
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Decidability and Complexity of Action-Based Temporal Planning over Dense Time

Nicola Gigante,1 Andrea Micheli,2 Angelo Montanari,1 Enrico Scala3

1University of Udine, Italy
{nicola.gigante, angelo.montanari}@uniud.it

2Fondazione Bruno Kessler, Trento, Italy
amicheli@fbk.eu

3University of Brescia, Italy
enrico.scala@unibs.it

Abstract

This paper studies the computational complexity of tempo-
ral planning, as represented by PDDL 2.1, interpreted over
dense time. When time is considered discrete, the problem
is known to be EXPSPACE-complete. However, the official
PDDL 2.1 semantics, and many implementations, interpret
time as a dense domain. This work provides several results
about the complexity of the problem, studying a few interest-
ing cases: whether a minimum amount ε of separation between
mutually exclusive events is given, in contrast to the separa-
tion being simply required to be non-zero, and whether or not
actions are allowed to overlap already running instances of
themselves. We prove the problem to be PSPACE-complete
when self-overlap is forbidden, whereas, when allowed, it
becomes EXPSPACE-complete with ε-separation and unde-
cidable with non-zero separation. These results clarify the
computational consequences of different choices in the defini-
tion of the PDDL 2.1 semantics, which were vague until now.

1 Introduction
Domain-independent planning (Ghallab, Nau, and Traverso
2016) is one of the classical fields of Artificial Intelligence
and received considerable attention throughout the years.
One of the most active research directions in this context
is temporal planning, which represents and reasons about
the flow of time explicitly. A popular modeling language
for such problems is PDDL 2.1 (Fox and Long 2003), an
action-centered formalism that extends classical planning by
explicitly modeling the duration of actions. A temporal plan-
ning problem in PDDL 2.1 consists of looking for a sequence
of actions that is not only causally executable (as in classi-
cal planning), but also schedulable, in accordance to given
action duration constraints, along a timeline of unbounded
length. Several planning systems (Coles et al. 2010; Eyerich,
Mattmüller, and Röger 2012; Gerevini, Saetti, and Serina
2003; Rankooh and Ghassem-Sani 2015) as well as vari-
ous international planning competitions (Vallati et al. 2015;
Coles et al. 2012) adopt or have adopted PDDL 2.1 for the
specification of the temporal planning problem.

Here, we study the computational complexity of PDDL 2.1
temporal planning problems over a dense temporal domain.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To the best of our knowledge, to date only Rintanen (2007),
Cushing et al. (2007), and Cushing (2012) approached tem-
poral planning from a theoretical point of view, focusing their
attention, however, on a temporal model that is substantially
discrete. In particular, Rintanen (2007) proves the problem
to be EXPSPACE-complete over discrete time in the general
case, and PSPACE-complete when actions are disallowed to
self-overlap with already running instances of themselves.
Such results apply to the dense setting if a specific ε is given
as the minimum amount of time separating mutual exclusive
(mutex) events, and if actions are given only a specific fixed
duration, whereas PDDL 2.1 generally specifies actions with
an interval of admissible values for the duration.

The computational complexity arising from using a dense
temporal model with no ε value given upfront remains still
poorly understood. It is worth noticing that the formal speci-
fication of PDDL 2.1 (Fox and Long 2003, Section 8) only
requires mutex events to be separated by a non-zero amount
of time; the idea of accepting an ε-separation value as in-
put comes later in the text as an expedient to facilitate plan
validation (Section 10 - Plan Validation). The very same au-
thors do however admit that this ambiguity was at that time
problematic and they did not find a definitive and principled
way to account for it. Clarifying this aspect is relevant not
only because it could be at times impractical to provide the
right ε value upfront, but also because many planners do not
use a discrete temporal model at all (Shin and Davis 2005;
Coles et al. 2010); practice and theory behind temporal plan-
ning problems seem unnecessarily distant.

In order to work out these issues, this paper analyzes the
computational complexity of temporal planning problems
over dense time that takes into account, in a comprehen-
sive manner, a number of different variants: the case with
ε-separation, where an ε value of separation between mutex
events is given upfront, and the case with non-zero separa-
tion, where mutex events are only required to not appear at
the same time. Both cases are studied when either allowing
or forbidding self-overlap of actions.

The outcomes can be summarized as follows: when self-
overlap of actions is forbidden temporal planning over
dense time is not harder than classical planning (PSPACE-
complete), regardless of the mutex separation criterion. On

9859

the other hand, allowing actions to self-overlap makes the
problem harder: EXPSPACE-complete with ε-separation
and, perhaps most surprisingly, undecidable in the non-zero
separation case. We prove these results by studying the prob-
lems with and without self-overlapping separately. For the
case with no self-overlap, we give a novel polynomial re-
duction to updatable timed automata (Alur and Dill 1994;
Bouyer et al. 2004), which gives us the PSPACE upper
bound for both the ε-separation and non-zero separation
cases. For the case with self-overlap, we provide a re-
duction from two specific variants of the corridor tiling
problem (van Emde Boas 1997), known to be EXPSPACE-
complete and undecidable, to temporal planning problems
with ε-separation and non-zero separation semantics, respec-
tively. We work with actions with a non-fixed duration, thus
extending the bound found by Rintanen (2007) to a more
general setting. Table 1 summarizes the main results.

Outline We formally define the problem in Section 2. Then,
Section 3 provides a complexity analysis of the problem
when self-overlap of actions is forbidden, Section 4 when
it is allowed. Section 5 surveys related work, and Section 6
concludes the paper with some final remarks.

2 Dense time temporal planning

Following Fox and Long (2003), this section introduces the
temporal planning problem we are interested in. Our analysis
focuses on the STRIPS fragment, and uses a set-theoretical
representation (Ghallab, Nau, and Traverso 2004).
Definition 2.1 (Planning problem). A planning problem is
a tuple P = 〈P,A, I,G〉, where P is a set of propositions,
A is a set of durative actions, I ⊆ P is the initial state, and
G ⊆ P is the goal condition. A snap (instantaneous) action is
a tuple h = 〈pre(h), eff+(h), eff−(h)〉, where pre(h) ⊆ P
is the set of preconditions and eff+(h), eff−(h) ⊆ P are two
disjoint sets of positive and negative effects (we write eff(h)
for eff+(h) ∪ eff−(h)), respectively. A durative action is a
tuple a = 〈a�, a�, pre↔(a), [La, Ua]〉, where a� and a� are
the start and end snap actions, respectively, pre↔(a) ⊆ P is
the over-all condition, and La ∈ Q>0 and Ua ∈ Q≥0 ∪{∞}
are the bounds on the action duration.
Definition 2.2 (Plan). Let P = 〈P,A, I,G〉 be a plan-
ning problem. A plan for P is a set of tuples π =
{〈a1, t1, d1〉, · · · , 〈an, tn, dn〉}, where, for each 1 ≤ i ≤ n,
ai ∈ A is a durative action, ti ∈ Q≥0 is the start time of ai,
and di ∈ Q>0 is its duration.

The semantics of temporal plans is thoroughly defined
by Fox and Long (2003). For space reasons, we only infor-
mally report the aspects that are shared among all planners
using PDDL2.1, and describe more rigorously the semantics
variants that are the main object of our study. Intuitively, a
solution plan π for a planning problem P can be simulated
by applying the effects of all snap actions a� at time t and
all effects of a� at time t + d for all 〈a, t, d〉 ∈ π. The in-
duced trace assigns a value to each predicate at each time
and must be such that the preconditions of all snap actions
and the over-all condition of all actions in π are satisfied, the
duration of actions respects the given bounds, and the plan

execution yields a final state with no pending running actions
and where the goal condition holds.

Definition 2.2 admits more than one action starting or
ending at the same time. However, PDDL 2.1 imposes all
snap actions to not interfere with each other.

Definition 2.3 (Mutex snap actions). Two snap actions a
and b are mutually exclusive (mutex), denoted as a � b, if
either pre(a) ∩ eff(b)
= ∅, or pre(b) ∩ eff(a)
= ∅, or
eff+(a) ∩ eff−(b)
= ∅, or eff+(b) ∩ eff−(a)
= ∅.

Intuitively, we constrain mutex snap actions to not appear
at the same time in a plan. How this requirement is defined
can differ depending on whether we want to enforce a mini-
mum amount ε of separation between any pair of mutex snap
actions or whether any separation suffices. Two different
notions of plan validity can be defined consequently.

Definition 2.4 (Non-zero separation plan validity).
A solution plan π = {〈a1, t1, d1〉, . . . , 〈an, tn, dn〉} for a

planning problem P is valid under non-zero separation if,
for each 1 ≤ i, j ≤ n, with i
= j, ai � aj implies ti
= tj .

Definition 2.5 (ε-separation plan validity). Let ε ∈ Q>0.
A solution plan π = {〈a1, t1, d1〉, . . . , 〈an, tn, dn〉} for a
planning problem P is valid under ε-separation if, for all
1 ≤ i, j ≤ n, with i
= j, ai � aj implies |ti − tj | ≥ ε.

A further distinction has important consequences from
a computational point of view, both in discrete time do-
mains (Rintanen 2007) and in dense ones.

Definition 2.6 (Actions self-overlap).
Given a planning problem P = 〈P,A, I,G〉 and a plan

π = {〈a1, t1, d1〉, . . . , 〈an, tn, dn〉} for P , an action a ∈ A
is said to self-overlap in π if there exist any 1 ≤ i, j ≤ n
such that a = ai = aj and ti ≤ tj ≤ ti + di.

This paper studies the computational complexity of de-
ciding whether a solution plan exists for a given planning
problem P , under both the above-defined notions of plan va-
lidity, both allowing and disallowing actions to self-overlap.

3 Forbidding self-overlap of actions

In this section, we determine the complexity of temporal plan-
ning over dense time when actions are not allowed to overlap
with themselves. Since temporal planning extends classical
planning, which is known to be PSPACE-complete (Bylan-
der 1994), it is trivially PSPACE-hard. We prove that the
problem can be solved in polynomial space by encoding it
into a particular kind of timed automata.

A timed automaton (TA) is a finite automaton augmented
with a set of clocks (Alur and Dill 1994), which explicitly
track the flow of time. Each transition in a TA may include
temporal constraints, called guards, that disable the transition
if not satisfied by the current clock values. Each transition
may also include clock resets that cause specified clocks to
be reset to zero whenever the transition is taken. Finally,
each location may include an invariant—that is, a constraint
specifying the conditions under which the automaton may
stay in that location. Here, we use the more general updatable
timed automata (Bouyer et al. 2004), that allow clocks to be
reset to any constant rational value, not only to zero.

9860

ε-separation (La = Ua) ε-separation ([La, Ua]) non-zero separation ([La, Ua])

w/o self-overlap PSPACE-complete PSPACE-complete

self-overlap EXPSPACE-complete EXPSPACE-complete undecidable

Table 1: Complexity bounds for the different considered cases. La = Ua is the case where duration is fixed, while [La, Ua] is the
case where the duration can be any value in the interval. Bold font indicates novel results.

Given a set X of elements called clocks, the set C(X)
of constraints over the clocks in X contains conjunctions
of constraints of the form x �� k or y − x �� k, where
x, y ∈ X , k ∈ Q, and �� ∈ {<,≤,=, >,≥}. The set U(X)
of updates on the clocks in X is the set of conjunctions of
basic statements of the form x := k, with x ∈ X and k ∈ Q.

Definition 3.1 (Updatable timed automaton). An updatable
timed automaton is a tuple T = 〈Σ,L, �0,X ,Δ, I〉 where:
Σ is the alphabet; L is the finite set of locations; �0 ∈ L is the
initial location; X is the finite set of clocks; Δ ⊆ L×C(X)×
Σ×2U(X)×L is the transition relation; I : L → C(X) maps
each location to its invariant.

The full semantics of TAs has been defined in details by
Alur and Dill (1994). For the sake of this paper, we only
informally define the reachability problem. The reachability
problem for a TA T = 〈Σ,L, �0,X ,Δ, I〉 and an objective
G ⊆ L consists in deciding whether there exists an execu-
tion of T that starts from �0 and ends in a location �∗ ∈ G.
The problem is PSPACE-complete with standard resets and
constant updates, too (Bouyer et al. 2004).

To simplify the exposition, we use the concept of urgent
locations, i.e., locations where time is stationary. Urgent loca-
tions are encoded adding an extra clock that is reset to zero in
each incoming transition and forced to be zero in the location
invariant. The problem complexity remains unchanged.

The intuition behind the encoding comes from decision-
epoch planners (Do and Kambhampati 2003): at each step,
the automata can either execute a set of snap actions (by
checking the preconditions and applying the effects) or de-
cide to wait a certain amount of time (delta-transition). Cru-
cially, to keep the size of the resulting automaton polynomial,
there cannot be one location for each propositional state
of the planning problem. Instead, we symbolically encode
the predicates using clocks that maintain a truth value rec-
ognizable in the guards of the automaton. We use constant
updates to apply the effects of actions on such clocks. As
we will see, the encoding can be adapted to support either
the ε-separation or the non-zero separation semantics, hence
proving the complexity of both cases, without self-overlap.

Theorem 3.1. Temporal planning over dense time, without
self-overlap of actions, is PSPACE-complete.

Proof. As anticipated, PSPACE-hardness is trivial, as tempo-
ral planning includes classical planning as a special-case and
the latter is PSPACE-complete (Bylander 1994).

Let P = 〈P,A, I,G〉 be a temporal planning problem,
and let M = |A|, N = |P |, A = {a1, . . . , aM}, and
P = {p1, . . . , pN}. We prove that the problem belongs to
PSPACE by encoding any such temporal planning problem

P into an equivalent TA T [P] = 〈Σ,L, �0,X ,Δ, I〉, of size
polynomial in the size of P , with a location �∗ such that a
solution plan for P exists iff �∗ is reachable from �0.

The automaton is defined as follows:

1. the alphabet is an arbitrary singleton Σ = { }; the words
accepted by the automaton are irrelevant in this encoding;

2. the set of locations L is composed of the three locations �0
(the initial location), �∗ (the goal location), �δ (the main
location), of a set {s0, s1, . . . , sM+N} of M + N state
decoding locations, of a set {d0, d1, . . . , d2M} of 2M
decision making locations and of a set {e0, e1, . . . , e2M}
of 2M execution locations. All locations but �δ are urgent;

3. the set of clock variables X is composed of:
• a clock cδ, called the global clock;
• a clock cpi for each pi ∈ P ;
• five clocks, cxa� , cxa� , cra, csa, cea, for each a ∈ A.

4. no invariant conditions are needed (except the ones that
are implicitly defined by urgent states), hence I = ∅.

We now define the transition relation Δ, explaining how
the automaton works and how the locations defined above
are connected. A schema of the construction can be seen in
Figure 1. The main location �δ is the only location where
time can pass, all the other locations being urgent. The initial
location immediately transitions to the main location, setting
some of the cpi clocks to one, depending on the initial state:

〈s0,, , {cpi := 1 | pi ∈ I}, �δ〉 ∈ Δ

Let B = {cpi | pi ∈ P} ∪ {cra | a ∈ A} be a subset of the
clocks, that we call the binary clocks, and let us denote them,
with an arbitrary order, as B = {b1, . . . , bM+N}. The initial
transition establishes an invariant that is kept by construction
throughout the automaton: when the execution enters �δ, it
holds that cδ = 0 and, for bk ∈ B, either bk = 0 or bk = 1.
Since the clocks advance together while the automaton stays
in the main location, the difference between any bk ∈ B
and cδ will always be either zero or one, accordingly. In
this way, these clocks can be used as binary variables, and,
in particular, the cpi clocks can be used to represent the
propositional state of the planning problem propositions.

In the main location, the automaton can decide at any time
to make a transition to the first state decoding location s0:

〈�δ,, ,∅, s0〉 ∈ Δ

The s0 location starts a chain of M +N locations, that goes
up to sM+N , called the state decoding path. Its purpose is
to reset each clock bk ∈ B to a binary value, to allow the
subsequent transitions to use such clocks as binary variables:
at each step of the state decoding path, say in the transition

9861

�δ�0

s0 s1 s2 sM+N �∗

d0d2Me0e2M

goal?

b1 − cδ = 1?
b1 := 1

b1 := 0
b1 − cδ = 0?

b2 − cδ = 1?
b2 := 1

b2 := 0
b2 − cδ = 0?

bi − cδ = 1?
bi := 1

bi := 0
bi − cδ = 0?

guard(ai)?
cai := 1

cai := 0

cai = 1?
effects(ai)

cai = 0?

overall?

state decoding

decision makingexecution

Figure 1: The updatable timed automaton used in Theorem 3.1; ai indicates any snap action (i.e., either a� or a� for some a ∈ A).

from sk−1 to sk, the bk clock is reset to zero if bk − cδ = 0,
and it is reset to one if bk − cδ = 1, hence we have:

〈sk−1, bk − cδ = 0, , {bk := 0}, sk〉 ∈ Δ

〈sk−1, bk − cδ = 1, , {bk := 1}, sk〉 ∈ Δ

for all k ∈ {1, . . . ,M + N}. By the time the automaton
reaches sM+N , the value of the pi clocks directly corre-
sponds to the binary values of the planning problem propo-
sitions at the current time in the encoded plan. Hence, the
guards of later transitions can directly encode any propo-
sitional formula over those propositions. The other binary
clocks cra, instead, will be used to keep track of whether the
a action is being executed (i.e. “running”) at the current time.

The automaton traverses the state decoding path either at
the start or the end of an action or when the execution ends
because the goal was reached. In the former case, we move
to the location d0 unconditionally:

〈sM+N ,, ,∅, d0〉 ∈ Δ

Starting from d0, the automaton can decide which subset of
the snaps to execute in parallel by setting the cxh execution
clock, for each snap h, to either 1 or to 0. This can be done
polynomially by a construction analogous to the state decod-
ing path. For each ak ∈ A we have the following transitions:
〈d2k−2, guard(ak�), , {cxak� := 1}, d2k−1〉 ∈ Δ

〈d2k−2,, , {cxak� := 0}, d2k−1〉 ∈ Δ

〈d2k−1, guard(ak�), , {cxak� := 1}, d2k〉 ∈ Δ

〈d2k−1,, , {cxak� := 0}, d2k〉 ∈ Δ

Intuitively, the automaton can either take a transition that sets
to zero the clock relative to a snap action signal that such
action is not to be executed at the current time, or take the
transition checking the guard of the snap action and setting
the clock to one. The guard of a starting snap action is:

guard(a�) =
∧

pi∈pre(a�)

cpi = 1 ∧ cra = 0 ∧ sep(a�)

where:
sep(a�) =

∧

b��a�

csb > 0 ∧
∧

b��a�

ceb > 0

The condition expressed by guard(a�) checks that the pre-
conditions of a� are satisfied, and that the action is not al-
ready running. Then, sep(a�) encodes the time separation
between mutex snap actions. By checking that the corre-
sponding clocks of each mutex snap actions are positive, we
enforce the non-zero separation condition. By replacing the
csb > 0 and ceb > 0 conditions with csb ≥ ε and ceb ≥ ε,
we can easily capture the ε-separation semantics.

The guard for the end of an action is very similar, but it
checks that the action is actually already running, that the
over-all conditions are satisfied and that the action duration
is compatible with its duration constraints:

guard(a�) =
∧

pi∈pre(a�)

cpi = 1 ∧ cra = 1 ∧ sep(a�) ∧ dur(a�)

where:
dur(a�) = csa ≥ La ∧ csa ≤ Ua

At this point, the value of the cxa execution clocks is
either 0 or 1 depending on whether the snap action a must
be executed or not. To apply the effects we traverse another
sequence of locations e0, · · · , e2M that apply the effects of
each snap action if the relative execution clock is set to 1.

〈d2M ,, ,∅, e0〉 ∈ Δ

〈d2k−2, cxak� = 1, , effects(a�), d2k−1〉 ∈ Δ

〈d2k−2, cxak� = 0, ,∅, d2k−1〉 ∈ Δ

〈d2k−1, cxak� = 1, , effects(a�), d2k〉 ∈ Δ

〈d2k−1, cxak� = 0, ,∅, d2k〉 ∈ Δ

Note that guard(·) and effects(·) use the cpi clocks to, re-
spectively, enforce the preconditions and execute the effects

9862

of the snap action at hand. The effects of the start of an action
are defined as follows:

effects(a�) = {cra := 1, csa := 0}
∪ {cpi := 1 | pi ∈ eff+(a�)}
∪ {cpi := 0 | pi ∈ eff−(a�)}

Hence, effects(a�) sets cra to record that a is executing and
resets the csa clock, which is used to record the time passed
by the last time the a action was started. It also sets the binary
clocks cpi according to the positive or negative effects of
the action. The effects for the end of actions, effects(a�), are
defined similarly, but the cea clock is reset instead of csa, to
record the time since the last time the a action ended, and
cra is set to zero.

When all effects have been applied, in the e2M location,
we can return in location �δ by resetting the clock cδ. In
this way, we reset the invariant for binary clocks, and the
automaton can decide how much time to wait until the next
snap action is executed. In this transition we perform a final
check to ensure that the over-all conditions of each running
action are respected:

〈e2M ,
∧

a∈A

oc(a), , {cδ := 0}, �δ〉 ∈ Δ

where:
oc(a) =

∧

pi∈pre↔(a)

cra − cpi ≤ 0

The oc(a) formula, intuitively checks that if a is running (i.e.,
cra = 1), then the over-all conditions of a must be true (i.e.,
each cpi must be 1 for each pi ∈ pre↔(a)). This implication
is captured by the difference above that is false only when
cra = 1 and cpi = 0. This ensures that, in any accepted run,
the guard cannot be false due to a condition being violated.

Finally, if the automaton takes the state decoding path
when the goal condition is satisfied and no action is running,
then it can transition to the goal state, reaching its objective:

〈sM+N ,
∧

pi∈G

cpi = 1 ∧
∧

a∈A

cra = 0, ,∅, �∗〉 ∈ Δ

This completes the definition of the T [P] automaton. The
number of locations and transitions is easily seen to be poly-
nomial in the size of P , and it can be checked that �∗ is
reachable from �0 if and only if P admits a solution plan.

4 Allowing self-overlap of actions

This section focuses on the problem of dense-time temporal
planning in the case where actions are allowed to overlap with
themselves. Here, the distinction between the ε-separation
and non-zero separation semantics play an important role.
Indeed, the problem turns out to be EXPSPACE-complete in
the former case and undecidable in the latter.

The two results are based on reductions from a well-known
class of combinatorial problems known as tiling problems.
For n ≥ 1, let [n] denote the set {1 . . . n}.
Definition 4.1 (Tiling structures). A tiling structure is a tuple
T = 〈T, t0, t∗, H, V 〉, where T is a finite set of elements

called tiles, t0 ∈ T and t∗ ∈ T are, respectively, the initial
and final tiles, and H,V ⊆ T × T , are the horizontal and
vertical adjacency relations.

Given some n > 0, an n-tiling for a tiling structure T is
a function f : [n]× [h]→ T , for some h > 0, mapping any
pair (i, j) ∈ [n]× [h] to a tile f(i, j) ∈ T such that:

1. f(0, 0) = t0
2. f(n, h) = t∗
3. for all x ∈ [n− 1] and y ∈ [h], f(x, y) H f(x+ 1, y)
4. for all x ∈ [n] and y ∈ [h− 1], f(x, y) V f(x, y + 1)

Several interesting combinatorial problems can be defined,
with complexities ranging from NP to highly undecidable,
depending on which portion of the plane we are asked to tile.
The resulting tiling problems have been used extensively as
a tool for reductions in logics and combinatorics. A detailed
survey on the topic is provided by van Emde Boas (1997).

The unbounded corridor tiling problem asks whether there
exists n > 0 such that a given tiling structure T admits an
n-tiling. The problem can be shown to be undecidable by a
direct reduction from the halting problem of Turing machines.

By restricting the width of the corridor beforehand we
obtain decidable problems. Given a tiling structure T and an
n > 0, the exponential corridor tiling problem asks whether
T admits an m-tiling for some m ≤ n. Here, exponential
refer to the fact that n is encoded in binary, hence the upper
bound on the corridor width is exponential in the size of
the input. For this reason, the problem can be shown to be
EXPSPACE-complete (as opposed to the PSPACE-complete
corridor tiling problem shown by van Emde Boas).

Intuitively, we reduce temporal planning to tiling problems,
encoding tilings into plans. Each durative action represents a
tile, and the propositional state remembers the tiles of previ-
ous steps. Actions’ preconditions ensure the tiles satisfy the
tiling structure. The reduction from the unbounded variant
employs an unbounded number of self-overlaps, which is the
source of undecidability in the non-zero separation case.

Theorem 4.1 (Undecidability). Temporal planning over
dense time, with non-zero separation semantics and self-
overlap of actions, is undecidable.

Proof. The proof goes by reduction from the aforementioned
unbounded corridor tiling problem. Given a tiling structure
T = 〈T, t0, t∗, H, V 〉, we can build a temporal planning
problem P = 〈P,A, I,G〉 that admits a solution plan if and
only if T admits a tiling.1 The problem encodes the tiling
structure in such a way that a plan for P describes a tiling.

The problem is built upon the following propositions P :

• a set {τ0, . . . , τn−1} of n = �log2(|T |)� propositions,
whose truth value evolves to represent the tile placed at
each position of the tiling, in a row-major layout;

• a set {π0, . . . , πn−1} of n = �log2(|T |)�, that for each tile
represent the one placed above it in the previous row;

1For ease of exposition, we use conditional effects, and allow
the preconditions of actions to be given as generic boolean formulas.
This can be reduced to the simple syntax of Definition 2.1 by paying
an exponential size increase, in general, but the formulas used here
all have fixed depth, ensuring the increase in size is only polynomial.

9863

1

2

3

4

5

6

end

top

left

bottom

s

τ
=
1

π
=
1

τ
=
2

π
=
2

τ
=
3

π
=
3

τ
=
4

π
=
4

τ
=
5

π
=
5

τ
=
6

π
=
6

goal

1 2

3 4

5 6

end 5

Figure 2: Depiction of the proof of Theorem 4.1. On the left, a rectangular tiling of six tiles {1, . . . , 6}, with t0 = 1 and t∗ = 6.
On the right, the corresponding temporal plan, with the executed actions on top, and the values of auxiliary propositions below.

• three propositions top, bottom , and left used to track
whether the current time point belongs, respectively, to
the first or the last row, or the leftmost column of the tiling;

• a flag bit s (for start), with a specific role described below;
• a flag bit g that indicates the goal of the problem.

Then, the problem includes an action at for each t ∈ T ,
and an additional action end. All the actions have a fixed
duration of one time unit. To describe their preconditions and
effects, we need a bit of notation. The propositions τi and πi

represents tiles in T by adopting a binary encoding, hence for
each t ∈ T , a formula τ = t (resp., π = t) can be defined as a
simple conjunction stating the truth value of the τi (resp., πi)
fluents corresponding to t. Similarly, the shorthands τ := t
and π := t are used to denote the effect of setting the τi and
πi fluents to the tuple of values corresponding to t. Moreover,
we use the notation (τ , t) ∈ H and (π, t) ∈ V to mean that
the current values of the τi and πi fluents, respectively, are
related to t by the H and V relations.

Formally, they can be written as follows:

(τ , t) ∈ H ↔
∨

t′∈T
(t′,t)∈H

τ = t′ (π, t) ∈ V ↔
∨

t′∈T
(t′,t)∈V

π = t′

With this notation in place, the preconditions and effects of
the problem’s actions are defined as follows:

pre(at�) = ¬bottom
∧ ¬(top ∧ left) ← except for at0

∧ ¬top → s

∧ ¬top → (π, t) ∈ V

∧ ¬left → (τ , t) ∈ H

eff(at�) = ¬s ∧ ¬left ∧ τ := t

pre(at�) = ¬bottom → ¬s
eff(at�) = s ∧ ¬top ∧ π := t

∧ when at-start(left) then left

Then, the end action is:
pre(end�) = left

eff(end�) = bottom

pre(end�) = (π := t∗)
eff(end�) = g

In the initial state, s, top and left hold, and an arbitrary value
is held by τ and π. The goal requires g to hold.

The actions above define how a solution plan for the prob-
lem represents a valid tiling. An example plan representing
a small tiled rectangle is depicted in Figure 2. Each tile of
a row is determined by the effects of the start of an action,
which sets the τi fluents accordingly. As soon as the first ac-
tion ends, ¬top is set, effectively starting the second row, and
determining the number of columns as the number of the ac-
tions started until that point. The density of the time domain
here plays a key role, since any arbitrary number of actions
can be started in one time unit, during the execution of the
first action. The self-overlap is also crucial, since there is no
way to know in advance how many concurrent actions (how
many columns) will be needed. After ¬top is set, a strict
alternation between starts and ends of actions is enforced by
requiring s to hold at the start and ¬s to hold at the end of
each action, unless the bottom row is reached. This ensures
that the number of actions of each row is the same as the
one chosen on the first row. When a complete tiling has been
built, the end action can be executed to signal the termination
of the tiling. The start of end sets the bottom proposition,
and since no other action can be started if bottom holds, this
effectively stops the construction, leaving just the time for
the started actions of the last row to end. The goal condi-
tion is satisfied as soon as the plan manages to start end. It
can be checked that the plans obtained in this way correctly
represent a rectangular grid of tiles.

It remains to check that such a grid actually corresponds
to a correct tiling. The left proposition holds at any position
that belongs to the first column: it is set in the initial state
and cleared at the start of any action, but the end of an action
will set it again if it was set when the action started. In this
way the first action of each row sets left again when it ends,
ready for the start of the first action of the subsequent row.

With this machinery in place, we enforce the adjacency

9864

relations, and confirm that the plan encoded in this way rep-
resents a correct tiling, as per Definition 4.1:

1. the initial tiling t0 is the only one that can be placed first,
since only the start of at0 does not require ¬(top ∧ left);

2. the final tiling t∗ is the only one that can be placed last,
since pre(end�) requires that π := t∗;

3. since the τi fluents are set to the value of the current tile,
the starting precondition of each action at ensures the hor-
izontal adjacency relation, by requiring that (τ, t) ∈ H ,
excepting for the first column, where left holds;

4. because of the strict alternation between starts and ends,
the start of each action is preceded by the end of the one
at the corresponding position in the previous row of the
tiling; the πi fluents, which are set by the end of each ac-
tion, hence represent the tile placed exactly above the cur-
rent position; in this way, the vertical adjacency relation
can be enforced at the start of each action by requiring that
(π, t) ∈ V , excepting for the first row, where top holds.

It can be seen that such a planning problem admits a solu-
tion plan iff the original tiling structure admits a tiling.

The above argument can be adapted to the ε-separation
semantics, reducing from the easier corridor tiling problem.

Theorem 4.2. Temporal planning over dense time, under
ε-separation semantics, and with self-overlap of actions, is
EXPSPACE-complete.

Proof. Let P = (P,A, I,G) be a dense-time temporal plan-
ning problem. An equivalent problem P ′ = (P ′, A′, I ′, G′)
can be obtained, of exponential size |P ′| ∈ O(2|P|), such
that P has a solution plan admitting self-overlap of actions
iff P ′ admits a plan without any self-overlap. Then, P ′ in
turn can be solved in space polynomial in |P ′|, hence expo-
nential in |P|, by Theorem 3.1. If Dmax is the maximum
duration allowed for any action in A, then the P ′ problem
can be obtained by duplicating each action a ∈ A into k
copies a1, . . . , ak, where k = Dmax/ε, which corresponds
to the maximum number of overlapping instances of the same
action, noticing that the start of an action is mutex with itself.

Hence we showed that the problem belongs to EXPSPACE.
To show the EXPSPACE-hardness, we proceed by reduction
from the exponential corridor tiling problem. Given a tiling
structure T and an integer n > 0, the structure can be en-
coded into a temporal planning problem P that admits a solu-
tion plan if and only if T admits an m-tiling for some m ≤ n.
The encoding is the same as the one employed in the proof of
Theorem 4.1, hence we do not repeat it here. However, since
the maximum number of columns in the tiling is now known
in advance, the resulting planning problem can be solved
with ε-separation by choosing a suitable value for ε. At first,
note that all snap actions produced in the reduction are mutex,
since their effects and preconditions share at least the s flag
bit. Then, at worst, the action corresponding to the first tile
of the row has to contain the end of the m actions of the
previous row, and the start of the other m− 1 tiles of the row.
This divides the unit time interval of the action into 2m− 2
subintervals, hence ε = 1/(2n − 2) ensures enough granularity
for any tiling with only and at most n columns.

5 Related works

Other works in the literature have analyzed temporal plan-
ning from a theoretical perspective before. Cushing (2012)
discusses at length the philosophical subtleties of some se-
mantic aspects. He discusses the impact of the non-zero vs.
ε-separation issue in PDDL 2.1. However, he diverges signif-
icantly from the PDDL 2.1 modeling formulation, and gives
no complexity results. Relevant to our discussion is also the
work by Shin and Davis (2005), who raise the ambiguity
between ε-separation and non-zero separation, and favor the
latter in their encoding to SMT. Note that, despite the confu-
sion on this matter, PDDL 2.1 semantics does not prescribe
to accept an ε separation value as input to the planner. The ε
input is only suggested by Fox and Long (2003) as a way to
alleviate the burden of a potentially complex plan validation
task. Rintanen (2007) focuses on temporal planning over dis-
crete time, showing the problem to be EXPSPACE-complete.
Then, he proceeds showing that with constant action dura-
tions (La = Ua), forbidding action self-overlap makes the
problem PSPACE-complete, i.e., reducible to classical plan-
ning. The result improves the quite restrictive conditions of
temporally simple languages previously found by Cushing
et al. (2007). Transferring these results to the dense-time
case is a priori possible only assuming ε-separation, since
then problems can be suitably scaled and discretized at will.
As we show, the discretization is not always possible under
non-zero separation, as the problem becomes undecidable
when self-overlap is allowed. Moreover, while the restriction
to fixed action durations is just syntactic convenience in the
discrete case, as an action with an interval [La, Ua] of possi-
ble durations can be replaced by a finite number of copies,
with dense time this is in general not possible. Our results
extend those above, in the dense-time setting, by naturally
handling actions of non-constant durations and by covering
both ε-separation and non-zero separation semantics, with or
without self-overlap.

The computational complexity of other planning for-
malisms has been studied before, from classical (Bylan-
der 1994) to hierarchical (Erol, Hendler, and Nau 1996),
to timeline-based planning (Gigante et al. 2016; 2017). When
comparing our results with the timeline-based planning
paradigm in particular, it is interesting to note a similar com-
plexity jump, with a problem that is EXPSPACE-complete
over discrete time (Gigante et al. 2017), but becomes unde-
cidable over dense time (Bozzelli et al. 2018).

The idea of exploiting timed automata to handle temporal
planning problems has been recently investigated by other
authors as well (Bogomolov et al. 2015; Heinz et al. 2019),
but, as far as we know, temporal planning had never been
previously captured with polynomial-size timed automata.

6 Conclusions

The paper studies the computational complexity of temporal
planning, as specified by PDDL 2.1. Our theoretical analy-
sis provides a comprehensive picture of the computational
complexity of temporal planning under different semantic
interpretations. In particular, mutually exclusive events can
be constrained to be separated by a given minimum quan-

9865

tum of time (ε-separation), or just any positive amount of
time (non-zero separation). We furthermore consider both
the cases where actions are allowed or disallowed to overlap
with running instances of themselves.

Our analysis reveals that dense-time temporal planning
is PSPACE-complete—no harder than classical planning—
when self-overlap is forbidden, while when allowed the prob-
lem becomes EXPSPACE-complete with ε-separation and
even undecidable with non-zero separation. These results
clarify the computational consequences of different choices
in the PDDL 2.1 semantics, which were vague until now.

Furthermore, our proofs employ the first polynomial-sized
encoding of temporal planning into timed automata. Anal-
ogously or in combination with other works that have tried
to exploit timed automata or their extensions (Wang and
Williams 2015; Bogomolov et al. 2015), this may lead to
practically interesting novel approaches.

Acknowledgements

Nicola Gigante and Angelo Montanari have been supported
by the PRID project ENCASE - Efforts in the uNderstanding
of Complex interActing SystEms, and by the ¡NδA

Σ

GNCS
project Formal Methods for Combined Verification.

Andrea Micheli and Enrico Scala acknowledge the support
by the Autonomous Province of Trento in the scope of L.P.
n.6/1999 with grant MAIS (Mechanical Automation Integra-
tion System) n. 2017-D323-00056 del. n. 941 of 16/06/2017
and by EIT Digital within the AWARD project.

References

Alur, R., and Dill, D. L. 1994. A theory of timed automata. Theo-
retical Computer Science 126(2):183–235.

Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle, M. 2015.
PDDL+ planning with hybrid automata: Foundations of translating
must behavior. In Proc. of the 25th International Conference on
Automated Planning and Scheduling, 42–46.

Bouyer, P.; Dufourd, C.; Fleury, E.; and Petit, A. 2004. Updatable
timed automata. Theoretical Computer Science 321(2):291 – 345.

Bozzelli, L.; Molinari, A.; Montanari, A.; and Peron, A. 2018.
Decidability and complexity of timeline-based planning over dense
temporal domains. In Proc. of the 16th International Conference on
Principles of Knowledge Representation and Reasoning, 627–628.
AAAI Press.

Bylander, T. 1994. The computational complexity of propositional
STRIPS planning. Artif. Intell. 69(1-2):165–204.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proc. of the 20th International
Conference on Automated Planning and Scheduling, 42–49. AAAI.

Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; Linares López,
C.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh interna-
tional planning competition. AI Magaz. 33(1).

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S. 2007.
When is temporal planning really temporal? In Veloso, M. M., ed.,
IJCAI 2007, Proc. of the 20th International Joint Conference on
Artificial Intelligence, 1852–1859.

Cushing, W. A. 2012. When is Temporal Planning Really Temporal?
Ph.D. Dissertation, Arizona State University.

Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-objective
metric temporal planner. Journal of Artificial Intelligence Research
20:155–194.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity results
for HTN planning. Annals of Mathematics in Artificial Intelligence
18(1):69–93.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using the context-
enhanced additive heuristic for temporal and numeric planning. In
Towards Service Robots for Everyday Environments, volume 76 of
Springer Tracts in Advanced Robotics. Springer. 49–64.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. Journal of Artificial
Intelligence Research 20:61–124.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in LPG. J. Artif.
Intell. Res. 20:239–290.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Planning
- Theory and Practice. Elsevier.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated Planning
and Acting. Cambridge University Press.
Gigante, N.; Montanari, A.; Cialdea Mayer, M.; and Orlandini, A.
2016. Timelines are expressive enough to capture action-based
temporal planning. In Proc. of the 23rd International Symposium on
Temporal Representation and Reasoning, 100–109. IEEE Computer
Society.
Gigante, N.; Montanari, A.; Cialdea Mayer, M.; and Orlandini, A.
2017. Complexity of timeline-based planning. In Proc. of the 27th
International Conference on Automated Planning and Scheduling,
116–124. AAAI Press.
Heinz, A.; Wehrle, M.; Bogomolov, S.; Magazzeni, D.; Greitschus,
M.; and Podelski, A. 2019. Temporal planning as refinement-based
model checking. In Proc. of the 29th International Conference on
Automated Planning and Scheduling, 195–199. AAAI Press.
Rankooh, M. F., and Ghassem-Sani, G. 2015. ITSAT: an efficient sat-
based temporal planner. Journal of Artificial Intelligence Research
53:541–632.
Rintanen, J. 2007. Complexity of concurrent temporal planning. In
Proc. of the 17th International Conference on Automated Planning
and Scheduling, 280–287.
Shin, J.-A., and Davis, E. 2005. Processes and continuous change
in a sat-based planner. Artif. Intell. 166(1-2):194–253.
Vallati, M.; Chrpa, L.; Grześ, M.; McCluskey, T. L.; Roberts, M.;
Sanner, S.; et al. 2015. The 2014 international planning competition:
Progress and trends. Ai Magazine 36(3):90–98.
van Emde Boas, P. 1997. The convenience of tiling. In Sorbi,
A., ed., Complexity, Logic and Recursion Theory, volume 187 of
Lecture Notes in Pure and Applied Mathematics. Marcel Dekker
Inc. 331–363.
Wang, D., and Williams, B. C. 2015. tburton: A divide and conquer
temporal planner. In AAAI, 3409–3417. AAAI Press.

9866

