
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Optimizing Reachability Sets in Temporal Graphs by Delaying

Argyrios Deligkas, Igor Potapov
University of Liverpool

{argyrios.deligkas, potapov}@liverpool.ac.uk

Abstract

A temporal graph is a dynamic graph where every edge is as-
signed a set of integer time labels that indicate at which dis-
crete time step the edge is available. In this paper, we study
how changes of the time labels, corresponding to delays on
the availability of the edges, affect the reachability sets from
given sources. The questions about reachability sets are mo-
tivated by numerous applications of temporal graphs in net-
work epidemiology and scheduling problems in supply net-
works in manufacturing. We introduce control mechanisms
for reachability sets that are based on two natural operations
of delaying time events. The first operation, termed merging,
is global and batches together consecutive time labels in the
whole network simultaneously. This corresponds to postpon-
ing all events until a particular time. The second, imposes
independent delays on the time labels of every edge of the
graph. We provide a thorough investigation of the computa-
tional complexity of different objectives related to reachabil-
ity sets when these operations are used. For the merging op-
eration, we prove NP-hardness results for several minimiza-
tion and maximization reachability objectives, even for very
simple graph structures. For the second operation, we prove
that the minimization problems are NP-hard when the num-
ber of allowed delays is bounded. We complement this with a
polynomial-time algorithm for the case of unbounded delays.

Introduction

A plethora of real life scenarios can be modelled as a dy-
namic network that changes over time. These scenarios
range from train, bus, and distribution schedules, to live-
stock movements between farms and virus spreading. Many
of these dynamic networks consist of a fixed set of nodes and
what changes over time is the connectivity between pairs
of them; the locations of the stations, distribution centers,
and farms remain the same over time, while the connections
between any two of them can change every few minutes,
hours, or days. An equivalent way to see these networks is
as a sequence of static networks that change according to
a predetermined, known in advance, schedule. These type
of networks, known as temporal graphs, were formalized in
the seminal work of (Kempe, Kleinberg, and Kumar 2002).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since then, there is flourish of work on temporal graphs
(Zschoche et al. 2018; Michail 2016; Casteigts et al. 2019;
Chen et al. 2018; Michail and Spirakis 2016; Erlebach, Hoff-
mann, and Kammer 2015). Formally, in a temporal graph
every edge is assigned a set of integer time labels that indi-
cate at which discrete time steps the edge is available. In
other words, a temporal graph is a schedule of edge sets
E1, E2, . . . , Et over a fixed set of vertices.

In this paper, we study questions related to reachability
sets on temporal graphs. The reachability set of vertex v is
the set of vertices that there exist temporal paths from v to
them. Informally speaking, a temporal path is a path whose
edges, additionally to the usual connectivity, use strictly in-
creasing time labels (Whitbeck et al. 2012). However, in
contrast to static graphs, temporal paths do not preserve
transitivity. As a result, some well known concepts from
graph theory, like Menger’s theorem, do not hold for tem-
poral graphs and have to be redefined (Akrida et al. 2019;
Mertzios et al. 2013; Erlebach and Spooner 2018).

Reachability sets emerge naturally in a wide range of
models and real life applications (Allen et al. 2014; Potapov
2004; Niskanen, Potapov, and Reichert 2020). One of them
in relation to temporal graphs, is the minimization of spread
of infectious diseases over contact networks. Data pro-
vide significant evidence that commuter patterns and air-
line flights (Colizza et al. 2006; Brockmann and Helbing
2013), and livestock movements between farms (Mitchell et
al. 2005) could spread an infectious disease. In particular,
the impact of animal movements has been extensively stud-
ied within the epidemics community. Recent studies have
shown that restricting of animal movements is among the
most effective methods for controlling the spread of an in-
fection (Jones et al. 2019; Turner et al. 2019; Turner, Bow-
ers, and Baylis 2012; Thulke, Eisinger, and Beer 2011;
Buhnerkempe, Tildesley, and others 2014) and changes in
the network of animal movements between farms (nodes in
a graph) can significantly decrease the spread of an infec-
tion (Gates and Woolhouse 2015; Mohr et al. 2018). Con-
trary to the applications above, there are cases where we
wish to maximize the reachability sets. Consider for exam-
ple a distribution schedule, where the use of the underlying
network for every day comes at a fixed cost. Then, the goal

9810

is to optimally utilize the infrastructure of the network by
choosing which days to use the network in order to achieve
maximum reachability while maintaining low cost.

The importance of these problems combined with their
inherit temporal nature, made temporal graph theory a tool
for analyzing epidemiology in (animal) networks (Braun-
stein and Ingrosso 2016; Enright and Meeks 2015; 2018;
Enright et al. 2018; Enright and Kao 2018; Nöremark and
Widgren 2014; Valdano et al. 2015a; 2015b). (Enright and
Meeks 2018) and (Enright et al. 2018) studied how reacha-
bility sets on temporal graphs change, when the schedule of
the edges can change according to specific operations. More
specifically, they studied MINMAXREACH and MAXMIN-
REACH problems where the goal, respectively, was to min-
imize the maximum, or to maximize the minimum size of
reachability sets between a given set of sources. (Enright
and Meeks 2018) studied these objectives under the oper-
ation of reordering of the edge sets and it was proven that
both problems are NP-hard. For MINMAXREACH, (Enright
et al. 2018) studied the operations of deletion of whole edge
sets, or individual edges within an edge set. It was proven
that MINMAXREACH under both notions of deletion is NP-
hard, but they admit an FPT algorithm when they are param-
eterized by the treewidth of the network and the number of
non-reachable vertices.

Although optimization of reachability sets capture impor-
tant real life problems, some of the proposed solutions are
not completely satisfying due to big changes in infrastruc-
ture. For example, reordering of edge sets can be difficult,
costly, or even impossible to perform due to the physical
constraints of the network, or due to the number of changes
required in the existing infrastructure. For edge-deletions, an
upper bound on the number of allowed deletions is required.
This is crucial, since the deletion of every edge trivially min-
imizes the reachability sets, but makes the existing network
infrastructure useless. In addition, edge deletions can create
a “bottleneck” problem in the network even if their number
is bounded. The deletion of an edge can create a sink to the
network, or completely isolate some of its parts. Instead, we
wish to study the following problem.

Given a temporal graph and a set of sources, optimize
the size of the reachability set of the sources using only
“natural” and “infrastructure-friendly” operations.

Natural operations should be intuitive and should be easy
to apply; deletion, or postponement, of a temporal edge can
naturally happen. On the other hand, bringing forward a tem-
poral edge cannot be always feasible; a bus cannot go faster
than its top speed. Infrastructure-friendly operations should
not be to difficult to perform and that do not require many
changes to the given network and temporal schedule.

Our contribution. Our contribution is twofold. Firstly,
we introduce and study two operations, merging and delay-
ing, that are natural and infrastructure-friendly and were not
studied in the past. The idea behind both operations is the
postponement of the edges of the graph. Merging operation
is parameterized by λ and it batches together λ consecutive
edge sets; a λ-merge on E1, . . . Eλ changes the first λ − 1

Problem Graph Sources Labels/ Edges/
Class Edge Step

MINREACH Path O(n) 1 3
MINREACH Tree
MINMAXREACH Δ = 3 1 1 1
MINAVGREACH
MAXREACH Path O(n) 1 4
MAXREACH Bipart.
MAXMINREACH Δ = 3 1 1 4
MAXAVGREACH
MAXREACH Tree
MAXMINREACH Δ = 3 1 1 10
MAXAVGREACH

Table 1: NP-hardness results for the λ-merge operation for
any λ ≥ 2. Δ denotes the maximum degree of the graph.
The results are approximation preserving and they rule out
PTASs and they hold even if the under lying graph is di-
rected.

edge sets to the empty sets, and the λ-th edge set is the
union of all λ edge sets. The delaying operation, indepen-
dently delays a temporal edge; a δ-delay on the label i of
edge uv changes it to i + δ. In contrast to deletion of tem-
poral edges that can directly isolate vertices, our operations
isolate some vertices only temporarily. Our second contri-
bution is a thorough investigation of the computational com-
plexity of reachability objectives under these operations. In
particular, we study the MINMAXREACH, MINREACH, and
MINAVGREACH, where in the last two cases the goal is to
minimize the number, or the average number respectively,
of reachable vertices from a given set of sources.With re-
spect to maximization objectives, we study MAXREACH,
MAXMINREACH, and MAXAVGREACH. We proved that
these problems are NP-hard under the merging operation
even for very restricted classes of graphs. Our results are
depicted in Table 1. For the delaying operation, we studied
the minimization problems. They remain NP-hard when we
bound the number of times we are allowed to use this oper-
ation. We complement these results with a polynomial time
algorithm for the case of the unbounded number of delays
that works for any δ.

Preliminaries

Temporal Graphs. A temporal graph 〈G, T 〉 is a pair of a
(directed) graph G = (V,E) and a function T that maps
every edge of G to a list of time steps at which the edge
is available. The maximum time step, tmax, on the edges
of G defines the lifetime of the temporal graph. Another
interpretation of a temporal graph, which is useful in our
case, is to see it as a schedule of subgraphs, or edge-sets,
E1, E2, . . . , Etmax

of G, known in advance and defined by
the function T ; at time step t function T defines a set
Et ⊆ E of edges available for this time step. We will say
that an edge has the label i, if it is available at time step i.
The size of a temporal graph 〈G, T 〉 is |V |+

∑
t≤tmax

|Et|.
A temporal path in 〈G, T 〉 from v1 to vk is a sequence of
edges v1v2, v2v3, . . . , vk−1vk such that each edge vivi+1 is
available at time step ti and ti < ti+1 for every i ∈ [k − 1].

9811

Reachability Sets. A vertex u is reachable from vertex
v if there exists a temporal path from v to u. We assume
that a vertex is reachable from itself. It is possible that u
is reachable from v, but v is not reachable from u. The
reachability set of v, denoted reach(v, 〈G, T 〉), is the set
of vertices reachable from v in 〈G, T 〉. Given a temporal
graph with lifetime tmax and a time step t < tmax, the set
reacht(v, 〈G, T 〉) contains all the vertices reachable from
v up to time t. The set reach(v, 〈G, T 〉) can be computed
in polynomial time with respect to the size of 〈G, T 〉; it suf-
fices to check whether there exists a temporal path from v to
every vertex in V , which can be done efficiently (Wu et al.
2014).

Merging. A merging operation on T postpones some of
the edge-sets in a particular way. Intuitively, a merging oper-
ation “batches together” a number of consecutive edge-sets.

Definition 1 (λ-merge) For every positive integer λ, a λ-
merge of Ei, Ei+1, . . . , Ei+λ−1, replaces Ej = ∅ for every
i ≤ j < i+ λ− 1 and Ei+λ−1 =

⋃
i≤j≤i+λ−1 Ej .

So, every merge corresponds to the global delay of events
from times i, i + 1, . . . , i + λ − 1 to the time i + λ − 1.
We say that two λ-merges are independent, if they merge
Ei, . . . Ei+λ−1 and Ej , . . . Ej+λ−1 respectively, and i+λ−
1 < j. When it is clear from the context, instead of writing
that we merge Ei with Ei+1 we will write that we merge i
with i+ 1.

Definition 2 ((λ, μ)-merging scheme) For positive inte-
gers λ and μ, a (λ, μ)-merging scheme applies μ indepen-
dent λ′-merges on E1, E2, . . . , Etmax , where λ′ ≤ λ. A
merging scheme is maximal if there is no other feasible λ-
merge available.

A (λ, μ)-merging scheme for a temporal graph 〈G, T 〉 es-
sentially produces a new temporal graph by modifying the
schedule T using μ independent λ′-merges, where λ′ ≤ λ.
We will use T M

(λ,μ) to denote the modified schedule and
〈G, T M

(λ,μ)〉 the corresponding modified temporal graph.
Our goal is to compute merging schemes that optimise

some objectives regarding reachability sets from a given set
of vertices. The input to the problems we study consists of
a temporal graph 〈G, T 〉, two positive integers λ, μ, and a
subset of vertices S ⊆ V which will term sources. The ob-
jectives we study are formally defined in Table 2.

Delaying. While merging operations affect globally the
whole graph; edge delays affect only one label of an edge.
We parameterize the delay operation by δ; the maximum de-
lay we can impose on a label of an edge. Hence, a δ-delay
on edge uv at time step i changes the label i to i′ ≤ i + δ.
We denote T D

δ the schedule produced after applying δ-delay
operations on T . When the number of allowed δ-delay oper-
ations is κ, we denote T D

(δ,κ) produced schedule. Under de-
laying operations we study MINREACH, MINMAXREACH,
and MINAVGREACH.

(λ, μ)− MERGING Objective

1. MINREACH min |
⋃

v∈S reach(v, 〈G, T M
(λ,μ)〉)|

2. MINMAXREACH minmaxv∈S |reach(v, 〈G, T M
(λ,μ)〉)|

3. MINAVGREACH min
∑

v∈S |reach(v, 〈G, T M
(λ,μ)〉)|

4. MAXREACH max |
⋃

v∈S reach(v, 〈G, T M
(λ,μ)〉)|

5. MAXMINREACH maxminv∈S |reach(v, 〈G, T M
(λ,μ)〉)|

6. MAXAVGREACH max
∑

v∈S |reach(v, 〈G, T M
(λ,μ)〉)|

Table 2: Problems 1 - 3 are minimization problems, while
Problems 4 - 6 are maximization problems. If |S| = 1, then
the solution for all minimization problems is the same; sim-
ilarly for the maximization problems.

MAX2SAT(3). To produce many of our results we use the
problem MAX2SAT(3). An instance of MAX2SAT(3) is a
CNF formula φ with n boolean variables and m clauses,
where each clause involves exactly two variables and ev-
ery variable appears in at most three clauses. The goal is
to maximize the number of satisfied clauses. Without loss of
generality we will assume that every variable in φ appears
exactly one time as a positive literal and at most two times
as a negative literal. In (Berman and Karpinski 1999) it was
proven that MAX2SAT(3) is NP-hard and that it is even hard
to approximate better than 1.0005.

Merging: Minimization problems

In this section we study minimization problems under merg-
ing operations. To begin with, we prove that MINREACH
under (2, μ) − MERGING is NP-hard even when G is a path
with many sources. Then, using this result, we explain how
to get NP-hardness for any λ ≥ 2. Next, we show how to
extend our construction and get a bipartite, planar graph of
maximum degree 3 and only one source, and thus we prove
NP-hardness for all Problems 1 - 3. Our next result is NP-
hardness for the same set of problems on trees with one
source. For this result, we derive a new construction. Al-
though all of our results are presented for undirected graphs,
they can be trivially extended for directed graphs. In ad-
dition, all of our reductions are approximation preserving
hence we get that all Problems 1 - 3 are NP-hard even to
approximate.

MINREACH on paths

Construction. We will reduce from MAX2SAT(3). The k-th
clause of φ will be associated with the time steps 4k, 4k+ 1
and 4k + 2, while the i-th variable will be associated with
the time steps M + 4i,M + 4i+ 1 and M + 4i+ 2, where
M = 4m + 4. For every clause of φ we construct a path
with nine vertices, where the middle vertex is a source. Con-
sider the path for the k-th clause, that involves the variables
xi and xj . An example of such a path can be found on Fig-
ure 1. The middle piece of the path consists of the vertices
ck, y

l
k, z

l
k, y

r
k, z

r
k; where ck ∈ S. Edge ckylk has the label 4k,

edges ylkz
l
k and cky

r
k have the label 4k + 1, and edge yrkz

r
k

has the label 4k + 2. The labels on the left and the right

9812

4k 4k + 1

4k + 1 4k + 2

M + 4i M + 4j + 1

ck

ylk

zlk

vlk vrk

zrk

yrk

wr
kwl

k

M + 4i+ 1 M + 4j + 2

Figure 1: The gadget for the clause (x̄i, xj). The labels on
the edges denote the time steps these edges are available;
M = 4m + 4. The black vertex, ck, is a source, i.e., it be-
longs to S.

pieces of the path depend on the literals of the variables of
the clause. If variable xi appears in the clause with a positive
literal, then we pick an arbitrary side of the path, say the left,
and add the label M +4i+1 to the edge zlkw

l
k and the label

M+4i+2 to the edge wl
kv

l
k. If xi appears in the clause with

a negative literal, then we add the label M + 4i to the edge
zlkw

l
k and the label M +4i+1 to the edge wl

kv
l
k. In order to

create a single path, we arbitrarily connect the endpoints of
the paths we created for the clauses; every edge that connects
two such paths has label 1. Observe that for the constructed
temporal graph, 〈G, T 〉, the following hold: 〈G, T 〉 has 9m
vertices and lifetime 4m+4n+6; every vertex is reachable
from a one of sources; at every time step there are at most
three edges available; every edge has only one label, i.e., it
is available only at one time step. Clearly, the size of 〈G, T 〉
is polynomial to the size of φ and |S| = m. We will ask for
a (2,m+ n)-merging scheme.
Intuition. The correctness of our reduction relies on two
ideas. The first idea is that in every subpath, under any
(2, μ)-merging scheme, at most four vertices are not reach-
able from S. In order to make four vertices not reachable
within a gadget, the following synergy must happen. Vertex
ck should choose which side of the path to “save”; merging
4k with 4k + 1 make the vertices zlk, w

l
k, v

l
k unreachable;

merging 4k + 1 with 4k + 2 make the vertices zrk, w
r
k, v

r
k

unreachable. Observe that only one of the two merges can
happen, since the two merges together are not independent.
Hence, such a merge makes three vertices of one side un-
reachable. In order to make the v-vertex of the other side un-
reachable, one extra merge has to happen. This merge will
be translated to a truth assignment for a variable, which is
the second idea of our reduction. The merge of M +4i with
M +4i+1 corresponds to setting xi to False and the merge
of M + 4i+ 1 with M + 4i+ 2 to True.

Lemma 1 If there exists an assignment that satisfies l
clauses of φ, then there exists a (2, n+m)-merging scheme
such that 3m+ l vertices are not reachable from S.

Lemma 2 If there exists an optimal (2, n + m)-merging
scheme such that 3m+ l vertices are not reachable from S,
then there exists an assignment for φ that satisfies l clauses.

The combination of Lemmas 1 and 2 already yield NP-
hardness for MINREACH under (2, μ) − MERGING, when
μ is part of the input. Furthermore, our construction allows
us to restrict the search only to maximal merging schemes.
In Lemma 1 we can arbitrarily extend the produced merging
scheme to a maximal one without any issues in the correct-
ness of the proof, while in Lemma 2, without loss of gener-
ality, we can assume that the merging scheme is maximal.

We furthermore explain how to get NP-hardness for any
λ ≥ 2. Although our construction does not work when
λ > 2, we can modify it and get the result for any λ ≥ 2, by
“spreading” the edges of 〈G, T 〉 over time. More formally,
between any two time steps of 〈G, T 〉 we add λ− 2 dummy
time steps where no edge is available. The crucial observa-
tion is that, after the spreading, any λ′-merge with λ′ < λ
does not affect the set reachable from S. Hence, after the
spreading we can replace the 2-merges with λ-merges in
Lemmas 1 and 2 and get NP-hardness for any λ ≥ 2.
Theorem 1 MINREACH under (λ, μ) − MERGING is NP-
hard for any λ ≥ 2, even when G is a path, and the following
constraints hold:

1. every edge is available only at one time step;
2. at any time step there are at most three edges available;
3. the merging scheme is maximal.

Graphs with a single source

Next, we explain how to get NP-hardness for the case where
|S| = 1. This result immediately implies NP-hardness
for MINMAXREACH and MINAVGREACH under (λ, μ) −
MERGING, since when |S| = 1 these problems coincide
with MINREACH. It is not hard to get this result, given the
previous construction.We can simply add a vertex c0 in the
constructed graph that would be the only source and it is
connected with every vertex that used to be a source, so c0 is
connected with all the c-vertices from the previous construc-
tion, with an edge available at time step 1. Since the next
time step that an edge exists in is time step 4, this means
that under any (2, μ)-merging scheme, at time step 2 every
vertex of S has been reached by c0. Hence, The NP-hardness
follows from the previous construction. However, this is not
the strongest result we can get, since this graph has a vertex
with non constant degree. Instead, we modify 〈G, T 〉 as we
describe next in order to get a tree of maximum degree 3.

c0

c1 c2 cm−1 cm

2 4 6
· · ·

2(m− 1) 2m

yl1 yr1

...
...

yl2 yr2

...
...

ylm−1 yrm−1

...
...

ylm yrm

...
...

4 6 2m 2m+ 2

Figure 2: The construction for graphs with one source.

The construction is depicted in Figure 2. We create a path
with m+1 vertices where c0 is the only source. In addition,

9813

every vertex k of the path, different than c0, is connected
with vertex ck from the construction of the previous section
via an edge with label 2k + 2. The labels in any two con-
secutive edges of this path differ by two. Finally, every edge
of the construction from the previous section is shifted by
2m + 4, i.e., we add the number 2m + 4 to its label. The
crucial observation is that under any merging scheme that
uses 2-merges at time step 2m + 2 every ck vertex for ev-
ery k ∈ [m] will be reached. Hence, at time step 2m + 2,
under any (2, μ)-merging scheme, we get an instance that it
is equivalent, with respect to reachability from this time step
and on, to the instance of the previous section. Hence, we
can get NP-hardness for λ = 2.Using the trick of “spread-
ing” described before, we can get the result for any λ ≥ 2.

Theorem 2 Problems 1 - 3 are NP-hard for any λ ≥ 2 even
when there exists only one source, G is a tree of maximum
degree three, and the Constraints 1- 3 from Theorem 1 hold.

Merging: Maximization problems

In this section we prove NP-hardness for maximization prob-
lems. Before we proceed with the exposition of the results
though, we should discuss some issues about maximization
reachability problems and merging. Any merge weakly de-
creases the reachability set from the sources. Hence, while
in the minimization problems, in principle, we would like
to perform as many merges as possible, for maximization
problems we would like to perform the minimum number
of merges that are allowed. In addition, the reachability set
weakly decreases with λ, i.e., the size of the merge. Hence,
for maximization problems it is better to do the smallest
merge possible, i.e., perform only 2-merges. For this reason,
if we get NP-hardness for (2, μ)-merging schemes, then we
can immediately conclude that finding the optimal (λ, μ)-
merging scheme is NP-hard, for any λ ≥ 2. So, for maxi-
mization problems, we require that at least μ λ-merges need
to happen. This is motivated by distribution networks; the
use of the network comes at a cost, thus we would like to
use the network as few times as possible.

Again, we prove our results by reducing to MAX2SAT(3).
This time though we need to be more careful; in order to
make our reduction valid, we should not allow for “dummy”
merges, i.e., merges that do not change the reachable vertices
from the sources. As before, we first prove NP-hardness for
paths with multiple sources. Then, we modify our reduction
to get NP-hardness for graphs with one source and we pro-
vide a reduction for trees with just one source.

MAXREACH on paths

Construction. We will reduce from MAX2SAT(3). Ev-
ery variable xi of φ will be associated with the time steps
3i, 3i + 1, and 3i + 2. For every variable we create a path
of length 5 with ends the vertices yi and zi; this path is de-
picted at the bottom of Figure 3. In this path, the edges at the
ends of the paths have labels 3i+2 and the rest of the edges
have label 3i + 3. The paths that are created from variables
will be termed variable-paths. Both ends of every variable-
path are sources. For every clause we create a path with five
vertices. So, if the k-th clause involves the variables xi and

xj , we construct a path with ends the vertices vik and vjk, and
middle the vertex ck, which will be termed c-vertex. If xi

appears with a positive literal in the clause, then the labels
on the two edges that connect vik and ck are 3i and 3i+1 re-
spectively; else the labels are 3i+1 and 3i+2. The top side
of Figure 3 depicts the path for the clause (x̄i, xj). Both ends
of the path are sources. These paths will be termed clause-
paths. To create one path, we arbitrarily connect the con-
structed paths. The temporal graph 〈G, T 〉 we constructed
has 6n+ 5m vertices, lifetime 3n+ 2, and at any time step
at most four edges are available. Furthermore all the vertices
are reachable from S.

vik ck vjk

yi zi

3i+ 2 3i+ 23i+ 33i+ 33i+ 3

3i+ 1 3i+ 2 3j + 1 3j

Figure 3: Gadgets for MAXREACH on paths. Top: the gadget
for the clause (x̄i, xj). Bottom: the gadget for variable xi.

Intuition. The labels on the variable-paths guarantee that
there exists a (2, n)-merging scheme that maximizes the
number of reachable vertices such that it does not apply a 2-
merge that merges time step 3i+2 with 3i+3 for any i ∈ [n].
This guarantees two things. Firstly, there exists an optimal
(2, n)-merging scheme where all the vertices, except the c-
vertices, are reachable from S. Hence, any optimal merging
scheme has to maximize the number of reachable c-vertices.
Second, given the subset of c-vertices that are reachable un-
der the produced merging scheme, we can easily deduce a
truth assignment that satisfies the clauses that correspond to
the reachable c-vertices.

In what follows, we will assume that we do not allow any
merge that involves time steps 1 and 2. This is because such
merges would be “dummy”, since there are no edges avail-
able at these time steps. However, this assumption is without
loss of generality; we can simply decrease all the labels by
2, hence an edge with label i will get label i− 2.

Lemma 3 If there exists an assignment that satisfies l
clauses of φ, then there exists a (2, n)-merging scheme such
that 6n+ 4m+ l vertices are reachable from S.

Lemma 4 If there exists an optimal (2, n)-merging scheme
such that 6n + 4m + l vertices are reachable from S,then
there exists an assignment for φ that satisfies l clauses.

Lemmas 3 and 4 imply that MAXREACH under (2, μ) −
MERGING is NP-hard. As we have already explained, this
means that the problem is NP-hard for any λ ≥ 2.

Theorem 3 MAXREACH under (λ, μ) − MERGING is NP-
hard for any λ ≥ 2, even when the underlying graph is a
path, every edge has one label, and at any time step there
exist at most four edges available.

9814

1 2

2

4

4 5

5

6

c-path v-path

3
. . .

6

Figure 4: The construction used to prove NP-hardness for
MAXREACH with one source. c-path and v-path stand for a
clause-path and variable-path respectively from the previous
section where we add n+m+1 to the labels of these paths.
The filled vertex is the only source of the graph.

Graphs with a single source

In this section we modify the construction of the previous
section and prove NP-hardness for MAXREACH with only
one source. Thus, we get as a corollary NP-hardness for
MAXMINREACH and MAXAVGREACH.
Construction. The idea is similar to the one we used be-
fore: we construct a tree whose leaves are the sources of the
previous construction, so we can use the result of the previ-
ous section. To achieve this, we will use the gadget depicted
in Figure 4. This gadget consists of a line of length 2m+ n.
The left end of the line has degree 1 and it is the only source,
while the rest of the vertices of the line have degree 2 or 3.
On the degree-3 vertices we add the clause-paths and the
variable-paths, depicted as c-paths and v-paths in the figure,
by adding m+n+1 to their labels. The end points of c-paths
are connected with the j-th and the j + 2-th vertices of the
gadget where the j+1-th vertex has degree 2; this is done in
order to get a bipartite graph. The end points of c-paths are
connected with the j-th and the j+1-th vertices. The crucial
observation is that in an optimal (2, n)-merging scheme we
do not merge any time step lower than 2m+n+1. Any such
merge will make unreachable at least 5 or 6 vertices (the ver-
tices of a clause-path or a variable-path) while a merge at a
time step higher than 2m+ n+ 1 will make unreachable at
most 2 vertices. Hence, at time step 2m+ n+ 1 all the ver-
tices that correspond to the endpoints of the paths from the
previous section have been reached by the source, so we can
use the proof from the previous section and get our result.

Theorem 4 Problems 4 - 6 are NP-hard even when there is
one source, the underlying graph is bipartite, it has maxi-
mum degree 3, every edge has one label, and at any time
step there are at most four edges available.

Trees with one source

In this section we prove that MAXREACH is NP-hard even
on trees with only one source. Again, our reduction is from
MAX2SAT(3). First, we explain how to get NP-hardness for
forests where every connected component of the forest has
only one source. Then, using the idea from the previous sec-
tion, we connect the components of the forest and create a
single tree with only one source.
Construction. We will use a similar approach as before and
we associate each variable with three consecutive time steps.
This time though we associate every clause with three con-
secutive time steps as well. For every clause we create a tree

3k 3k + 1

3k + 1 3k + 2

M + 3i M + 3j + 1

ck

ylk

zlk

vlk vrk

zrk

yrk

wr
kwl

k

M + 3i+ 1 M + 3j + 2

ck

3k + 2

3k + 3

ui

M + 3i+ 2

M + 3i+ 3

Eight copies Eight copies

Figure 5: The gadgets we use in Section 6, where M = 3m+
2. The left gadget corresponds to the k-th clause of φ equal
to (xi, x̄j); the middle gadget is for the k-th clause; the right
gadget is for the i-th variable

with 9 vertices where only one of them is a source; an ex-
ample of this tree is depicted in the left part of Figure 5.
Each such tree consists of three pieces: the middle piece, the
left piece, and the right piece. For the k-th clause, the middle
piece consists of the vertices ck, ylk, z

l
k, y

r
k, z

r
k; ck is a source.

Edge cky
l
k has the label 3k, edges ylkz

l
k and cky

r
k have the

label 3k+ 1, and edge yrkz
r
k has the label 3k+ 2. The labels

on the left and the right pieces of the path depend on the lit-
erals of the variables of the clause. If variable xi appears in
the clause with a positive literal, then we pick an arbitrary
side of the path, say the left, and add the label M +3i to the
edge zlkw

l
k and the label M+3i+1 to the edge wl

kv
l
k, where

M = 3m+2. If xi appears in the clause with a negative lit-
eral, then we add the label M +3i+1 to the edge zlkw

l
k and

the label M + 3i+ 2 to the edge wl
kv

l
k. In addition, we cre-

ate the following. For every k ∈ [m] we create eight paths
of length 2; the middle part of Figure 5. The one end point
of every such path is a source. The labels of the edges for
every path, from the source to the other end, are 3k + 2 and
3k+3. For every i ∈ [n− 1] we create eight paths of length
2; the right part of Figure 5. The one end point of every path
is a source. The labels of the edges for every path, from the
source to the other end, are M +3i+2 and M +3i+3. The
constructed temporal graph 〈G, T 〉 has 33m+ 24n vertices
and lifetime 3m + 3n + 4. All the vertices of the graph are
reachable from S. We ask for a (2,m+n)-merging scheme.
Observe that at any time step there exist at most 10 edges
available. Again, we assume, without loss of generality, that
no merging that involves labels 1 and 2 is allowed.

Intuition. The high level idea is that in any optimal
(2,m + n)-merging scheme all the vertices of the paths of
length 2 are reachable; this is guaranteed by the number of
copies of the paths and the choice of the labels in these paths.
Hence, an optimal merging scheme maximizes the number
of reachable vertices in the gadgets for the clauses. In every
gadget though, at most 6 vertices are reachable under any
optimal merging scheme. If 6 vertices are reachable, then we
can easily deduce an assignment that satisfies this clause.

9815

Lemma 5 If there exists an assignment for the variables of
φ that satisfies l clauses, then there exists a (2,m + n)-
merging scheme for 〈G, T 〉 such that 29m+24n+ l vertices
are reachable from S.

Lemma 6 If there exists a reachability maximizing (2,m+
n)-merging scheme such that 29m + 24n + l vertices are
reachable from S in 〈G, T 〉, then there exists a truth assign-
ment that satisfies l clauses of φ.

The combination of the two lemmas above already yield
NP-hardness for MAXREACH on forests. However, we can
use the gadget from Figure 4 to get a tree of maximum de-
gree 3, with only one source. Hence, we immediately get
NP-hardness for MAXMINREACH and MAXAVGREACH on
trees with a single source.
Theorem 5 Problems 4 - 6 are NP-hard even when there ex-
ists only one source, G is a tree, has maximum degree three,
and every edge has only one label.

Delaying

In this section we study edge-independent delays. Firstly, we
show that when the number of allowed delays is bounded,
then the minimization problems are NP-hard. Then, we study
the case where the number of δ-delaying operations is un-
bounded. In contrary to unbounded edge deletions where the
solution to the problems become trivial by essentially isolat-
ing every source, an unbounded number of δ-delays does
not trivialize the problems and most importantly does not
destroy the underlying network.
Theorem 6 MINREACH, MINMAXREACH, and MINAV-
GREACH are NP-hard under δ − DELAYING, for any δ ≥ 1,
when the number of operations is bounded by κ. In addition,
they are W [1]-hard, when parameterized by κ.

Next, we provide a polynomial-time algorithm for the
minimization problems under δ−DELAYING, for any δ ≥ 1.
Let us define the reachability network which will be used by
our algorithm. Given a temporal graph 〈G, T 〉 with lifetime
tmax and a set of sources S, for every t ≤ tmax, we de-
fine RVt(〈G, T 〉, S) to be the set of vertices that are reached
at time t for first time from a vertex of S. Put formally,
v ∈ RVt(〈G, T 〉, S), if there exists s ∈ S such that the ear-
liest arrival path from s to v arrives at time t and moreover
for every t′ < t there is no path from any s ∈ S to v that
arrives at time t′. Additionally, we define REt(〈G, T 〉, S)
to be the set of temporal edges with label t that are adja-
cent to vertices in RVt(〈G, T 〉, S). Observe that we can de-
cide if v ∈ RVt(〈G, T 〉, S) can be computed via computing
the earliest arrival paths between every s ∈ S and v, which
can be done in polynomial time with respect to the size of
〈G, T 〉 (Wu et al. 2014). Similarly, we can efficiently com-
pute REt(〈G, T 〉, S). Finally, we say that it is δ-possible to
change a label of an edge from t to t + 1 if the difference
between t+1 and the original label of the edge is at most δ.

The next observation follows from the fact that a de-
lay on any edge in REt(〈G, T D

δ 〉, S) weakly decreases
RVt+1(〈G, T D

δ 〉, S). Hence, delaying as many as possible
from these edges minimizes the number of vertices that are
reached by S at time step t+ 1.

Figure 6: Algorithm for δ − DELAYING.

1 2

1, 3 2, 4s y z

x

Figure 7: In the temporal graph 〈G, T 〉 above with S = s,
we have RV1(〈G, T 〉, s) = {x, y}, RV2(〈G, T 〉, s) = {z},
RE1(〈G, T 〉, s) = {sx, sy}, and RE2(〈G, T 〉, s) = {yz}.
Any other set is empty.

Observation 1 For any 1 ≤ t < tmax, if we can delay
only temporal edges with label t, Algorithm 6 minimizes
RVt+1(〈G, T D

δ 〉, S).
Observation 1 can be used as an intermediate step in an

induction argument to prove optimality of Algorithm 6.

Theorem 7 Algorithm 6 is optimal for MINREACH, MIN-
MAXREACH, MINAVGREACH under δ − DELAYING.

Discussion

Our hardness results immediately imply, or can be easily ex-
tended to prove, several other interesting results. Firstly, we
observe that all of our reductions are approximation preserv-
ing, thus since we use MAX2SAT(3), we get that there are no
approximation schemes for these problems, unless P = NP.
In addition, we can add directions to the edges of the gadgets
without breaking the correctness of our proofs. Another, less
trivial, observation is that in our reductions we create unit
disk graphs; a type of graphs prominently used in epidemics.

Our work creates many interesting directions for future
research. The most obvious is to get approximation algo-
rithms for the problems we study. In another, broader front,
our paper introduces a new conceptual direction in temporal
graphs. Given a temporal network with an existing solution
for a problem, can we utilize the current infrastructure in
a better way and improve the solution without significantly
changing the network?

References

Akrida, E. C.; Czyzowicz, J.; Gasieniec, L.; Kuszner, L.; and
Spirakis, P. G. 2019. Temporal flows in temporal networks.
Journal of Computer and System Sciences 103:46 – 60.

9816

Allen, R. E.; Clark, A. A.; Starek, J. A.; and Pavone, M.
2014. A machine learning approach for real-time reachabil-
ity analysis. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2202–2208.
Berman, P., and Karpinski, M. 1999. On some tighter inap-
proximability results. In ICALP, 200–209. Springer.
Braunstein, A., and Ingrosso, A. 2016. Inference of causal-
ity in epidemics on temporal contact networks. Scientific
reports 6:27538.
Brockmann, D., and Helbing, D. 2013. The hidden geometry
of complex, network-driven contagion phenomena. Science
342(6164):1337–1342.
Buhnerkempe, M. G.; Tildesley, M.; et al. 2014. The im-
pact of movements and animal density on continental scale
cattle disease outbreaks in the United States. PLoS One
9(3):e91724.
Casteigts, A.; Klasing, R.; Neggaz, Y. M.; and Peters, J. G.
2019. Computing parameters of sequence-based dynamic
graphs. Theory of Computing Systems 63(3):394–417.
Chen, J.; Molter, H.; Sorge, M.; and Suchý, O. 2018. Cluster
Editing in Multi-Layer and Temporal Graphs. In ISAAC,
volume 123, 24:1–24:13.
Colizza, V.; Barrat, A.; Barthélemy, M.; and Vespignani, A.
2006. The role of the airline transportation network in the
prediction and predictability of global epidemics. Proc. of
the National Academy of Sciences 103(7):2015–2020.
Enright, J., and Kao, R. R. 2018. Epidemics on dynamic
networks. Epidemics 24:88 – 97.
Enright, J., and Meeks, K. 2015. Deleting edges to restrict
the size of an epidemic: A new application for treewidth. In
Combinatorial Optimization and Applications, 574–585.
Enright, J., and Meeks, K. 2018. Changing times to optimise
reachability in temporal graphs. CoRR abs/1802.05905.
Enright, J.; Meeks, K.; Mertzios, G. B.; and Zamaraev, V.
2018. Deleting edges to restrict the size of an epidemic in
temporal networks. CoRR abs/1805.06836.
Erlebach, T., and Spooner, J. T. 2018. Faster Exploration of
Degree-Bounded Temporal Graphs. In MFCS, volume 117,
36:1–36:13.
Erlebach, T.; Hoffmann, M.; and Kammer, F. 2015. On
temporal graph exploration. In ICALP, 444–455.
Gates, M. C., and Woolhouse, M. E. 2015. Controlling in-
fectious disease through the targeted manipulation of contact
network structure. Epidemics 12:11–19.
Jones, A. E.; Turner, J.; Caminade, C.; Heath, A. E.; Wardeh,
M.; Kluiters, G.; Diggle, P. J.; Morse, A. P.; and Baylis, M.
2019. Bluetongue risk under future climates. Nature Climate
Change 9(2):153.
Kempe, D.; Kleinberg, J.; and Kumar, A. 2002. Connectivity
and inference problems for temporal networks. Journal of
Computer and System Sciences 64(4):820–842.
Mertzios, G. B.; Michail, O.; Chatzigiannakis, I.; and Spi-
rakis, P. G. 2013. Temporal network optimization subject to
connectivity constraints. In ICALP, 657–668.

Michail, O., and Spirakis, P. G. 2016. Traveling salesman
problems in temporal graphs. Theoretical Computer Science
634:1 – 23.
Michail, O. 2016. An introduction to temporal graphs: An
algorithmic perspective. Internet Mathematics 12(4):239–
280.
Mitchell, A.; Bourn, D.; Mawdsley, J.; Wint, W.; Clifton-
Hadley, R.; and Gilbert, M. 2005. Characteristics of cattle
movements in britain–an analysis of records from the cattle
tracing system. Animal Science 80(3):265–273.
Mohr, S.; Deason, M.; Churakov, M.; Doherty, T.; and Kao,
R. 2018. Manipulation of contact network structure and the
impact on foot-and-mouth disease transmission. Preventive
veterinary medicine 157:8–18.
Niskanen, R.; Potapov, I.; and Reichert, J. 2020. On de-
cidability and complexity of low-dimensional robot games.
Journal of Computer and System Sciences 107:124 – 141.
Nöremark, M., and Widgren, S. 2014. Epicontacttrace: an
r-package for contact tracing during livestock disease out-
breaks and for risk-based surveillance. BMC veterinary re-
search 10(1):71.
Potapov, I. 2004. From post systems to the reachability
problems for matrix semigroups and multicounter automata.
In Developments in Language Theory, 345–356.
Thulke, H.-H.; Eisinger, D.; and Beer, M. 2011. The role
of movement restrictions and pre-emptive destruction in the
emergency control strategy against CSF outbreaks in domes-
tic pigs. Preventive veterinary medicine 99(1):28–37.
Turner, J.; Jones, A.; Heath, A.; Wardeh, M.; Caminade, C.;
Kluiters, G.; Bowers, R.; Morse, A.; and Baylis, M. 2019.
The effect of temperature, farm density and foot-and-mouth
disease restrictions on the 2007 uk bluetongue outbreak. Sci-
entific reports 9(1):112.
Turner, J.; Bowers, R. G.; and Baylis, M. 2012. Modelling
bluetongue virus transmission between farms using animal
and vector movements. Scientific reports 2:319.
Valdano, E.; Ferreri, L.; Poletto, C.; and Colizza, V. 2015a.
Analytical computation of the epidemic threshold on tempo-
ral networks. Physical Review X 5(2):021005.
Valdano, E.; Poletto, C.; Giovannini, A.; Palma, D.; Savini,
L.; and Colizza, V. 2015b. Predicting epidemic risk from
past temporal contact data. PLoS computational biology
11(3):e1004152.
Whitbeck, J.; Dias de Amorim, M.; Conan, V.; and Guil-
laume, J.-L. 2012. Temporal reachability graphs. In Mobi-
com, 377–388.
Wu, H.; Cheng, J.; Huang, S.; Ke, Y.; Lu, Y.; and Xu, Y.
2014. Path problems in temporal graphs. Proceedings of the
VLDB Endowment 7(9):721–732.
Zschoche, P.; Fluschnik, T.; Molter, H.; and Niedermeier,
R. 2018. The Complexity of Finding Small Separators in
Temporal Graphs. In MFCS, volume 117, 45:1–45:17.

9817

