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Abstract

The need for multiple plans has been established by various
planning applications. In some, solution quality has the pre-
dominant role, while in others diversity is the key factor. Most
recent work takes both plan quality and solution diversity
into account under the generic umbrella of diverse planning.
There is no common agreement, however, on a collection of
computational problems that fall under that generic umbrella.
This in particular might lead to a comparison between plan-
ners that have different solution guarantees or optimization
criteria in mind. In this work we revisit diverse planning lit-
erature in search of such a collection of computational prob-
lems, classifying the existing planners to these problems. We
formally define a taxonomy of computational problems with
respect to both plan quality and solution diversity, extending
the existing work. We propose a novel approach to diverse
planning, exploiting existing classical planners via planning
task reformulation and choosing a subset of plans of required
size in post-processing. Based on that, we present planners
for two computational problems, that most existing planners
solve. Our experiments show that the proposed approach sig-
nificantly improves over the best performing existing plan-
ners in terms of coverage, the overall solution quality, and the
overall diversity according to various diversity metrics.

1 Introduction
Many applications of planning require generating multiple
plans rather than one. Some examples include malware de-
tection (Boddy et al. 2005), automated analysis of stream-
ing data (Riabov et al. 2015), and risk management (Sohrabi
et al. 2018). Planners that produce multiple plans were also
found useful in the context of re-planning and plan monitor-
ing (Fox et al. 2006), user preferences (Myers and Lee 1999;
Nguyen et al. 2012), as well as the engine for plan recogni-
tion and its related applications (Sohrabi, Riabov, and Udrea
2016). All these applications justify the need for finding a
diverse set of plans while keeping quality in mind.

Many diverse planners were developed over the last
decade, each one focused on addressing a particular diver-
sity metric. For example, while DLAMA focuses on find-
ing a set of plans by considering a landmark-based diver-
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sity measure (Bryce 2014), LPG-d and DIV focus on find-
ing a set of plans with a particular minimum action dis-
tance (Nguyen et al. 2012; Coman and Muñoz-Avila 2011).
Goldman and Kuter (2015) propose a diversity metric based
on information retrieval literature. Roberts, Howe, and Ray
(2014) suggest another diversity metric, introducing sev-
eral planners, such as itA∗ and MQA, which, in addition to
the diversity metrics, consider plan quality. Recently, Vadla-
mudi and Kambhampati (2016) suggested “cost-sensitive”
diverse planners, first finding all cost sensitive plans and
then finding a diverse set of plans among these. Top-k plan-
ners (e.g., Katz et al. 2018b) or top-quality planners (Katz,
Sohrabi, and Udrea 2020) can also be viewed as diverse
planners, purely addressing the quality metric.

Despite the large number of existing tools and diversity
metrics, there is no adopted collection of computational
problems in diverse planning, making the comparison of dif-
ferent approaches challenging. Further, mixing quality and
diversity creates an additional challenge for comparing var-
ious planners, especially if they have different optimality
guarantees. Even for the same computational problem, plan-
ner comparison can be challenging. Every planner can have
a different implementation of the same diversity metric, and
many planners produce a collection of plans without speci-
fying the metric used, or the solution value under that metric.
To the best of our knowledge, there exists no external vali-
dation tool for a collection of plans, producing the solution
value under a given diversity metric. Additionally, most of
the diverse planning approaches compute the set of plans by
repeatedly solving the same task. To obtain a different be-
havior, planner’s heuristic guidance is modified to account
for already found plans, with a specific focus on a particular
metric. This requires (a) having an intimate familiarity with
the way a particular planner works, and (b) creating a sepa-
rate modification for each metric. However, the outcome is
not always as intended. Tweaking the heuristic function does
not necessarily result in a different plan and planners have to
discard many equal plans and repeat unnecessary iterations.

In this work, we address the computational problems in
diverse planning as well as the diverse planner construction
paradigm. Similarly to the separation in classical planning,
we distinguish between optimal, bounded, and satisficing
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diverse planning and map the existing planners to their re-
spective categories. We propose a new quality metric for a
set of plans, measuring how close the plans are to the best
subset of all known plans. We create an external validation
tool for the metrics considered in this paper, allowing us to
compute the diversity values of the solutions produced by
existing planners. We introduce an alternative planner con-
struction paradigm, a diverse planning algorithm that instead
of modifying a planner, modifies a planning task. Follow-
ing the ideas of Katz et al. (2018b), we suggest reformu-
lating the planning task after each iteration, forbidding sets
of plans. Next, we post-process the found plans to derive a
subset of plans of the required size, according to the given
metric. Our approach, Forbid Iterative (FI), is not restricted
to any planner and can exploit the recent advances in classi-
cal planning. To demonstrate this advantage, we experiment
with one of the recent best-performing approaches to agile
planning, heuristic novelty of the red-black planning heuris-
tic (Katz et al. 2017; Katz, Hoffmann, and Domshlak 2013;
Domshlak, Hoffmann, and Katz 2015), a core component
for several participants of the recent International Planning
Competition (IPC) 2018 (Katz et al. 2018a; Katz 2018).
Based on this approach, we create planners for two of the
introduced computational problems. We show that the same
approach outperforms the dedicated planners built for spe-
cific metrics on these metrics and on their linear combina-
tions, for both computational problems.

2 Preliminaries and Related Work
A SAS+ planning task (Bäckström and Nebel 1995) is given
by a tuple 〈V,A, s0, s∗〉, where V is a set of state variables,
A is a finite set of actions. Each state variable v ∈ V has
a finite domain dom(v). A pair 〈v, ϑ〉 with v ∈ V and ϑ ∈
dom(v) is called a fact. A (partial) assignment to V is called
a (partial) state. Often it is convenient to view partial state
p as a set of facts with 〈v, ϑ〉 ∈ p if and only if p[v] = ϑ.
Partial state p is consistent with state s if p ⊆ s. We denote
the set of states of a planning task by S . s0 is the initial
state, and the partial state s∗ is the goal. Each action a is
a pair 〈pre(a), eff (a)〉 of partial states called preconditions
and effects. An action cost is a mapping C : A → R

0+. An
action a is applicable in a state s ∈ S if and only if pre(a)
is consistent with s. Applying a changes the value of v to
eff (a)[v], if defined. The resulting state is denoted by s�a�.
An action sequence π = 〈a1, . . . , ak〉 is applicable in s if
there exist states s0, · · · , sk such that (i) s0 = s, and (ii) for
each 1 ≤ i ≤ k, ai is applicable in si−1 and si = si−1�ai�.
We denote the state sk by s�π�. π is a plan iff π is applicable
in s0 and s∗ is consistent with s0�π�. We denote by P(Π)
(or just P when the task is clear from the context) the set of
all plans of Π. The cost of a plan π, denoted by C(π) is the
summed cost of the actions in the plan.

The pairwise plan distance is δ(π, π′) = 1 − sim(π, π′),
where the similarity measure sim is between 0 (unrelated)
and 1 (equivalent). The diversity of a set of plans, D(P ),
P ⊆ P is then defined as some aggregation (e.g., min or
average) of the pairwise distance within the set P . While
some domain-dependent similarity measures exist (e.g., My-
ers and Lee 1999; Coman and Muñoz-Avila 2011), recent re-

search has focused on domain-independent measures, com-
paring plans based on their actions, states, causal links, or
landmarks (Nguyen et al. 2012; Bryce 2014).

Stability similarity (inverse of the plan distance (Fox et al.
2006; Coman and Muñoz-Avila 2011)) measures the ratio of
the number of actions that appear on both plans to the total
number of actions on these plans, referring to plans as action
sets, ignoring repetitions. Given two plans π, π′, it is de-
fined as simstability(π, π

′) = |A(π)∩A(π′)|/|A(π)∪A(π′)|,
where A(π) is the set of actions in π. Uniqueness similar-
ity (Roberts, Howe, and Ray 2014) is another measure that
considers plans as action sets. It measures whether two plans
are permutations of each other, or one plan is a partial plan
(subset) of the other plan. State similarity measures similar-
ity between two plans based on representing the plans as a
sequence of states, where each state is a set of predicates.
While there are multiple ways to define state similarity, we
adapt the following definition from (Nguyen et al. 2012),
modifying it based on use of similarity rather than distance
between plans. Let (s0, s1, . . . , sk) and (s′0, s

′
1, . . . , s

′
k′) be

the sequences of states traversed by the plans π and π′,
respectively. Let Δ(s, s′) = |s ∩ s′|/|s ∪ s′| be the sim-
ilarity between two states. Assuming k′ ≤ k, the state
similarity measure is defined as follows: simstate(π, π

′) =
∑k′

i=1 Δ(si, s
′
i) k. Note, each state sk′+1, ..., sk is consid-

ered to not contribute to the similarity measure (i.e., zero
is considered). The combination of the state and uniqueness
measures address some of the major weaknesses of the sta-
bility measure raised by recent research (Goldman and Kuter
2015). As our focus in this work is not on metrics, we thus
omit the landmark-based distance description (Bryce 2014).

While there seems to be no widely adopted definitions
of diverse planning problems, previous work has introduced
some restrictions on the sets of plans that constitute a solu-
tion to diverse planning. Our work was inspired by the fol-
lowing two definitions (d and c are thresholds on the dis-
tance and plan cost, respectively). The variant introduced by
Nguyen et al. (2012) requires the distance between every
pair of plans in the solution to be of bounded diversity. For-
mally, the search problem is depicted as follows:

dDISTANTkSET : find P with P ⊆ P,

|P | = k, min
π,π′∈P

δ(π, π′) ≥ d. (1)

Another variant, by Vadlamudi and Kambhampati (2016)
extends the previous search problem by requiring each plan
in the solution to be of bounded quality. Formally:

cCOSTdDISTANTkSET : find P with P ⊆ P,

|P | = k, min
π,π′∈P

δ(π, π′) ≥ d, C(π) ≤ c ∀π ∈ P. (2)

While Eq. 2 considers plan costs, Eq. 1 only considers
the distance between plan pairs. Note that both definitions
require finding k distinct plans.

We denote the diversity of a set of plans P , computed as
an average over the pairwise dissimilarity of the set P , under
the similarity measures of stability, uniqueness, and state by
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Da, Du, and Ds, respectively, dropping P for readability.
Also, Dma denotes the diversity metric computed as mini-
mum over the pairwise stability dissimilarity.

3 Quality Metric
While most work in diverse planning focused on the diver-
sity metrics, not much was done for quality metrics. One
possible quality metric is based on the summed cost of plans.
To normalize this value, as with the International Planning
Competition (IPC) quality metric for individual plans, we
can divide the best known solution value by the value of the
given planner. One downside of such a metric is that a single
plan can have a large effect on the overall quality. For ex-
ample, a set of plans, where all plans are optimal except for
one, of a much higher cost, may get a quality score worse
than a set where all plans are not optimal. Thus, we suggest
a quality metric that will allocate a score to each plan in the
set, aggregating these scores into a single value.

Given n diverse planners, let P = P1 ∪ P2... ∪ Pn be
the set of all plans found by these planners. Let π1, . . . πk

be k plans with the lowest cost, ordered by their cost from
smallest to largest and let ci = C(πi). For a planner j, the
quality of the solution Pj is measured relatively to the best
known k plan costs c1, . . . , ck as follows. Let πj

1, . . . π
j
k be

an ordering of plans in Pj according to their costs and let
cji = C(πj

i ). The quality metric is defined as follows.

Q(Pj) :=
1

k
×

k∑

i=1

ci

cji
. (3)

Note that cji ≥ ci, since Pj ⊆ P , and thus πj
i has at least

i − 1 plans of no larger cost in P . Thus, each sum compo-
nent is between 0 and 1, and thus the whole score is a value
between 0 and 1. Further, a solution Pj will get the score 1 if
and only if it consists of k cheapest plans found by any plan-
ner. In other words, if there exists no plan in P \ Pj (found
by any of the other planners) that is cheaper than a plan in
Pj . The suggested metric is similar in spirit to the parsimony
ratio (Roberts, Howe, and Ray 2014). The parsimony ratio is
defined as s(πk, πl) = |πk|/|πl|, where for each πl (|πl| = l)
we need to find an optimal plan, πk (|πk| = k), such that
πk ⊆ πl, k ≤ l. This can be challenging by itself, since it re-
quires finding optimal plans. The parsimony ratio also only
considers unit cost plans. Both these limitations do not exist
in our suggested metric: it can handle general costs and the
computation is relative to the set of known plans.

4 Diverse Planning Revisited
In this section, we define a collection of computational prob-
lems in diverse planning for two optimization criteria, qual-
ity and diversity. Following previous definitions, depicted in
Eqs. 1 and 2, we define a solution to a diverse planning prob-
lem as a set of plans of a required size. In contrast to previous
definitions, in case there exist fewer plans than requested,
the set of all plans is also considered to be a valid solution.

Definition 1 (Diverse planning solution) Let Π be a plan-
ning task and P be the set of all plans for Π. Given a nat-

ural number k, P ⊆ P is a k-diverse planning solution if
|P | = k or P = P if |P| < k.

Restricting our attention to two optimization criteria,
quality and diversity, let us introduce some terminology. We
say that a solution is quality-optimal (diversity-optimal) if
there exists no solution of better quality (diversity). In other
words, given solution quality mapping Q (diversity mapping
D), a solution P is quality-optimal (diversity-optimal) if for
all solutions P ′ we have Q(P ′) ≤ Q(P ) (D(P ′) ≤ D(P )).
Given a bound b, we say that a solution P is quality-bounded
(diversity-bounded) if Q(P ) ≥ b (D(P ) ≥ b).

For both quality and diversity, one could either strive to
find optimal or bounded solutions, or impose no restriction
on solution quality. Unfortunately, these two optimization
criteria can interfere with each other. Thus, in what follows,
we define various search and optimization problems.

4.1 Satisficing Diverse Planning
We start with imposing no restrictions. Thus, the Satisficing
Diverse Planning problem can be defined as follows.

sat-k : Given k, find a k-diverse planning solution.

Note that the objective is to find any set of k plans with-
out any restrictions on either quality or diversity. This is the
category under which most diverse planners fall (e.g., Bryce
2014; Roberts, Howe, and Ray 2014). To compare planners
in this category, it is sufficient to compare the quality and
diversity of their solutions. Note, many of the satisficing di-
verse planners incorporate the distance measure into their
search and focus on finding diverse plans with respect to that
particular distance measure in mind. Hence, while they may
perform well for one diversity metric, they may do poorly in
another one.

4.2 Bounded Diverse Planning
Continuing now by restricting either quality or diversity by
imposing a bound, we introduce a Bounded Quality (Diver-
sity) Diverse Planning. We do that by restricting the set of
feasible solutions.
Definition 2 (Diversity-bounded solution) Let Π be a
planning task, D be some diversity metric, b be some bound,
and P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a b-diversity-bounded k-diverse planning solution
if it is a k-diverse planning solution and D(P ) ≥ b.
Definition 3 (Quality-bounded solution) Let Π be a plan-
ning task, Q be some quality metric, c be some bound, and
P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a c-quality-bounded k-diverse planning solution
if it is a k-diverse planning solution and Q(P ) ≥ c.

Given the definitions above, we can now define the fol-
lowing search problems:

bD-k : Given k and b, find a b-diversity-bounded
k-diverse planning solution,

bQ-k : Given k and c, find a c-quality-bounded
k-diverse planning solution.
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The search problem bD-k generalizes the definition in
Eq. 1 by Nguyen et al. (2012), for a diversity score Dma

defined as the minimum over the pairwise stability dissim-
ilarity. Note that this measure differs from Da, that aver-
ages over the pairwise stability dissimilarity. For bounded
diverse planning, Dma dominates Da in the sense that solu-
tions to the diversity-bounded diverse planning under Dma

are necessarily solutions to the diversity-bounded diverse
planning under Da with the same bound, but not the other
way around. The planner LPG-d implements the approach of
Nguyen et al. (2012), for a variant of Dma, where the stabil-
ity similarity is computed over multisets, instead of sets. We
denote this diversity metric by Dmma. Thus, LPG-d can be
thought of as a diversity-bounded diverse planner for Dmma

but not for any of the other metrics. Further, while LPG-d
is a sound planner, it is not complete, since it can only add
plans to the collection of previously found plans, and never
reconsiders the decision to add a plan. Thus, in principle
LPG-d might not be able to find a solution to the diversity-
bounded diverse planning problem when a solution exists.
For the search problem bQ-k, note that it can be solved by
post-processing solutions to the top-quality planning prob-
lem (Katz, Sohrabi, and Udrea 2020).

Restricting both quality and diversity results in an addi-
tional search problem, one we call Bounded Quality and Di-
versity Diverse Planning.

bQbD-k : Given k, b, and c, find a c-quality-bounded
and b-diversity-bounded k-diverse planning solution.

The search problem bQbD-k generalizes the definition in
Eq. 2 by Vadlamudi and Kambhampati (2016), for diversity
score that uses min as the aggregation method and quality
score defined as a maximum over the individual plan costs. It
is worth noting here that in all these definitions, as in classi-
cal planning, if the bound is super-optimal, the search prob-
lem is considered to be unsolvable.

4.3 Optimal Diverse Planning
Restricting now either the quality or diversity to be optimal,
we define two optimization problems, Optimal Quality (Di-
versity) Diverse Planning.

optQ-k : Given k, find a quality-optimal
k-diverse planning solution.

optD-k : Given k, find a diversity-optimal
k-diverse planning solution.

Top-k planners (e.g., Riabov, Sohrabi, and Udrea 2014;
Katz et al. 2018b) can be viewed as planners for optQ-k, op-
timizing the quality metric Q =

∑
π∈P C(π). To the best of

our knowledge, there are no existing planners for the optD-k
optimization problem. In fact, it is not clear how to create
such non-trivial planners, without the need to generate the
set of all plans.

If we further restrict the other optimization function, this
results in additional optimization problems. The first two

sat-k

bD-k

bQbD-k

bQ-k

bDoptQ-k bQoptD-koptQ-koptD-k

opt-k

Figure 1: Hierarchy between the computational problems.

are Optimal Quality Bounded Diversity Diverse Planning
and Optimal Diversity Bounded Quality Diverse Planning,
as follows.

bDoptQ-k : Given k and b, find a quality-optimal
among b-diversity-bounded k-diverse planning solutions.

bQoptD-k : Given k and c, find a diversity-optimal
among c-quality-bounded k-diverse planning solutions.

Note that the solutions to the optimization problems
bDoptQ-k and bQoptD-k are relative to the restricted set of
solutions as in Definitions 2 and 3, respectively. This means
that a solution to, e.g., bQoptD-k is not necessarily a so-
lution to optD-k. One possible way to obtain solutions to
the bQoptD-k optimization problem is by using a top-quality
planner to generate a set of all plans of bounded quality and
then select an optimal subset of size k from the generated set
according to some diversity metric.

We can further restrict a set of feasible solutions to
quality-optimal (diversity-optimal) diverse planning solu-
tions and choose the best according to the diversity (qual-
ity) metric among those. Instead, our last optimization prob-
lem we simply call Optimal Diverse Planning. The objec-
tive of optimal diverse planning is to find a solution that is
pareto-optimal, that is for all solutions P ′ we have either
Q(P ′) ≤ Q(P ) and for all P ′′ with Q(P ) = Q(P ′′) we
have D(P ′′) ≤ D(P ) or D(P ′) ≤ D(P ) and for all P ′′
with D(P ) = D(P ′′) we have Q(P ′′) ≤ Q(P ). In words,
optimal solutions are solutions on the pareto frontier of qual-
ity and diversity. We denote the optimization problem stated
above by opt-k.

The hierarchy between the presented computational prob-
lems is depicted in Figure 1. Edges represent solution set
inclusion, i.e., whether a solution for one problem is nec-
essarily a solution for another, assuming a solution exists.
For example, a pareto-optimal solution is a solution to either
optD-k or optQ-k, but not necessarily to either bQoptD-k or
bDoptQ-k, since the latter two optimize over the solutions
that are of bounded quality and diversity, respectively. The
diagram does not reflect the transitive inclusion, which, in
this case, means that solutions to all problems are solutions
to the satisficing diversity planning problem.

9895



5 Satisficing Diverse Planning with a
Satisficing Classical Planner

Previous work has focused on modifying existing planners,
either heuristic search or local search based ones, to come
up with plans that differ from previously found ones. These
modified planners were then applied to the same planning
task, over and over again. We suggest a different approach,
using possibly the same planner, iteratively modifying the
planning tasks to forbid plan sets (Katz et al. 2018b). Below,
we list some of the benefits to such an approach: (1) it allows
us to exploit any classical planner, effortlessly switching to
better ones, taking advantage of the progress in classical sat-
isficing planning; (2) it removes the need for modifying the
behaviour of the existing planners, allowing these planners
to work as intended; (3) this allows us to take the selection
of a subset of plans that is diverse according to a specific
metric and postprocess them, thus also allowing us to define
and use more sophisticated metrics.

5.1 Forbidding a Plan as a Multiset of Actions
Existing literature suggests one such task reformulation, for-
bidding exactly the given set of plans (Katz et al. 2018b).
This was done in the context of top-k planning, where plans
could not be safely discarded from consideration. In satisfic-
ing diverse planning, there is no such limitation. As a result,
it is possible to forbid additional plans. One could envision
a metric-dependent reformulation, forbidding also the plans
that are similar according to the given metrics. With the sta-
bility metric in mind, we suggest a reformulation that ig-
nores orders between actions in a plan and thus, also forbids
all possible reorderings of a given plan. Below, we present
the detailed description of such a reformulation.

Definition 4 Let 〈V,A, s0, s∗〉 be a planning task and X
be a multiset of actions. The task Π−

X = 〈V ′,A′, s′0, s
′
∗〉 is

defined as follows.
• V ′ = V ∪ {v} ∪ {va | a ∈ X}, with v being a binary

variable, and dom(va) = {0, . . . ,ma}, where ma is the
number of occurences of a in X ,

• A′ = {ae | a ∈ A \X} ∪ {ar, ad | a ∈ X} ∪⋃ma

i=1{afi |
a ∈ X}, where

ae = 〈pre(a), eff (a) ∪ {〈v, 0〉}〉,
ar = 〈pre(a) ∪ {〈v, 0〉}, eff (a)〉,
ad = 〈pre(a) ∪ {〈v, 1〉, 〈va,ma〉}, eff (a) ∪ {〈v, 0〉}〉,
afi = 〈pre(a) ∪ {〈v, 1〉, 〈va, i-1〉}, eff (a) ∪ {〈va, i〉}〉,
C ′(ae)=C ′(ar)=C ′(ad)=C ′(af )=C(a),

• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, and s′0[va] = 0 for
all a ∈ X , and

• s′∗[v]=s∗[v] for all v∈V s.t. s∗[v] defined, and s′∗[v]=0.

Let us explain the semantics of the reformulation in Def-
inition 4. By Xπ we denote the multiset of actions in a plan
π. The variable v starts from the value 1 and switches to
0 when an action is applied that is not from the multiset
X = Xπ . Once a value 0 is reached indicating a deviation
from plan π, it cannot be switched back to 1. Variables va

Algorithm 1 Iterative diverse planning scheme.
Input: Planning task Π, number of diverse plans k, number

of total plans for search phase K, diversity metric D
P ← ∅
Π′ ← Π
while |P | < K do

π ← some solution to Π′
P ← P ∪ {π′ | π′ is symmetric to π}
X ← ⋃

π∈P Xπ

Π′ ← Π−
X according to Definition 4

end while
return choose k diverse plans from P , according to D

encode the number of applications of the action a. The ac-
tions ar and ad are copies of the action a in X for the cases
when π is already discarded from consideration (variable v
has switched its value to 0) and for discarding π from con-
sideration (switching v to 0), respectively. The latter happens
if the action a was already applied as many times as it ap-
pears in X . afi are copies of the action a in X , counting the
number of applications of a, as long as the number is not
higher than the number of times it appears in X . These ac-
tions are applicable only while the plan is still followed. As
mentioned above, ignoring plan reorderings sits well with
the stability metric, but also with the uniqueness metric. For
the state metric, note that although different reorderings of
the same plan produce different sequences of states, these se-
quences will mostly be quite similar. Thus, we believe that
it is more beneficial to spend the time on finding additional
plans that are “set”-different instead of finding additional re-
orderings of the found plans. Note that in principle we could
do both, if time permits.

When a set of plans is available, obtained, e.g., by apply-
ing structural symmetries (Shleyfman et al. 2015), one op-
tion would be to reformulate via a series of reformulations
as in Definition 4. Another option is to forbid possibly more
than just that set of plans by exploiting Definition 4 for for-
bidding a multiset of actions that is a superset of all plans in
the set. In our implementation, we decided to follow the lat-
ter approach, depicted in Algorithm 1. Each iteration starts
from the original task and forbids all plans found so far. In
the last step, the algorithm selects a diverse subset of plans
out of the set of plans found so far. In what follows, we dis-
cuss how such a selection can be done.

5.2 Selecting a Diverse Subset of Plans
The idea of selecting a set of plans in a post-processing
phase is not new. A basic filtering and then clustering was
performed over the set of plans for a top-k planning prob-
lem (Sohrabi et al. 2016; 2018). These approaches, however,
may become time consuming when metric computation is
computationally expensive. Hence, in this work, we instead
apply a simple greedy algorithm, with a negligible computa-
tional overhead. We first order the found plans by their cost.
Then, going from the cheapest plans to the more expensive
ones, we find a pair of plans with the largest diversity score.
Starting with the found pair of plans, we iteratively construct
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the set by greedily choosing the next plan to add to the set,
maximizing the diversity of the resulting set at that iteration
step. We stop once the set reaches the requested size k. We
note that the quality of the solution obtained by such an al-
gorithm may be considerably improved. However, as we see
next, even such a naive algorithm produces quite encourag-
ing results.

6 Diversity-Bounded Diverse Planning
As previously mentioned, LPG-d as described by Nguyen et
al. (2012) is a sound diversity-bounded diverse planner, al-
though not complete. Similarly, our suggested approach can
be used to produce a sound diversity-bounded diverse plan-
ner by post-processing the obtained plans differently. In gen-
eral, such a post-processing procedure should find a collec-
tion of plans that adhere to certain constraints and that often
corresponds to solving an NP-hard computational problem.
For Dmma, that corresponds to finding a clique of size at
least k, for a graph over vertices that correspond to plans
found during the search phase and edges that correspond to
pairs of plans of stability dissimilarity of at least d. Such
cliques can be found using, e.g., mixed-integer linear pro-
gram tools. In what follows, we use binary variables, one
for each graph vertex to encode whether the vertex is a part
of the selected clique. For each pair of vertices that are not
connected by an edge, at most one of these vertices can be-
long to a clique. Thus, we introduce a constraint stating that
if there is no edge between two vertices, then the sum of the
two corresponding binary variables cannot exceed 1. An ad-
ditional constraint requires the sum of all binary variables to
be greater or equal to k, the number of the requested plans.
Thus, valid assignments to the binary variables correspond
exactly to cliques of size at least k. As a result, any optimiza-
tion criteria can be chosen. Here, we choose to minimize
the size of the obtained clique, finding a clique of size ex-
actly k. This is done by minimizing the sum of all variables.
Note that, while it is not required by the diversity-bounded
diverse planning problem, one can optimize other criteria
while keeping the same set of constraints, e.g., maximizing
the sum of pairwise stability measures.

7 Experimental Evaluation
In order to evaluate the feasibility of our suggested approach
for deriving diverse sets of plans according to various exist-
ing metrics, we have implemented our approach on top of
the Fast Downward planning system (Helmert 2006). Our
planners, ForbidIterative (FI) diverse planners are publicly
available as part of the collection of ForbidIterative planners
(Katz, Sohrabi, and Udrea 2019). Further, we have imple-
mented an external component, that given a set of plans and
a metric returns the score of the set under that metric and
made the code publicly available (Katz and Sohrabi 2019).

We compared our approach for satisficing diverse
planning to existing satisficing diverse planners, namely
DLAMA planner (Bryce 2014), DIV (Coman and Muñoz-
Avila 2011), itA∗, RWS, MQAd, MQAs, MQAtd, and
MQAts (Roberts, Howe, and Ray 2014), on state, stability,
uniqueness, as well as a uniform linear combination over

FI DIV DLAMA itA* MQAts RWS

k=
5

coverage 1143 95 178 611 615 51
Qc 1095.66 84.69 127.26 539.13 533.03 39.25
Da 736.88 33.65 123.07 271.77 322.17 30.62
Ds 585.34 45.01 96.35 200.58 229.62 25.32
Du 1093.70 53.1 176 527.7 539.4 41.20
Ds Da 640.46 39.33 108.6 236.17 275.9 27.97
Ds Du 837.18 49.06 136.19 364.14 384.51 33.26
Du Da 915.87 43.37 149.5 399.74 430.79 35.91
Da Du Ds 791.81 43.92 131.11 333.35 363.73 32.38

k=
10

coverage 1113 1 133 422 430 31
Qc 1060.08 0.93 92.43 376.64 363 23.68
Da 681.08 0.48 88.79 191.66 219.3 21.38
Ds 534.93 0.52 71.32 164.53 175.29 15.84
Du 1054.53 1 132.62 353.76 365.4 28.91
Ds Da 590.98 0.5 79.38 178.1 197.29 18.61
Ds Du 792.08 0.76 101.92 259.14 270.34 22.37
Du Da 868.10 0.74 110.68 272.71 292.35 25.15
Da Du Ds 745.40 0.67 97.09 236.65 253.33 22.04

k=
10

0

coverage 909 0 11 37 78 15
Qc 849.21 0 7.28 31.8 66.48 11.61
Da 492.55 0 6.89 22.12 51.24 11.53
Ds 404.63 0 5.78 17.9 34.09 7.70
Du 834.18 0 11 32.7 76.74 14.95
Ds Da 438.70 0 6.29 20.01 42.67 9.61
Ds Du 617.02 0 8.39 25.3 55.42 11.33
Du Da 661.18 0 8.94 27.41 63.99 13.24
Da Du Ds 569.55 0 7.86 24.24 54.02 11.39

k=
10

00
coverage 552 0 0 0 0 7
Qc 543.14 0 0 0 0 5.96
Da 263.58 0 0 0 0 5.38
Ds 206.54 0 0 0 0 3.66
Du 490.44 0 0 0 0 7.00
Ds Da 233.82 0 0 0 0 4.52
Ds Du 348.47 0 0 0 0 5.33
Du Da 375.79 0 0 0 0 6.20
Da Du Ds 318.92 0 0 0 0 5.35

Table 1: Overall summed scores for various metrics, for
k∈{5, 10, 100, 1000}. Da stands for stability, Ds for state,
and Du for uniqueness diversity metrics. Qc stands for cost
quality metric. Rows that correspond to a linear combination
of diversity metrics are marked with all combined metrics.

all subsets of these metrics (seven diversity metrics overall),
shown in Table 1. Our diversity-bounded diverse planner
is compared to the only existing diversity-bounded diverse
planner LPG-d (Nguyen et al. 2012), on the Dmma metric,
varying the diversity parameter d to obtain values 0.15, 0.25,
and 0.5 (see Table 2). We also varied the value of k, the num-
ber of required plans, for k∈{5, 10, 100, 1000}. To compare
to all selected existing planners, we restrict our benchmark
set to STRIPS domains with uniform action costs from the
International Planning Competitions (IPC). This results in
1276 tasks in 40 domains.

The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @2.67GHz machines, with time and memory
limits of 30min and 2GB, respectively. Our suggested ap-
proach iteratively solves a planning task, finds a set of plans,
and creates a new task that forbids a superset of the plans
found so far. Considering plans as multisets, ignoring the or-
der between the actions, this superset is defined as the union
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of all plans found so far. Thus, we forbid reorderings of
found plans, but also, possibly additional plans, correspond-
ing to a union of multiple found plans. We are restricting the
number of found plans to 1000. For solving the (original and
reformulated) classical planning tasks, we use an existing
state-of-the-art agile planner. The planner that was chosen is
MERWIN (Katz et al. 2018a). It performs a greedy best-first
search (GBFS), alternating between four queues, novelty of
the red-black heuristic, landmark count, preferred operators
from the red-black heuristic, and preferred operators from
the landmark count heuristic. The configuration has shown
an exceptionally good performance on the IPC domains in
our benchmark set (Katz et al. 2017). Note that while we re-
port only results for MERWIN, we have also experimented
with LAMA (Richter and Westphal 2010). The results were
similar; therefore, we report here only the results for MER-
WIN. A minor restriction in our choice of an external plan-
ner is the ability to work directly on SAS+ representation,
since our task reformulation is performed directly on SAS+

and results in a SAS+ task. While most state-of-the-art plan-
ners do work on the grounded SAS+ representation, in some
cases, an adaptation might be required, since our implemen-
tation uses the input format of the Fast Downward planning
system (Helmert 2006).

For both satisficing and diversity-bounded diverse plan-
ning, the final solution is chosen from a larger set of plans
in a postprocessing step. Focusing first on satisficing diverse
planning, if the desired number of plans k is lower, we then
greedily1 choose a subset of size k according to the given
diversity metrics, as described in Section 5.2. Note that this
can result in different subsets of plans chosen for different
metrics. The algorithm is implemented as part of the ex-
ternal component (Katz and Sohrabi 2019). Each technique
gets a score between 0 and 1 for each task and each met-
ric, as described in previous sections. If not enough unique
plans were found by some planner on a task, the planner
gets the score of 0 for that task. Table 1 depicts the summed
scores for all planners on all metrics, for various values of
k, from 5 to 1000. For space reasons, we show only the best
variant of MQA planner. First, note that our approach excels
on all metrics, for both diversity and quality. This is due in
part to a dramatically increased coverage, but that is not the
only source of improved performance. As an evidence, for
k = 5, even when averaging the diversity score by the cov-
erage, our approach outperforms all competitors except for
DLAMA on all diversity metrics considered. For the quality
metric, we dramatically improve over all competitors, even
when averaging over the solved instances. Note that while
for smaller k values there are several techniques that are
somewhat comparable in their performance to ours, larger
k values seem to be challenging for most tested techniques.

Moving now to diversity-bounded diverse planning, we
increased the bound on the number of plans found in the first
phase to 2000, to give the planner some choice for k = 1000.
The solution is obtained by solving the binary linear pro-
gram, as described in Section 4.2 with the CPLEX solver in

1We have experimented with exact techniques, based on mixed-
integer linear programs, but found them to be prohibitively slow.

0.15 0.25 0.5
k bFI LPG-d Dom bFI LPG-d Dom bFI LPG-d Dom
5 1011 675 28/6 974 671 25/8 890 652 24/10

10 946 632 26/7 912 623 27/9 771 586 25/10
100 569 532 17/13 454 517 15/15 213 433 8/16

1000 152 396 7/17 80 359 3/18 3 234 1/15

Table 2: Comparison of bounded-diversity score (total num-
ber of solved tasks) for k=5, 10, 100, and 1000 for the sta-
bility metric (Dmma). Best results are bolded. Dom shows #
of domains with superior performance for bFI/LPG-d.

its default configuration. The code is available as part of the
external component (Katz and Sohrabi 2019). While in gen-
eral these programs have up to 2K binary variables and up
to 4M constraints, we observe that the run time of the solver
is rarely above 10 seconds, with the peak reaching 47 sec-
onds. If the binary linear program was solved by the solver
(feasible solution found), the planner gets 1, and otherwise
(infeasible) 0. We post-process the set of plans from both
our approach and LPG-d in the same way. Table 2 shows
the overall summed scores over all instances, as well as the
number of domains where each approach exhibits superior
performance. As a reminder, our approach chooses k plans
out of the found plans with Dmma above the given thresh-
old. Thus, our approach has a clear disadvantage when there
is little or no choice, as in the case of the largest k values
in our experiment. For smaller k values (k = 5, 10), there is
a clear advantage to our approach, for all tested bounds on
Dmma.

8 Summary and Future Work

We have presented various diverse planning computational
problems and classified the existing diverse planners with
their respective problems. Key contributions of this paper
include: (1) characterization of optimal, bounded, and satis-
ficing diverse planning problems; (2) introducing an exter-
nal validation component for diverse planning; (3) address-
ing the satisficing and bounded-diversity diverse planning
problems by iteratively solving a modified planning task us-
ing existing classical planners, escaping the need to adapt a
planner to each new diversity metric. We have empirically
demonstrated the benefits of using such an approach, con-
siderably improving the state-of-the-art in satisficing diverse
planning and favorably competing with the state-of-the-art
in bounded-diversity diverse planning.

For future work, in satisficing diverse planning, we intend
to explore alternative ways of reformulating a planning task,
aiming at tackling a specific diversity metric. For various
optimal diverse planning computational problems, it is often
not clear how to create a non-trivial planner for that prob-
lem at all. For example, an optD-k optimization problem,
requires generating a set of plans that is diversity-optimal.
A naive solution might require generating all possible plans
first, which might be infeasible, especially in cases when the
set of all plans is infinite. Focusing on such planning prob-
lems is a promising research direction.
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Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical planning.
In Biundo, S.; Myers, K.; and Rajan, K., eds., Proceedings of
the Fifteenth International Conference on Automated Planning
and Scheduling (ICAPS 2005), 12–21. AAAI Press.
Bryce, D. 2014. Landmark-based plan distance measures for
diverse planning. In Chien, S.; Fern, A.; Ruml, W.; and Do,
M., eds., Proceedings of the Twenty-Fourth International Con-
ference on Automated Planning and Scheduling (ICAPS 2014),
56–64. AAAI Press.
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