
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Information Shaping for Enhanced Goal Recognition of Partially-Informed Agents

Sarah Keren, Haifeng Xu, Kofi Kwapong, David Parkes, Barbara Grosz
School of Engineering and Applied Sciences

Harvard University
{skeren, hxu}@seas.harvard.edu, kwapongk@college.harvard.edu, {parkes, grosz}@eecs.harvard.edu

Abstract

We extend goal recognition design to account for partially in-
formed agents. In particular, we consider a two-agent setting
in which one agent, the actor, seeks to achieve a goal but has
only incomplete information about the environment. The sec-
ond agent, the recognizer, has perfect information and aims
to recognize the actor’s goal from its behavior as quickly as
possible. As a one-time offline intervention and with the ob-
jective of facilitating the recognition task, the recognizer can
selectively reveal information to the actor. The problem of
selecting which information to reveal, which we call infor-
mation shaping, is challenging not only because the space
of information shaping options may be large, but also be-
cause more information revelation need not make it easier to
recognize an agent’s goal. We formally define this problem,
and suggest a pruning approach for efficiently searching the
search space. We demonstrate the effectiveness and efficiency
of the suggested method on standard benchmarks.

Introduction

Goal recognition is the task of detecting the goals of agents
by observing their behavior (Cohen, Perrault, and Allen
1981; Kautz and Allen 1986; Ramirez and Geffner 2010;
Carberry 2001; Sukthankar et al. 2014). We consider a two-
agent goal recognition setting, where the first agent, the ac-
tor, has partial information about a deterministic environ-
ment and seeks to achieve a goal. The second agent, the rec-
ognizer, has perfect information, and tries to infer the actor’s
goal as early as possible, by analyzing the actor’s behavior.

As a one time offline intervention, and with the objective
of facilitating the recognition task, the recognizer can ap-
ply a limited number of information shaping modifications,
implemented as changes to the actor’s sensor model. Such
modifications can potentially help to differentiate the actor’s
behavior for different goals, making it easier to infer its goal.

The ability to quickly understand what an agent is trying
to achieve, without expecting it to explicitly communicate
its objectives, is important in many applications. For exam-
ple, in an assistive cognition setting (Kautz et al. 2003), it
may be critical to know as early as possible when a visu-
ally impaired user (i.e., the actor) is approaching a hot oven,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

giving the system (i.e., recognizer) time to react to the dan-
gerous situation (e.g., by calling for help, reducing the heat,
etc.). In security applications it may be important to early
detect users aiming at a specific destination (Boddy et al.
2005), giving the system enough time to send human agents
to further investigate potential threats. Early detection is also
important in human-robot collaborative settings (Levine and
Williams 2014), where a robot aims to recognize what com-
ponent a human user is trying to assemble, so it can gather
the tools needed for the task in a timely fashion. Common
to all these settings, is that actors have incomplete informa-
tion about their environment. This affects their behavior and
is key to the ability to interpret it. In addition, these settings
can be controlled and modified in various ways. Specifically,
it may be possible to modify an agent’s behavior by manip-
ulating its knowledge and therefore obviate its need to act in
order to acquire new information. Such manipulations may
induce behaviors that can be quickly associated to a specific
goal. For instance, in an assisted cognition setting an audi-
tory signal can inform users about a hot oven. Early notifica-
tion potentially causes users aiming at a different goal (e.g.,
the cupboard) to move away from the oven, supporting early
recognition of dangerous situations.

This work extends the goal recognition design (GRD)
framework, which deals with redesigning agent settings to
facilitate early goal detection (Keren, Gal, and Karpas 2014;
Wayllace et al. 2016). Previous GRD work has assumed the
actor has perfect knowledge of the environment. In this pa-
per, we extend the framework to support actors with incom-
plete knowledge. We focus on GRD in deterministic envi-
ronments and use contingent planning (Bonet and Geffner
2011; Brafman and Shani 2012; Muise, Belle, and McIlraith
2014; Albore, Palacios, and Geffner 2009) to represent the
actor. The design objective is to minimize worst case dis-
tinctiveness (WCD) (Keren, Gal, and Karpas 2014), which
represents the maximal progress an actor can make in the
system before the recognizer can infer its goal. Note that in
some instances the goal may remain unrecognized, and even
go unattained, in which case we consider the number of ac-
tions (or accumulated action cost) until the end of execution.

To minimize WCD we introduce information shaping as a
way to induce desired behaviors. We require that the infor-
mation conveyed to the actor is not false. Specifically, we use
sensor extensions to selectively facilitate the actor’s access

9908

(a) The goal recognition
setting: an actor to either goal
may move up.

(b) Plans executed by an actor
aiming at G1 (solid arrows)
and G2 (dashed arrows).

(c) Plans for each goal when
the recognizer reveals (3,1)
is safe

(d) Plans for each goal when
the recognizer reveals both
(3,1) and (1,3) are safe.

Figure 1: An example of a GRD-APK problem

to information about the value of some environment vari-
ables. This is a challenging problem not only because the
number of possible design options may be extremely large,
but also, as we demonstrate below, because the problem is
non-monotonic in that more information need not make an
actor’s goal easier to recognize.

Example 1 Consider Figure 1(a), depicting a variation of
the Wumpus domain (Russell and Norvig 2016), where a
partially informed actor has one of two goals (indicated by
G1 and G2), and needs to achieve the goal without falling
into a pit or encountering a deadly wumpus. The actor
knows its current position, but initially does not know the
locations of the pits and wumpuses. When in a cell adjacent
to a pit or wumpus, it senses a ‘breeze’ or ‘stench’, respec-
tively, without knowing which direction the signal originated
from. The recognizer has perfect information: it knows the
locations of the actor, the pits (e.g., the spiral at cell (2, C))
and the wumpuses (e.g., cell (3, B)), but not the actor’s goal.

We assume the actor is agnostic or unaware of the rec-
ognizer’s objective. Also, we assume the actor is optimistic
when planning but conservative when acting (Bonet and
Geffner 2011). Optimistic planning means the planner is
willing to make assumptions about unknown variables un-
der which it can follow a cost-minimal plan to the goal. It
is conservative in that it only performs actions for which
it knows the outcome. The planner we present in this work
further tie-breaks among optimal plans in favor of making
as few assumptions as possible, and arbitrarily otherwise.
During execution, the actor collects observations from the
environment and revises its assumptions and re-plans if an
assumption is refuted.

The actor enters the system at ‘Start’. With no breeze or
stench, it infers the adjacent cells are safe. An actor aim-
ing at G1 will start by moving up. An actor aiming at G2

is indifferent to going up or right, and may go either way.
Because of this, moving up leaves the goal unrecognized.
Let us suppose (Figure 1b) the actor initially assumes all
cells in the left column are safe, and that plans to both goals
start by moving up two steps. After sensing a breeze at cell
(1,C), not knowing which adjacent cells have a pit, the ac-
tor backtracks and moves right. After sensing a ’breeze’ and

’stench’, the actor deduces there is a wumpus at cell (3,B),
and realizes that it will sense a stench at cell (3,A), without
having the option of verifying that cell (4,A) is safe. With
no more cells to explore, it halts at (2,B) leaving the goal
unrecognized even after it terminates execution (WCD= 4).

The recognizer can share information, for example by re-
vealing safe cells. If the recognizer chooses to reveal cell
(3, A) is safe (Figure 1(c)), an actor aiming at G2 now
prefers moving right from the initial state (due to the ad-
ditional information about that path) while an actor aiming
at G1 still prefers moving up. The goal of the actor becomes
clear as soon as the first step is performed and WCD= 0.
However, if the recognizer also reveals that cell (1, C) is
safe (Figure 1(d)), the initial situation is recovered, since an
actor to either goal may now choose to move up given its be-
liefs. Moreover, note that if communication is unlimited and
the recognizer chooses to provide complete information to
the actor WCD = 4. This illustrates non-monotonicity and
the need to carefully select the information to reveal in order
to facilitate recognition.

The contributions of this work are four-fold. First, we extend
the GRD framework to support agents with partial informa-
tion. We refer to our extended setting as GRD for Agents
with Partial Knowledge (GRD-APK), and introduce infor-
mation shaping that can be applied to support goal recogni-
tion. Second, we introduce a new solver for planning under
partial observability that supports an actor that can make as-
sumptions about unknown variables, but prefers to make as
few assumptions as possible. Third, since our design setting
induces a large search space of possible information shaping
modifications and since previous approaches do not apply
to our non-monotonic setting, we present a novel pruning
method that uses off-the-shelf classical planning tools to au-
tomatically detect useless information shaping options. We
specify the conditions under which our pruning is safe, so
that at least one optimal solution is not pruned. Finally, to
evaluate our approach, we structure information shaping as
a planning problem and implement it using STRIPS (Fikes
and Nilsson 1972) to represent our general and adaptable re-
design process. We demonstrate WCD reduction is achiev-
able through information shaping and the efficiency of our

9909

algorithm on a set of standard benchmarks.

Related Work

Goal recognition design (GRD), a special case of environ-
ment design (Zhang, Chen, and Parkes 2009), was first in-
troduced by Keren et al. (2014) to account for optimal
fully observable agents in deterministic domains. This work
was later extended to a variety of GRD settings, including
accounts for sub-optimal actors (Keren, Gal, and Karpas
2019), stochastic environments (Wayllace et al. 2016), ad-
versarial actors (Ang et al. 2017), and a partially informed
recognizer (Keren, Gal, and Karpas 2019). In the latter case,
sensor refinement is applied to enhance the recognizer’s sen-
sor model.

Common to all previous GRD work is the assumption that
actors have perfect observability of their environment. Our
work is the first to generalize GRD to account for a par-
tially informed actor and to suggest new information shap-
ing modifications, implemented as sensor extensions applied
to the actor’s sensor model, as a way to reduce WCD.

Efficient communication via selective information reve-
lation is fundamental to various multi agent settings, e.g.,
(Xuan, Lesser, and Zilberstein 2001; Wu, Zilberstein, and
Chen 2011; Unhelkar and Shah 2016; Dughmi and Xu
2016). Our work is the first to use information shaping as
a one time offline intervention that facilitates goal recogni-
tion.

Background: Planning Under Partial

Observability

To support agents with partial knowledge, we follow Bonet
and Geffner (2011) and consider contingent planning under
partial observability, formulated as follows.

Definition 1 A planning under partial observability with
deterministic actions (PPO-det) problem is a tuple P =
〈F ,A, I, G,O〉 where F is a set of fluent symbols, A is a set
of actions, I is a set of clauses over fluent-literals defining
the initial situation, G is a set of fluent-literals defining the
goal condition, and O represents the agent sensor model.

An action a ∈ A is associated with a set of preconditions
prec(a), which is the set of fluents that need to hold for a to
be applicable, and conditional effects eff (a), which is a set
of pairs (Fcond ,Feff) s.t. Feff ⊆ F become true if Fcond ⊆
F are true when a is executed. The sensor model O is a set
of observations o ∈ O represented as pairs (C,L) where C
is a set of fluents and L is a positive fluent, indicating that the
value of L is observable when C is true. Each observation
o = (C,L) can be conceived as a sensor on the value of L
that is activated when C is true.

A state s is a truth valuation over the fluents F (‘true’ or
‘false’). For an agent, the value of a fluent may be known
or unknown. A fluent is hidden if its true value is unknown.
A belief state b is a non-empty collection of states the agent
deems possible at some point. A formula F holds in b if it
holds for every state s ∈ b. An action a is applicable in b
if the preconditions of a hold in b, and the successor belief

state b
′

is the set of states that results from applying the ac-
tion a to each state s in b. When an observation o = (C,L)
is activated, the successor belief is the maximal set of states
in b that agree on L. The initial belief is the set of states
that satisfy I , and the goal belief are those that satisfy G.
A formula is invariant if it is true in each possible initial
state, and remains true in any state that can be reached from
the initial state. A history is a sequence of actions and be-
liefs h = b0, a0, b1, a1, . . . , bn, an, bn+1. It is complete if
the performing agent reaches a goal belief state. Finally, a
PPO-det problem is simple if the non-unary clauses in I are
all invariant, and no hidden fluent appears in the body of a
conditional effect. We hereon assume our PPO-det problems
are simple with connected state spaces.

A solution to a PPO-det problem is a policy π, a partial
function from beliefs to actions. A policy is deterministic if
any belief is mapped to at most one action. Otherwise it is
non-deterministic. A history h satisfies π, if ∀i 0 ≤ i ≤ n,
ai ∈ π(bi). There are three policy types: weak, when there is
at least one complete history that satisfies the policy, strong,
where a goal belief is guaranteed to be achieved within a
fixed number of steps, and strong cyclic, where a goal belief
is guaranteed to be achieved, but with no upper bound on
the cost (length) of the solution (Cimatti et al. 2003). Our
framework supports all three policy types.

Goal Recognition Design for Agents with

Partial Knowledge (GRD-APK)

A goal recognition design for agents with partial knowledge
(GRD-APK) problem consists of an initial goal recognition
setting, a measure by which a setting is evaluated, and a de-
sign model, which specifies the available information shap-
ing modifications.

Goal Recognition

A goal recognition setting can be defined in various
ways (Sukthankar et al. 2014), but typically includes a de-
scription of the underlying environment, the way agents be-
have in it to achieve their goal, and the observations col-
lected by the goal recognizing agent.

We have two agents. The actor is a partially-informed
contingent planner (Definition 1) with a goal, that executes
history h until reaching a goal belief or halting when no ac-
tion is applicable. The recognizer is a perfectly informed
agent, that analyzes the actor’s state transitions in order to
recognize the actor’s goal as quickly as possible. We assume
the actor is agnostic to or unaware of the recognizer’s objec-
tive.

Definition 2 A goal recognition for agents with par-
tial knowledge problem (GR-APK) is a tuple R =
〈E,G,Oac, {Π(G)}G∈G〉 where:
• E = 〈F ,A, I〉 is the environment, which consists of the

fluents F , actions A and initial state I as defined in Def-
inition 1 (a cost C(a) for each action a ∈ A may also be
specified),

• G is a set of possible goals G, s.t. |G| ≥ 2 and G ⊆ F ,
• Oac is the actor’s sensor model (Definition 1), and

9910

• {Π(G)}G∈G are the set of policies Π(G) an agent aiming
at goal G ∈ G may follow.

The cost of history h, denoted Ca(h) = ΣiC(ai), is the ac-
cumulated cost of the performed actions (equivalent to path
length when action cost is uniform). In executing h, the ac-
tor follows a possibly non-deterministic policy π from the
set Π(G) of possible policies to its goal.

The set Π(G) of policies to each goal is typically implic-
itly defined via the solver used by the actor to decide how
to act in each belief state. In Example 1 we described an
example of such a solver, which we will formally define in
the next section. The GRD-APK framework is well defined
for any solver that provides a mapping B → 2A, specify-
ing the set of possible actions an agent may execute at each
reachable belief state b ∈ B, e.g., (Bonet and Geffner 2011;
Muise, Belle, and McIlraith 2014).

While the partially informed actor needs to collect infor-
mation about the environment via its sensor model Oac in
order to achieve its premeditated goal, the recognizer knows
the true state of the world and the actor’s solver and sensor,
but not its goal. The recognizer observes the actor’s tran-
sitions between belief states and analyzes them in order to
recognize the actor’s goal.

Evaluating a GR-APK model

The worst case distinctiveness (WCD) is the maximum num-
ber of actions an actor can perform before its goal is re-
vealed. This maximum depends on the environment, the set
of possible goals, the sensor model, and the set of policies
to each goal. To define WCD we first define the relationship
between a history h and a goal. A history satisfies a policy
if it is a possible execution of the policy.A history satisfies a
goal if it satisfies a possible policy to the goal.

Definition 3 Given a GR-APK model R, history h satisfies
policy π in R, if ∀i 0 ≤ i ≤ n, ai ∈ π(bi). In addition, h
satisfies goal G ∈ G in R if ∃π ∈ Π(G) s.t. h satisfies π.

Let Grec(h) represent the set of goals that history h sat-
isfies, i.e., the set of goals the recognizer deems as possible
actor goals. A history is non-distinctive if it satisfies more
than one goal.

Definition 4 Given a GR-APK model R, a history h is non
distinctive in R, if exists G,G′ ∈ G s.t. G �= G′, and h
satisfies G and G′. Otherwise, it is distinctive.

We denote the set of non-distinctive histories of a GR-
APK model R by Hnd(R).

Definition 5 The worst case distinctiveness of a model R,
denoted by WCD(R) is:

WCD(R) =

{
max

h∈Hnd(R)
Ca(h) Hnd(R) �= ∅

0 otherwise

That is, WCD is the maximum cost of a history for which
the goal is not determined, or zero if there is no such history.

Recall that in some instances the goal may remain unrec-
ognized, and even go unattained, in which case WCD may
be the number of actions (or accumulated action cost) un-
til the end of execution. Also recall that a policy may be
strong cyclic, potentially containing infinite loops. A pol-
icy with such a cycle is considered to have a history with
infinite cost. In particular, since such a history may be non-
distinctive, this means WCD in this setting may be infinite.

Information Shaping

By using information shaping to change the actor’s knowl-
edge, the recognizer can potentially change the actor’s be-
havior in a way that more quickly reveals its goal. We re-
strict information shaping so that it cannot convey false in-
formation. In particular, the recognizer can only improve the
actor’s sensor model, i.e., facilitate its ability to access the
value of an environment feature. Let O denote the set of
all sensor models. We define sensor extension modifications,
which add a single observation to a sensor model.

Definition 6 A modification δ : O → O is a sensor ex-
tension if δ(O) = O ∪ {o}, for all O ∈ O and for some
o = (C,L).

Sensor extensions correspond to adding new sensors to
the environment, or, as a special case, communicating to
the actor the value of a feature. To demonstrate, in Ex-
ample 1 the recognizer could allow the actor to sense a
stench two (rather than one) cells away from the wumpus
in cell (3,B) through a new visual indication. We would
add observation o = (C = AgentAtCell(1, B), L =
StenchAtCell(2, B)) to the actor’s sensor model. The rec-
ognizer could also directly inform the actor whether there
is a wumpus in a specific cell. (e.g., (C = True, L =
WumpusAtCell(3, B)).

The GRD-APK problem is formally defined below. To
support settings where communication may be limited and
costly, we introduce a design budget that limits the number
of allowed modifications.

Definition 7 A goal recognition design for agents with
partial knowledge problem (GRD-APK) is defined as a
tuple T = 〈R0,Δ, β〉 where:
• R0 is the initial goal recognition model,
• Δ are the possible sensor extensions, and
• β is a budget on the number of allowed extensions.

We want to find a set Δ ⊆ Δ of up to β sensor extensions
to apply to R0 to minimize WCD:

WCDmin(T) = min
Δ⊆Δ

WCD(RΔ
0)

s.t.|Δ| ≤ β
(1)

Here, WCDmin(T) is the minimum WCD achievable in a
GRD-APK model T , and RΔ is the goal recognition model
that results from applying set Δ to R. Any solution to Equa-
tion 1 is optimal. A solution is strongly optimal if it has the
minimum number of sensor extensions among all optimal
solutions.

9911

Depending on the application, other design constraints
can be introduced. For example, in a collaborative setting
the recognizer may restrict information shaping so that the
actor’s cost to goal does not increase.

The Kprudent(P) Translation
A variety of solvers have been developed to solve a PPO-
det problem (e.g., (Bonet and Geffner 2011; Muise, Belle,
and McIlraith 2014; Brafman and Shani 2012)), all of which
can be used to represent the actor. Specifically, Bonet and
Geffner (2011) suggest the k-planner that follows the plan-
ning under optimism approach. Optimism means that the
actor plans while making the most optimistic assumptions
about missing information, choosing assumptions for which
the corresponding plan has minimal cost. The actor executes
the plan from the resulting classical planning problem, re-
vising the assumptions and re-planning if during execution
an observation is made that refutes the assumptions.

To transform the PPO-det problem into a classical plan-
ning problem, the k-planner uses the K(P) translation. This
substitutes each literal L in the original problem with a
pair of fluents KL and K¬L, representing whether L is
known to be true or false, respectively (Albore, Palacios,
and Geffner 2009). Each original action a ∈ A is trans-
formed into an equivalent action a′ ∈ A′

exe that replaces
the use of every literal L (¬L), with its corresponding flu-
ent KL (K¬L). Each observation o = (C,L) is translated
into two deterministic sensing actions a′C,L, a

′
C,¬L ∈ A′

sen,
one for each possible value of L. These sensing actions al-
low the solver to compute a plan while choosing to make
assumptions about unknown variables. For example, the ac-
tor can assume there is no stench in a cell on its plan (e.g.,
K¬StenchAt(1, D) = True). Each invariant clause is
translated into a set of actions A′

ram, called the ramifica-
tion actions. These actions can be used to set the truth value
of some variable as new sensing information is collected.
For example, a ramification action can be activated to in-
fer that a cell is safe when no breeze or stench is sensed in
an adjacent cell. This representation captures the underlying
planning problem at the knowledge level, accounting for the
exploratory behavior of a partially informed agent.

A key issue to note about the K(P) compilation is that all
its actions, including sensing and ramification actions, have
equal cost. This means, for example, that a cost-minimizing
solution to the resulting classical planning problem may be
one that favors increasing the cost to goal over the use of
multiple ramification actions. As described in Example 1,
we want a solver that can make optimistic assumptions, but
that chooses a minimal cost plan that requires making as few
assumptions as possible. In addition, ramifications are not
to be considered when calculating the cost to goal. For this
reason, we introduce the Kprudent(P) translation, which ex-
tends the uniform cost K(P) translation by associating a cost
function to each action. Specifically, every transformed ac-
tion in A′

exe is assigned a cost of 1, every sensing action
(assumption) in A′

sen is assigned a small cost of ε, and ev-
ery ramification action in A′

ram has 0 cost. When ε is small
enough such that the accumulated cost of assumptions of

any generated plan is guaranteed to be smaller than minimal
diversion from an optimal plan, the optimal plan achieved
using this formulation is a plan with the minimal number
assumptions among the set of plans that minimize the accu-
mulated cost of execution actions. 1

Methods for Information Shaping

To find a set of information shaping modifications that min-
imize WCD, we follow Keren, Gal, and Karpas (2019) and
formulate the design process as a search in the space of mod-
ification sets Δ ⊆ Δ. The root node is the initial goal recog-
nition model R0 (and empty modification set), and the op-
erators (edges) are the sensor extensions δ ∈ Δ that tran-
sition between models. Each node (modifications set Δ) is
evaluated by WCD(RΔ

0), the WCD value of its correspond-
ing model. To calculate WCD, we use the actor’s solver to
compute the policies it may follow to each goal, and find the
maximal cost of a non-distinctive policy prefix (Definition
4), i.e., a prefix shared by policies to more than one goal.

Given a goal recognition model R and a sensor extension
δ, we let Rδ denote the model that results from applying δ
to the actor’s sensor model O. A sensor extension is useful
with regards to a goal recognition model if it reduces WCD.

Definition 8 A sensor extension δ is useful with regards to
goal recognition model R if WCD(Rδ) < WCD(R).

The challenge in information shaping comes from two
sources. First, the number of possible information shap-
ing options may be large, and evaluating the effect of each
change (i.e., computing WCD of the modified model) may
be costly, making it important to develop efficient ways to
search the space of design options. Second, the problem is
non-monotonic, in that sensor extensions are not always use-
ful, and providing more information can both increase or
decrease WCD (Example 1). This affects the methods we
can use for reducing the state space while guaranteeing com-
pleteness. Specifically, we cannot use techniques suggested
for previous GRD models, such as those suggested by Keren,
Gal, and Karpas (2019), which rely in the assumption that
modifications cannot increase WCD.

Design with CG-Pruning

The baseline approach for searching in the modification
space is breadth first search (BFS), using WCD to evaluate
each node. Under the budget constraints, BFS explores mod-
ification sets of increasing size, using a closed-list to avoid
the computation of pre-computed sets. The search halts if a
model with WCD = 0 is found or if there are no more nodes
to explore, and returns the shortest path (smallest modifi-
cation set) to a node that achieves minimal WCD. This is
guaranteed to find a strongly optimal solution, but does not
scale to large problems.

1The formal definitions and proofs for this and next
sections are given in the appendix which can be found at
https://github.com/sarah-keren/GRD-APK-AAAI-20-Appendix-
and-Experiments

9912

To improve computational efficiency, we suggest a new
pruning approach that reduces our search space by eliminat-
ing useless modifications. We then specify conditions under
which our pruning is safe (Wehrle and Helmert 2014), s.t. at
least one optimal solution remains unpruned

The high level idea of our pruning technique, dubbed CG-
Pruning, is to transform the partially observable planning
problem for each goal into its corresponding fully observ-
able planning problem, and use off-the-shelf tools developed
for fully observable planning in order to automatically detect
information shaping modifications that are guaranteed not to
affect the actor’s behavior and are therefore not useful.

Specifically, given a goal recognition model R, for ev-
ery goal in G, we use the K(P) transformation (or its vari-
ant Kprudent(P) introduced above) to transform the par-
tially observable planning problem into a fully observable
problem. We then construct the causal graph (Williams and
Nayak 1997; Helmert 2006) of each transformed problem.
The causal graph of a planning problem is a directed graph
(V,E) where the nodes V represent the state variables and
the edges E represent dependencies between variables, such
that the graph contains a directed edge (v, v′) for v, v′ ∈ V
if changes in the value of v′ can depend on the value of v.
Specifically, to capture only the variables that are relevant to
achieving the goal, the causal graph only contains ancestors
of all variables that appear in the goal description.

In our context, the variable set of the causal graph can
either be the set of fluents of the transformed PPO-det prob-
lem, or the multi-valued variables extracted using invariant
synthesis, which automatically finds sets of fluents among
which exactly one is true at each state (e.g., in Example 1 the
fluents representing whether the actor is in a specific location
can be aggregated into a single multi-valued variable repre-
senting the actor’s location). In any case, the casual graph
of the transformed planning problem to each possible goal
captures all variables relevant for achieving the goal and the
hierarchical dependencies between them.

Recall that each sensor extension is characterized by an
observation o = (C,L) that is added to the actor’s sensor
model. CG-Pruning prunes all sensor extensions for which
the fluents corresponding to knowledge about L in the trans-
formed problem (i.e. KL and K¬L) do not occur in any of
the casual graphs to the goals.

To demonstrate, consider a variation of Example 1 de-
picted in Figure 2(left), where keys are distributed in initially
unknown locations on the grid, and the actor needs to collect
the key to its goal in order to access it (K HoldingKeyi is
a precondition to accessing goal Gi). The recognizer, with
perfect information, can notify the actor about safe loca-
tions, as before, but also about the absence or presence of
a particular key in some location. Figure 2 (right), shows a
part of the causal graph for G1, excluding variables concern-
ing the irrelevant keys. By generating the causal graph to all
goals, CG-Pruning automatically detects and prunes sensor
extensions related to Key3.

Theoretical Analysis

In order to safely prune sensor extensions from our search
space, we use the causal graph of the actor’s planning prob-

Figure 2: The Wumpus domain with keys

lem. Since the causal graph encapsulates any information
that may affect the actor’s behavior, we can use it to automat-
ically detect non-useful sensor extensions. Recall that our
actor uses the k-planner to iteratively compute a plan at the
initial state, and every time an assumption made at a previ-
ous iteration is refuted. At each iteration, the actor’s current
partially observable problem is transformed (using either
K(P) or Kprudent(P)) into its corresponding fully observ-
able problem, and the new plan is the solution of the trans-
formed problem given by an off-the-shelf classical planner.
For each model R and execution iteration i, we let CGR

i (G)
represent the causal graph of the transformed planning prob-
lem to goal G at iteration i. CG-Pruning prunes sensor ex-
tensions that reveal information about variables that are not
in CGR

0 (G) for any goal G ∈ G.

Theorem 1 For any GRD-APK model T = 〈R0,Δ, β〉,
CG-Pruning is safe for an actor that uses the k-planner with
an optimal solver.

Proof:(sketch) For any goal G ∈ G, the causal graph
CGR

i (G) at each iteration 0 ≤ i is a supergraph of any
causal graph CGR

j (G) of a subsequent iteration for all i ≤ j.
The only difference between the compiled planning problem
at each iteration is the initial belief state, which does not af-
fect the causal graph.

When an optimal solver is used for the transformed prob-
lem, then a sensor extension δ that adds observation o =
(C,L) s.t. neither KL nor K¬L appear in CGR

0 (G) for any
of the goals G ∈ G, is not useful. This is based on Bonet
and Geffner (2011)’s proof that the K(P) (and Kprudent(P))
transformation is sound and complete for simple problems
with a connected space, which are the only problems we
consider here. In addition, an optimal plan of a classical
planning problem will not include actions that do not affect
variables in its causal graph (Helmert 2006). Therefore, for
any design node Δ, only sensor extensions that affect a vari-
able in a causal graph to some goal can possibly affect the

9913

No Pruning CG-Pruning

sol ΔWCD time nodes sol ΔWCD time nodes
WUMPUS 0.10 0.28 (0.32) 1184.32 25.11 0.21 0.28 (0.32) 854.62 22.51

WUMPUS-KEY 0.13 0.09 (0.10) 852.32 14.87 0.26 0.09 (0.10) 642.53 5.71
COLOR-BALLS 0.66 0.11(0.33) 801.07 15.2 0.67 0.11 (0.33) 637.72 12.3

TRAIL 0.17 0.13 (0.09) 593.97 85.2 0.19 0.13 (0.09) 484.65 76.36
LOGISTICS 0.5 2.22(0.81) 824.35 15.5 0.7 2.22 (0.81) 740.24 10.3

LOGISTICS-I 0.4 3.91 (0.32) 18.3 562.4 0.7 3.91 (0.32) 15.1 432.5
UNIX 0.9 2.62 (0.59) 179.6 79.0 1.0 2.62 (0.59) 49.2 22.3

Table 1: Results per domain for the optimal FD solver
No Pruning CG-Pruning

sol ΔWCD time nodes sol ΔWCD time nodes
WUMPUS 0.84 2.12 (0.41) 233.58 45.74 0.84 2.12 (0.41) 148.57 31.23

WUMPUS-KEY 0.69 3.38 (0.77) 23.86 28.84 0.73 3.27(0.75) 7.29 14.15
COLOR-BALLS 1.0 2.06 (0.29) 29.32 5.75 1.0 2.06 (0.29) 55.23 5.75

TRAIL 1.0 0.10 (0.12) 70.65 127.25 1.0 0.10 (0.12) 107.66 110.09
LOGISTICS 0.95 1.40 (0.57) 54.55 17.78 1.0 1.40 (0.57) 81.47 3.43

LOGISTICS-I 0.43 0.26 (0.11) 53.5 93.5 0.92 0.26 (0.11) 61.5 24.2
UNIX 1.0 2.67 (0.51) 125.2 283.3 1.0 2.67 (0.51) 40.3 83.3

Table 2: Results per domain for the non-optimal FF solver

actor’s behavior. Other extensions will leave the WCD un-
changed and are not useful. Therefore CG-Pruning is safe.

Empirical Evaluation

In this section, we report experiments that demonstrate both
the effect of sensor extensions on WCD as well as the com-
putational advantage provided through CG-Pruning.
Dataset. We use seven domains, adapted from Bonet and
Geffner (2011) and Albore, Palacios, and Geffner (2009).
The adaptation from partially observable planning to GRD-
APK involves specifying for each instance the set of possible
goals and sensor extensions 2.

To support the design process, we use STRIPS (Fikes
and Nilsson 1972) to specify the available modifications and
their effect. Sensor extensions are implemented as design ac-
tions that add to the initial state fluents that indicate the true
value of a variable.
Setup. We use the k-planner (Bonet and Geffner 2011)
as the actor’s solver, with two variations: (1) the K(P)
compilation is used together with the satisfying FF clas-
sical planner (FF) (Hoffmann and Nebel 2001) (2) the
Kprudent(P) compilation is used together with the optimal
Fast-Downward (Helmert 2006) classical planner (FD), us-
ing the lm-cut heuristic (Helmert and Domshlak 2009).

The design process is implemented as a breadth-first
search (BFS) in the space of modification sets, tested with
and without CG-Pruning. To parse the design file, we adapt
pyperplan (Alkhazraji et al. 2016) to provide for each mod-
ification set (representing a GRD-APK model and a search
node) the set of applicable modifications and resulting mod-
els. We use 40 instances for each domain, using design bud-
gets of 1 and 2. We fix the time limit for an execution to

2A complete account of our dataset and code can be found in
https://github.com/sarah-keren/GRD-APK-AAAI-20-Appendix-
and-Experiments

20 minutes and 1000 search steps (each corresponding to a
modification set), whichever was first.
Results. Tables 1 and 2 summarize the results for the FD
and FF solvers, respectively. For each domain the tables
show ‘sol’ as the fraction of instances completed within
the time and resource bounds. For instances completed by
both approaches ‘ΔWCD’ is the average WCD reduction
achieved via design, i.e., the WCD difference between the
original setting and one where sensor extensions are applied
(normalized values are given in parentheses). Recall that
WCD also accounts for prefixes of failed executions, since
they represent valid agent behavior. For instances completed
by both approaches, we give the average calculation time (in
seconds) and average number of nodes evaluated.

The results show that design via information shaping is ef-
fective in reducing WCD across each of our domains. In ad-
dition, by automatically detecting and excluding futile sen-
sor extensions, CG-Pruning increases the ratio of problems
for which computation completed without reaching the time
or resource bounds in the WUMPUS, WUMPUS-KEY, LO-
GISTICS, and LOGISTICS-I domains. CG-Pruning also re-
duces the number of nodes explored and computation time
for problems completed by both approaches for all domains
except C-BALLS and TRAIL with FF.
Discussion. It is the trade off between the costs of the causal
graph extraction and node computation that dictates the ben-
efit of using CG-Pruning. Specifically, our results demon-
strate that our pruning is effective when the problem descrip-
tion includes many variables that do not affect the actor’s
behavior (e.g., packages that don’t appear in the goal in the
LOGISTICS domain). Understanding which information is
irrelevant to the goal is not always a trivial task, especially
since our models include invariant information, creating ad-
ditional relationships between variables. The key benefit of
the causal graph analysis is in automatically detecting and
excluding futile sensor extensions. Our results highlight the
domains for which the overhead of the causal graph analy-
sis pays-off, especially as the problem size increases. For
example, in LOGISTICS-I with FF for smaller problems
completed by both approaches, the reduction in the num-
ber of computed nodes is less then the gain in computation
time required by CG-Pruning. However, CG-Pruning solves
more than twice as much instances without exhausting the
resource bounds.

Note that although our approach is provably safe only
when the actor uses an optimal planner (e.g. FD), the com-
putational benefits of our approach are apparent also when
the sub-optimal FF planner is used. In most cases, CG-
Pruning achieves the same WCD reduction as the exhaustive
search, while saving on computation time (e.g. 70% saving
for LOGISTICS-I) and solving more instances.

Conclusion
We introduced GRD for a partially informed actor and a
perfectly informed recognizer, which is able to share infor-
mation with the actor about the domain. We formalized the
information shaping problem as one of minimizing worst-
case distinctiveness (WCD), using sensor extensions to im-
prove goal recognition. We presented a new solver for plan-

9914

ning under partial observability, and studied the use of a safe
pruning method together with breadth first search to search
the space of applicable sensor extensions, introducing the
idea of using techniques developed for classical planning for
supporting the goal recognition of partially informed plan-
ning agents. Our results on standard benchmark domains
show that WCD can be reduced via information shaping and
demonstrate the effectiveness of pruning.

This work provides a first step in supporting GRD for par-
tially informed agents. In future work, it will be interesting
to use quantitative models, and Partially Observable Markov
Descision Process (POMDP) models (Kaelbling, Littman,
and Cassandra 1998) in particular, to represent the actor and
its belief state. Future work should also consider settings
where the actor is aware of the recognizer’s presence and
objective, and where information shaping can be applied on-
line, based on the actor’s actual progress.

Acknowledgements

The authors thank Miquel Ramirez, Nir Lipovetzky, Flo-
rian Pommerening, Malte Helmert, Sara Bernardini and Blai
Bonet for their helpful comments and suggestions.

References

Albore, A.; Palacios, H.; and Geffner, H. 2009. A translation-based
approach to contingent planning. In International Joint Conference
on Artificial Intelligence (IJCAI).
Alkhazraji, Y.; Frorath, M.; Grutzner, M.; Liebetraut, T.; Or-
tlieb, M.; Seipp, J.; Springenberg, T.; Stahl, P.; Wulfing,
J.; Helmert, M.; and Mattmuller, R. 2016. Pyperplan:
https://bitbucket.org/malte/pyperplan.
Ang, S.; Chan, H.; Jiang, A. X.; and Yeoh, W. 2017. Game-
theoretic goal recognition models with applications to security do-
mains. In International Conference on Decision and Game Theory
for Security.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005. Course
of action generation for cyber security using classical planning. In
International Conference on Automated Planning and Scheduling
(ICAPS).
Bonet, B., and Geffner, H. 2011. Planning under partial observ-
ability by classical replanning: Theory and experiments. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
Brafman, R., and Shani, G. 2012. Replanning in domains with
partial information and sensing actions. Journal of Artificial Intel-
ligence Research (JAIR) 45.
Carberry, S. 2001. Techniques for plan recognition. User Modeling
and User-Adapted Interaction 11.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 2003 147.
Cohen, P. R.; Perrault, C. R.; and Allen, J. F. 1981. Beyond
question-answering. Technical report, DTIC Document.
Dughmi, S., and Xu, H. 2016. Algorithmic bayesian persuasion. In
Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence 2(3):189–208.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In International
Conference on Automated Planning and Scheduling (ICAPS).
Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research(JAIR) 26.
Hoffmann, J., and Nebel, B. 2001. The ff planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research (JAIR) 14.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Plan-
ning and acting in partially observable stochastic domains. Artifi-
cial intelligence 101(1-2).
Kautz, H., and Allen, J. F. 1986. Generalized plan recognition. In
Association for the Advancement of Artificial Intelligence (AAAI),
volume 86.
Kautz, H.; Etzioni, O.; Fox, D.; Weld, D.; and Shastri, L. 2003.
Foundations of assisted cognition systems. Technical report, Uni-
versity of Washington.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition design.
In International Conference on Automated Planning and Schedul-
ing (ICAPS).
Keren, S.; Gal, A.; and Karpas, E. 2019. Goal recognition design
in deterministic environments. Journal of Artificial Intelligence
Research(JAIR) 2019 65.
Levine, S. J., and Williams, B. C. 2014. Concurrent plan recogni-
tion and execution for human-robot teams. In International Con-
ference on Automated Planning and Scheduling (ICAPS).
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014. Computing con-
tingent plans via fully observable non-deterministic planning. In
Association for the Advancement of Artificial Intelligence (AAAI).
Ramirez, M., and Geffner, H. 2010. Probabilistic plan recogni-
tion using off-the-shelf classical planners. In Association for the
Advancement of Artificial Intelligence (AAAI).
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a modern
approach. Pearson Education.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and Goldman,
R. P. 2014. Plan, activity, and Intent Recognition: Theory and
practice. Newnes.
Unhelkar, V. V., and Shah, J. A. 2016. Contact: Deciding to com-
municate during time-critical collaborative tasks in unknown, de-
terministic domains. In Association for the Advancement of Artifi-
cial Intelligence (AAAI).
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal recog-
nition design with stochastic agent action outcomes”. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets: Gen-
eralized algorithms and selection strategies. In International Con-
ference on Automated Planning and Scheduling (ICAPS).
Williams, B. C., and Nayak, P. P. 1997. A reactive planner for a
model-based executive. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), volume 97.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online planning for
multi-agent systems with bounded communication. Artificial Intel-
ligence 175(2).
Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communication
decisions in multi-agent cooperation: Model and experiments. In
Proceedings of the fifth international conference on Autonomous
agents.
Zhang, H.; Chen, Y.; and Parkes, D. C. 2009. A general approach
to environment design with one agent. In International Joint Con-
ference on Artificial Intelligence (IJCAI).

9915

