the algorithm
does not terminate. However, the agent gets stuck in a safe
state which has practical benefits (e.g. the AUV does not get
destroyed by a ship).

Also, the information about safe states (not necessarily
complete) has to be provided up front (by domain experts
who already provide domain model specification). A similar
assumption was made by Cserna et al. (2018). Determining
the unsafeness threshold correlates with “optimistic danger-
ousness” of unsafe states. For example, for shrinking plat-
forms in Perestroika, it is 3 as it takes 3 steps for a large
platform to disappear. The agent can then cross at most 2
shrinking platforms by a robust plan (assuming that events
eventually form a viable configuration of the platforms -

9808



large/medium and large).

Conclusions

Planning with non-deterministic events presents a chal-
lenge of “navigating” the agent towards its goal in spite
of events that might modify the environment without its
consent. To reasonably exploit classical planning in such
situations, the key aspect is to avoid dead-end states. In-
spired by recent works (Chrpa, Gemrot, and Pilát 2017;
Cserna et al. 2018), we conceptualized the notion of “safe
states” that can be exploited in the PER approach to guar-
antee that the agent does not fall into a dead-end state (in
the worst case the agent gets stuck in a safe state but does
not get damaged). The results demonstrate that our approach
outperforms the traditional replanning approaches as well as
the recent approach of Chrpa, Gemrot, and Pilát (2017).

The introduced concepts are suitable for problems in
which safe states are “close enough”. As shown in the AUV
example, such problems do exist in real-world and hence
our concepts can increase robustness and autonomy of such
systems. On the other hand, for problems with sparse safe
states, it might not be possible to guarantee agent’s safety or
that the agent reaches its goal in a finite number of steps. For
such problems leveraging MDP or MCTS approaches might
be more suitable in order to maximize the chance to succeed
(or maximize the reward).

In future, we would like to extend introduced concepts to
planning with timelines as it would provide a level of ex-
pressiveness required by many real-world applications (e.g.
Mars Rovers).

Acknowledgements

This Research was funded by the Czech Science Foun-
dation (project no. 17-17125Y), by AFOSR award
FA9550-18-1-0097, and by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics”.

References

Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; de Sousa, J. B.;
and Rajan, K. 2015. On mixed-initiative planning and con-
trol for autonomous underwater vehicles. In IROS, 1685–
1690.
Chrpa, L.; Gemrot, J.; and Pilát, M. 2017. Towards a safer
planning and execution concept. In Proceedings of the 29th
IEEE International Conference on Tools with Artificial In-
telligence (ICTAI), 972–976.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell. 147(1-2):35–84.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding dead ends in real-time heuristic search. In
Proceedings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence, New Orleans, Louisiana, USA, February
2-7, 2018.
Dean, T., and Wellman, M. 1990. Planning and Control.
Morgan Kaufmann Publishers.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Grastien, A., and Scala, E. 2017. Intelligent belief state
sampling for conformant planning. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, 4317–4323.
Ingrand, F., and Ghallab, M. 2017. Deliberation for au-
tonomous robots: A survey. Artif. Intell. 247:10–44.
Komenda, A.; Novák, P.; and Pechoucek, M. 2014. Domain-
independent multi-agent plan repair. J. Network and Com-
puter Applications 37:76–88.
Lipovetzky, N.; Muise, C. J.; and Geffner, H. 2016. Traps,
invariants, and dead-ends. In ICAPS 2016, 211–215.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Muise, C. J.; Felli, P.; Miller, T.; Pearce, A. R.; and So-
nenberg, L. 2016. Planning for a single agent in a multi-
agent environment using FOND. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
3206–3212.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved non-deterministic planning by exploiting state rele-
vance. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control archi-
tecture. IEEE Trans. Systems, Man, and Cybernetics
23(6):1561–1574.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12:271–315.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
J. Artif. Intell. Res. 35:623–675.
Patra, S.; Ghallab, M.; Nau, D. S.; and Traverso, P. 2019.
Acting and planning using operational models. In The
Thirty-Third AAAI Conference on Artificial Intelligence,
7691–7698.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In ECAI 2008 - 18th European Confer-
ence on Artificial Intelligence, 568–572.
Vernhes, S.; Infantes, G.; and Vidal, V. 2013. Problem split-
ting using heuristic search in landmark orderings. In IJCAI
2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, 2401–2407.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In ICAPS 2007, 352–
359.

9809


