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Abstract

Hierarchical Task Networks (HTN) planning uses a de-
composition process guided by domain knowledge to guide
search towards a planning task. While many HTN planners al-
low calls to external processes (e.g. to a simulator interface)
during the decomposition process, this is a computationally
expensive process, so planner implementations often use such
calls in an ad-hoc way using very specialized domain knowl-
edge to limit the number of calls. Conversely, the classical
planners that are capable of using external calls (often called
semantic attachments) during planning are limited to gener-
ating a fixed number of ground operators at problem ground-
ing time. We formalize Semantic Attachments for HTN plan-
ning using semi coroutines, allowing such procedurally de-
fined predicates to link the planning process to custom unifi-
cations outside of the planner, such as numerical results from
a robotics simulator. The resulting planner then uses such
coroutines as part of its backtracking mechanism to search
through parallel dimensions of the state-space (e.g. through
numeric variables). We show empirically that our planner out-
performs the state-of-the-art numeric planners in a number of
domains using minimal extra domain knowledge.

Introduction

Planning in domains that require numerical variables, for ex-
ample, to drive robots in the physical world, must represent
and search through a space defined by real-valued functions
with a potentially infinite domain, range, or both. This type
of numeric planning problem poses challenges in two ways.
First, the description formalisms (Fox and Long 2003) might
not make it easy to express the numeric functions and its
variables, resulting in a description process that is time con-
suming and error-prone for real-world domains (Strobel and
Kirsch 2014). Second, the planners that try to solve such
numeric problems must find efficient strategies to find solu-
tions through this type of state-space. Previous work on for-
malisms for domains with numeric values developed the Se-
mantic Attachment (SA) construct (Dornhege et al. 2009) in
classical planning. Semantic attachments (Weyhrauch 1981)
describe the attachment of an interpretation to a predicate
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symbol using an external procedure, allowing the planner to
reason about numeric values from external functions.

Most planners are limited to purely symbolic opera-
tions, lacking structures to optimize usage of continuous re-
sources involving numeric values (Gerevini, Saetti, and Se-
rina 2008). Unlike discrete logical symbols, numeric values
have an infinite domain and are harder to compare both con-
ceptually and implementationally, with cumbersome ad hoc
solutions for objects represented by several numeric values
(e.g. points or polygons) that must be handled and compared
as one. Planning descriptions usually simplify such complex
objects to symbolic values (e.g. p25 or poly2) that are eas-
ier to compare. Detailed numeric values are ignored during
planning or left to be decided later (Piotrowski et al. 2016),
which may force replanning (Şucan and Kavraki 2011). In-
stead of simplifying the description or doing multiple com-
parisons in the description itself, our goal is to exploit ex-
ternal formalisms orthogonal to the symbolic description.
To achieve that we build a mapping from symbols to ob-
jects generated as we query semantic attachments. Seman-
tic attachments are used in classical planning (Dornhege
et al. 2009) to unify values analogously to predicates, and
their main advantage is that domain engineers need not dis-
cern between them and common predicates. Thus, we ex-
tend classical HTN planning algorithms and their formal-
ism to support semantic attachment queries. While external
function calls map to functions defined outside the HTN de-
scription, we define SAs as semi coroutines (Dahl, Dijkstra,
and Hoare 1972), subroutines that suspend and resume their
state, to iterate across zero or more values provided one at
a time by an external implementation, mitigating the poten-
tially infinite range of the external function.

Our contributions are threefold. First, we introduce SAs
for HTN planning to describe and efficiently evaluate exter-
nal predicates at execution time. Second, we improve the
readability of domains and plans and simplify processing
external objects and structures using a symbol-object table.
Finally, we empirically compare the resulting HTN planner
with modern classical planners in a number of mixed sym-
bolic/numeric domains showing substantial gains in speed
with minimal domain knowledge.
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Background

Classical planning is interested in finding sequences of tran-
sitions that transform properties of the world from an initial
configuration to a goal configuration. The transitions are de-
scribed by a domain expert in terms of preconditions and ef-
fects, usually using a standard language, such as PDDL (Mc-
Dermott et al. 1998). Throughout this section we use the for-
malism from Ghallab, Nau, and Traverso (2004).

Classical planning formalisms comprise these elements:
Terms are symbols that represent objects or variables.

There is a finite set of objects available.
Predicates represent relations between terms and are de-

fined by a signature name applied to a sequence of N
terms, represented by tn, pre = 〈name(pre), terms(t1,
..., tn)〉. When all terms of a predicate are objects we call
it a ground predicate and unification or grounding the pro-
cess to replace variables with available objects. We call F
the finite set of facts, comprised of all ground predicates.

State is a finite set of ground predicates that describe a
world configuration at a particular time. It is represented
by S = 〈p1, ..., pn〉. Partial states may be used to represent
only what we are interested in, in a closed-world assump-
tion where we have full observability, or are certain, in
an open-world assumption where we may lack certainty
about which predicates are true or false.

Operator represented by a 4-tuple o = 〈name(o), pre(o),
eff(o), cost(o)〉: name(o) is the description or signature
of o; pre(o) are the preconditions of o, a set of predicates
that must be satisfied by the current state for action o to
be applied; eff(o) are the effects of o; The effects con-
tain positive and negative sets, eff(o)+ and eff(o)-, that
add and remove predicates from the state, respectively;
Preconditions and effects may have variables as terms to
generalize operators; More complex preconditions and ef-
fects consider expressions, quantifiers and conditions in-
stead of just sets; cost(o) represents the cost of applying
this operator, usually 1 or 0.

Action is an instantiated operator, with objects from O re-
placing variables from preconditions and effects. During
the planning process, actions that have APPLICABLE pre-
conditions in the current state can APPLY their effects
to create a new possible state, deleting predicates from
eff(a)- and adding predicates from eff(a)+. The finite set
of actions available is called A.

Initial state is a complete state, in a closed-world, repre-
sented by I ⊆ F, which is defined by a set of predicates
that represent the current state of the environment.

Goal state is a partial state represented by G ⊆ F, which is
defined by a set of predicates that we desire to achieve by
successfully applying the actions available.

Domain brings all problem independent elements together
in a tuple D = 〈F, A〉.

Plan is the solution concept of a planning problem and is
represented by a sequence of actions that when applied in
an specific order will modify I to G in D, π = 〈 a1, ..., an〉.
An empty plan solves I ⊆ G.

Planning Instance is the triple P = 〈D, I, G〉: planners take
as input P and return either π or failure.

Hierarchical planning shifts the focus from goal states to
tasks to exploit human knowledge about problem decom-
position using an hierarchy of domain knowledge recipes as
part of the domain description (Nau et al. 1999). This hierar-
chy is composed of primitive tasks that map to operators and
non-primitive tasks, which are further refined into subtasks
using methods. The decomposition process is repeated un-
til only primitive-tasks mapping to operators remain, which
results in the plan itself, backtracking when necessary.

Unlike classical planning, hierarchical planning only con-
siders tasks obtained from the decomposition process to
solve the problem, which limits the ability to solve problems
to improve execution time by evaluating a smaller number
of operators. The description of an HTN planning problem
is more complex than equivalent classical planning descrip-
tions, since it includes domain knowledge with potentially
recursive tasks, which allows the description of more com-
plex problems than classical planning (Erol, Nau, and Sub-
rahmanian 1995). HTN planning expands the elements of
classical planning with:

HTN Terms are symbols that represent objects, variables
or external function calls.

Task represented by a signature name(task) applied to
a sequence of N terms that act as parameters, for-
warding ground values to be used by the task, task =
〈name(task), terms(t1, ..., tn)〉. The task is then mapped
by name to an operator (primitive task) or method (non-
primitive/abstract task). A set of tasks to be decomposed
by an instance is called T. During each step of the plan-
ning process a task is removed from T by SHIFT. Tasks
can be removed based on a set of defined ordering con-
straints. In this work we limit ordering constraints to total-
order, such that tn−1 ≺ tn.

Method represented by a 3-tuple m = 〈name(m), pre(m),
tasks(m)〉: name(m) represents the description or sig-
nature of m; pre(m) represents the preconditions of m;
tasks(m) represents the subtasks of m, replacing the orig-
inal task for new tasks; The finite set of methods avail-
able is called M. During the HTN planning process, each
possible DECOMPOSITION is found by searching which
methods match the current task, name(t) = name(m) for
t ∈ SHIFT(T) ∧ m ∈ M.

External Functions are not usually included in HTN for-
malizations, but are found in almost all HTN planner im-
plementations. We thus formally include external func-
tions E, that allow the HTN planner to invoke external
code to create new objects for the problem instance dur-
ing search (e.g. to represent numbers and numeric oper-
ations). In effect, the presence of such functions makes
the states in HTN planning potentially infinite, since such
functions can introduce arbitrary new objects. Functions
are defined by a signature name applied to a sequence of
N terms, represented by tn, e = 〈name(e), terms(t1, ...,
tn) 〉, and replaced by a single object obtained from their
evaluation during planning.
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HTN Domain also includes M methods and E external
functions, is represented by D = 〈F, A, M, E〉.

HTN Planning Instance represented by the 3-tuple P =
〈D, I, T〉 and returns π or failure.

HTN Plan represented by a sequence of actions that when
applied in an specific order will modify I to an implicit G
defined by T, π = 〈 a1, ..., an〉.
Algorithm 1 corresponds to the Total-order Forward De-

composition (TFD) (Ghallab, Nau, and Traverso 2004, chap-
ter 11). This is a recursive planner that selects one task with
ordering constraints satisfied and either updates the state for
primitive tasks or decomposes non-primitive tasks.

Algorithm 1 Total-order Forward Decomposition planner
1: function TFD(S, T, D)
2: if T = ∅ then return empty π
3: t← SHIFT(T)
4: if t is a primitive task
5: for tapplicable ∈ APPLICABLE(pre(t), S) do
6: π← TFD(APPLY(tapplicable, S), T, D)
7: if π �= failure then return tapplicable · π
8: else if t is a non-primitive task
9: for m ∈ DECOMPOSITION(t, D) do

10: for tasks(m) ∈ APPLICABLE(pre(m), S) do
11: π← TFD(S, tasks(m) · T, D)
12: if π �= failure then return π

13: return failure

Coroutines

Coroutine is a cooperative multitasking approach that gives
the programmer full execution control, as routines are not
preempted by a scheduler but called from other routines,
with persistent state between calls (Moura and Ierusalim-
schy 2009). Generators are limited coroutines that always
pass control back to the caller while yielding a value, and
thus are usually implement iterators. Every time the genera-
tor executes a yield instruction it saves the state to the stack,
suspends, and resumes in the next call. The generator fin-
ishes once either the generator or the caller returns.

Unification functions, such as APPLICABLE, can be im-
plemented as a generator that yield ground instances of an
operator or method with preconditions satisfied by the cur-
rent state. HTN backtracking causes a resume operation in
the generator to try other unifications or returning, once no
more unifications are found in the current level of recursion.

Symbolic-Geometric Planning

Classical planners with heuristic functions can solve mixed
symbolic-numeric problems efficiently using a process of
discretization. A discretization process converts continuous
values into sets of discrete symbols at often predefined gran-
ularity levels that vary between different domains. However,
if the discretization process is not possible, one must use a
planner that also supports numeric features, which requires
another heuristic function, description language and usually

more computing power due to the number of states gener-
ated by numeric features (Hoffmann 2003). Numeric fea-
tures are especially important in domains where one cannot
discretize the representation and usually appear in geometric
or physics subproblems of a domain and cannot be avoided
during planning. Unlike symbolic approaches where liter-
als are compared for equality during precondition evalua-
tion, numeric value comparison is non-trivial. To avoid do-
ing such comparison for every numeric value, the user is left
responsible for explicitly defining when one must consider
rounding errors, which impacts description time and com-
plexity. For complex object instances (in the object-oriented
programming sense), such as polygons that are made of
point instances, comparison details in the description are
error-prone. Details such as the order of polygon points and
floating point errors in their coordinates are usually irrele-
vant for the planner and the domain designer, and should not
be part of the symbolic domain description as they are part
of a non-symbolic specification.

Semantic Attachments

The non-symbolic specifications required for symbolic-
geometric planning can be implemented by external function
calls to improve what can be expressed and computed by an
HTN planner. Such functions come with disadvantages, as
they are not expected to keep their own state, returning a
single value solely based on the provided parameters. While
HTN planners can abstract away the numeric details via ex-
ternal function calls, there are limitations to this approach if
a particular function is used in a decomposition tree where
it is expected to backtrack and try new values from the func-
tion call (i.e. if the function is meant to be used to generate
multiple terms as part of the search strategy). An external
function must return a list of values to account for all pos-
sible decompositions so the planner tries one at a time until
either one value succeeds or all values lead to failure. Gener-
ating a complete list for such external calls creates two key
problems. First, this is too costly when compared to comput-
ing a single value, as the first value could be enough to find
a feasible plan. Second, the HTN methods must handle such
lists of values explicitly, introducing unnecessary and unde-
sirable complexity into the domain engineering process. A
Semantic Attachment, on the other hand, acts as an exter-
nal predicate that unifies with one possible set of values at
a time, rather than storing a complete list of possible sets of
values in the state structure. This implementation saves time
and memory during planning, as only backtracking causes
the external coroutine to resume generating new unifications
until a certain amount of plans are found. Each SA acts as
a black box that simulates part of the environment encod-
ing the results in state variables that are often orthogonal to
other predicates (Francès et al. 2017). While common predi-
cates are stored in a state structure, SAs are computed at ex-
ecution time by coroutines. Using SAs allows us to encode
states that contain symbolic information readily understand-
able for humans, as well as abstract away complex state-
based operations to external methods. The set of coroutines
available at planning time that verify ground terms or unify
each set of possible values for free variables, one at a time, is
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represented by SA. Each SA is defined by a signature name
applied to a sequence of N terms, represented by tn, sa =
〈name(sa), terms(t1, ..., tn)〉. In summary, external func-
tions do not naturally work as semantic attachments, since
their return value is expected to be a single unique value
for multiple calls with the same parameters. The implicit
assumption for most external function calls is that they are
stateless, so in order to return multiple values one must de-
sign the function to return a list with all the possible values
and to describe the logic (in the planning domain) that will
consume/use each of these values from the list. Semantic
Attachments on the other hand work as externally defined
predicates that can unify one set of free variables at a time
or test a ground predicate externally. This different approach
removes the burden of computing all values, computing only
until HTN decomposition can progress, and not having to
deal a list of values, that encumbering the HTN domain de-
scription unrelated mechanisms to the domain, such as list
operations and sorting. The domain designer can define its
preferences directly in the semantic attachment, to try cer-
tain values first, instead of generating multiple values and
sorting them before planning resumes. Thus we can rely on
the backtracking semantics of the HTN planning procedure
to iterate over possible values of the semantic attachment,
resulting in a cleaner and more intuitive domain description.

Symbolic anchors for external values

We abstract away the numeric parts of the planning process
encoded through SAs in a layer between the symbolic plan-
ner and external libraries. We leverage the three-layered ar-
chitecture of Figure 1 inspired by the work of de Silva and
Meneguzzi (2015). In the symbolic layer we manipulate an
anchor symbol as a term, such as polygon1, while in the ex-
ternal layer we manipulate the corresponding Polygon in-
stance with N points as a geometric object based on what
the selected external library specifies. With this approach we
avoid complex representations in the symbolic layer and the
extra overhead in the domain description. Instances created
by the external layer that must be exposed to the symbolic
layer are compared with stored object instances to reuse a
previously defined symbol or create a new one, i.e. always
represent position 〈2, 5〉 as p1. This process makes symbol
comparison work in the symbolic layer even for symbols re-
lated to complex external objects. The symbol-object table
is responsible for storing the anchors between symbols and
object instances to be used by external function calls and
SAs. The planner maintains a global and consistent view
of this table during the planning process, as each unique
symbol will map the same internal object, even if such sym-
bol is discarded in one decomposition branch. Our symbol-
object table is defined by N key-value pairs, represented by
SO-table = 〈〈key(k1),value(v1)〉, ..., 〈key(kn),value(vn)〉〉,
with QUERY and INSERT functions to find pairs based on
anchor symbols as keys and to add anchors between gener-
ated symbols and external objects, respectively. Once oper-
ations are finished in the external layer the process happens
in reverse order, objects are transformed back into symbols
that are exposed by free variables. The intermediate layer
acts as the foreign function interface between the two layers,

Symbolic layer

Declarative state

External calls

Ground SAs

Lifted SAs

� � � �Intermediate layer

� Functions

� � � � Coroutines

External layer

External libraries
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� � 
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Figure 1: Symbolic and external layers share information
through an intermediate layer that maps representations and
calls between them.

and can be modified to accommodate other external libraries
without modifications to the symbolic description.

The symbolic description comes from domain and prob-
lem files using UJSHOP, our extended JSHOP (Ilghami and
Nau 2003) input language with SA support. The symbolic
description is compiled before planning. The compilation
step is taken by HYPE, a framework that parses the de-
scription to an intermediate representation and compile1 to
an equivalent Ruby code that connects with our planner, an
HTN planner with the features described later in this section.
The parser and compiler can be replaced for equivalent mod-
ules to eventually support other input or output formats. Ex-
ternal functions, SAs and the SO-table are defined in a sepa-
rate file outside the compilation process, only loaded during
planning, making D = 〈F,A,M,E,SAs,SO-table〉. The
process and its elements are better seen in Figure 2 illustrates
the HYPERTENSION U framework.

Hypedomain.*

problem.*

external.*

parsers

UJSHOP

compilers

Ruby
(HTN)

Intermediate
Representation

problem.*.rb

domain.*.rb HyperTensioN U

Figure 2: Framework parses symbolic description and com-
piles to the target language before connecting with external
definitions and HTN planner.

Reordering preconditions

SAs can work as interpreted predicates (Mohr et al. 2018),
evaluating the truth value of a predicate procedurally, and
also grounding free variables. If we restrict our operators
to the STRIPS-style ones, we can reorder the preconditions
during the compilation phase to improve execution time, re-
moving the burden of the domain designer to optimize a
mostly declarative description by hand, based on how free
variables are used as terms. Each free variable creates a de-
pendency between the first predicate or SA that contains
such variable as a term and the next predicates or SAs that
contain the same term. The first predicate or SA is responsi-
ble for grounding such variable while the next predicates or
SAs only verify if the previously ground value matches with
the current state. Predicates have priority over SAs to ground

1The compiler here is a source-to-source compiler or transpiler,
as code is only translated from one language to another.
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Algorithm 2 Filter preconditions during compilation phase
based on free variables used as terms of predicates and SAs.

1: function FILTERPRECONDITIONS(pre)
2: Pground← {p | p ∈ pre ∧ (p ∈ F ∨ (p ∈ E ∧
3: ∀t ∈ terms(p) t = object))}
4: Plifted← {p | p ∈ pre ∧ (p ∈ Predicate ∨ p ∈ E) ∧
5: ∃t ∈ terms(p) t �= object}
6: Psa← {p | p ∈ pre ∧ p ∈ SA}
7: return 〈 Pground, Plifted, Psa 〉

Listing 1: Abstract method with SAs among preconditions.
(:attachments (sa1 ?a ?b) (sa2 ?a ?b))
(:method (m ?t1 ?t2)

label
(; preconditions
(call != ?t1 ?t2) ; no dependencies
(call != ?fv1 ?fv2) ; ?fv1 and ?fv2 dependencies
(sa1 ?t1 ?fv1) ; no dependencies, ground ?fv1
(pre1 ?t1 ?t2) ; no dependencies
(sa2 ?fv1 ?fv2) ; ?fv1 dependency, ground ?fv2
(pre2 ?fv3 ?fv1)) ; ?fv1 dependency, ground ?fv3

(; subtasks
(subtask ?t1 ?t2 ?fv1 ?fv2)))

free variables, as the possible values are obtained from the
current (finite) state, while SAs may cover a possibly infinite
number of values. Algorithm 2 shows how preconditions are
filtered in distinct sets used to reorder them for performance.

Consider the abstract method example of Listing 1, with
two SAs among preconditions, sa1 and sa2. The compiled
output shown in Algorithm 3 has both SAs evaluated after
common predicates, while function calls happen before or
after each SA, based on which variables are ground at that
point. In Line 4 the free variables fv1 and fv3 have a ground
value that can only be read and not modified by other pred-
icates or SAs. In Line 7 every variable is ground and the
second function call can be evaluated.

Each SA is responsible for unifying all remaining free
variables with valid values before resuming and have a stop
condition, otherwise the HTN process will keep backtrack-
ing and evaluating the SA seeking new values and never
returning failure. Due to the implementation support of
arbitrary-precision arithmetic and accessing data from real-
world streams of data/events (which are always new and
potentially infinite) a valid value may never be found, and
we expect the domain designer to implement mechanisms to
limit the maximum number of times a SA might try to evalu-
ate a call (i.e. to have finite stop conditions). This maximum

Algorithm 3 Compiled preconditions from Listing 1, re-
ordered to optimize execution time.
1: function M(S, t1, t2)
2: if t1 �= t2
3: for each fv1, fv3; {〈pre1,t1,t2〉,〈pre2,fv3,fv1〉} ⊆ S do
4: for each sa1(t1, fv1) do
5: free variable fv2
6: for each sa2(fv1, fv2) do
7: if fv1 �= fv2 then yield [〈subtask, t1, t2, fv1, fv2〉]

Algorithm 4 SA-enabled APPLICABLE tests ground, lifted
and coroutine based preconditions to replace free variables
by suitable values.
1: function APPLICABLE(pre, S, SO-table)
2: Pground, Plifted, Psa← FILTERPRECONDITIONS(pre)
3: if Pground � S then return
4: for prelifted with free variables fvslifted ∈ Plifted do
5: for each fvslifted match with name(prelifted) ∈ S do
6: for presa with free variables fvssas ∈ Psa do
7: for EXTERNAL(presa, fvssas, S, SO-table) do
8: yield

number of tries can be implemented as a counter in the inter-
nal state of an SA to avoid repeated evaluation of the same
values. Note that the number of side-effects in both exter-
nal functions calls and SAs increases the complexity of cor-
rectness proofs and the ability to inspect and debug domain
descriptions.

Unlike Algorithm 1 we move the generic APPLICABLE
from the HTN algorithm to custom unifiers implemented by
the compilation step directly into the operator and method
functions, with preconditions reordered based on the return
of Algorithm 2. This is an important modification to allow
more complex preconditions to be evaluated. By moving
such routine to the method itself we can have custom im-
plementations, including generator-based implementations.
The original Algorithm 1 does not define how the APPLICA-
BLE set of free variable assignment can be implemented. The
equivalent non-custom version of our approach is defined by
Algorithm 4. The symbol-object table is an argument of the
new APPLICABLE routine, to be used by external function
calls and SAs after ground preconditions are satisfied and
lifted preconditions used to evaluate some of the free vari-
ables present in the preconditions.

Examples

Discrete distance between objects

A common problem when moving in dynamic and continu-
ous environments is to check for object collisions, as agents
and objects do not move across tiles in a grid. One solution is
to calculate the distance between the centroid of both objects
and verify if this value is in a safe margin before consider-
ing which action to take. To avoid the many geometric ele-
ments involved in this process we can map centroid position
symbols to coordinate instances and only check the symbol
returned from the symbol-object table, ignoring specific nu-
meric details and comparing a symbol to verify if objects are
near enough to collide. This process is illustrated in Figure 3,
in which p0 and p1 are centroid position symbols that match
symbols S0 and S1 in the symbol-object table, which maps
their value to point objects O0 and O1. Such internal objects
are used to compute distance and return a symbolic distance
in situations where the actual numeric value is unnecessary.

An iterator for HTN

In order to find a correct number to match a spatial or tem-
poral constraint one may want to describe the relevant inter-
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S1 O1

...

p0
p1

Symbol-object table

distance

1.41near

S0 O0

Figure 3: The symbol to object table maps symbols to
object-oriented programming instances to hide procedural
logic from the symbolic layer.

val and precision to limit the amount of possibilities without
having to discretely add each value to the state. Planning de-
scriptions usually do not contain information about numeric
intervals and precision, and if there is a way to add such
information it is through the planner itself, as global defi-
nitions applied to all numeric functions, i.e. timestep, man-
tissa and exponent digits of DiNo (Piotrowski et al. 2016).
The STEP SA described in Algorithm 5 addresses this prob-
lem, unifying t with one number at a time inside the given
interval with an ε step.

Algorithm 5 The STEP SA replaces the pointer of t with a
numeric symbol before resuming control to the HTN.
1: function STEP(t,min = 0,max =∞, ε = 1)
2: for i←min to max step ε do
3: t← INSERT(SO-table, i)
4: yield � Resume HTN

Lazy adjacency evaluation

To avoid having complex effects in the move operators one
must not update adjacencies between planning objects dur-
ing the planning process. Instead one must update only the
object position, deleting the old position and adding the new
position. Such positions come from a partitioned space, pre-
viously defined by the user. The positions and their adjacen-
cies are either used to generate and store ground operators
or stored as part of the state. To avoid both one could imple-
ment adjacency as a coroutine while hiding numeric prop-
erties of objects, such as position. Algorithm 6 shows the
main two cases from planning descriptions. In the first case
both symbols are ground, and the coroutine resumes when
both objects are adjacent, doing nothing otherwise, failing
the precondition. In the second case s2, the second symbol,
is free to be unified using s1, the first symbol, and a set of di-
rections D to yield new positions to replace s2 pointer with
a valid position, one at a time. Thus, this coroutine either
checks whether s2 is adjacent to s1 or tries to find a value
adjacent to s1 binding it to s2 if such value exists.

Domains and Experiments

We conducted empirical tests with our own HTN planner2

in a machine with Dual 6-core Xeon CPUs @2GHz / 48GB
memory, repeating experiments three times to obtain an av-
erage. The results show a substantial speedup over the orig-
inal classical description from ENHSP (Scala et al. 2016)

2github.com/Maumagnaguagno/HyperTensioN U.

Algorithm 6 This ADJACENT SA implementation can either
check if two symbols map to adjacent positions or generate
new positions and their symbols to unify s2.
1: D← {(-1,-1),(0,-1),(1,-1),(-1,0),(1,0),(-1,1),(0,1),(1,1)}
2: function ADJACENT(s1, s2)
3: s1← QUERY(SO-table, s1)
4: if s2 is ground
5: s2← QUERY(SO-table, s2)
6: if |x(s1) - x(s2)| ≤ 1 ∧ | y(s1) - y(s2)| ≤ 1 then yield
7: else if s2 is free
8: for each (x, y) ∈ D do
9: nx← x + x(s1); ny← y + y(s1)

10: if 0 ≤ nx < WIDTH ∧ 0 ≤ ny < HEIGHT
11: s2← INSERT(SO-table, 〈nx, ny〉)
12: yield

with more complex descriptions, while being competitive
against Metric-FF (Hoffmann 2003).

Plant Watering / Gardening

In the Plant Watering domain (Frances and Geffner 2015)
one or more agents move in a 2D grid-based scenario to
reach taps to obtain certain amounts of water and pour water
in plants spread across the grid. Each agent can carry up to
a certain amount of water and each plant requires a certain
amount of water to be poured. Many state variables can be
represented as numeric fluents, such as the coordinates of
each agent, tap and plant, the amount of water to be poured
and being carried by each agent, and the limits of how much
water can be carried and the size of the grid. There are two
common problems in this scenario, the first is to travel to ei-
ther a tap or a plant, the second is the top level strategy. To
avoid considering multiple paths in the decomposition pro-
cess one can try to move straight to the goal first, and only
to the goal in scenarios without obstacles, which simplifies
the travel method. To achieve this straightforward movement
we modify the ADJACENT SA to consider the goal position
also, using an implementation of Algorithm 7. The top level
strategy may consider which plant is closer to a tap or closer
to an agent, how much water an agent can carry and so on.
The simpler top level strategy is to verify how much wa-
ter must be poured to a plant, travel to a tap, load water,
travel to the previously selected plant and pour all the water
loaded. Repeating this process until every plant has enough
water poured. The travel method is shown in Listing 2 and
compiled to Algorithm 8. We compare with the fastest sat-
isficing configuration of ENHSP (sat) and Metric-FF 2.1
(standard-FF) in Figure 4, which shows that our ap-
proach is faster with execution times near 0.01s (ignor-
ing interpreter loading time), or competitive with Metric-FF
around 0.11s (considering interpreter loading time), with all
three planners obtaining non-step-optimal plans.

Car Linear

In the Car Linear domain (Bryce et al. 2015) the goal is to
control the acceleration of a car, which has a minimum and
maximum speed, without external forces applied, only mov-
ing through one axis to reach its destination, and requiring a

9938



Algorithm 7 In this goal-driven ADJACENT SA the positions
are coordinate pairs, and two variables must be unified to a
closer to the goal position in an obstacle-free scenario.
1: function ADJACENT(x, y, nx, ny, gx, gy)
2: x← QUERY(SO-table, x); y← QUERY(SO-table, y)
3: gx← QUERY(SO-table, gx); gy← QUERY(SO-table, gy)
4: � COMPARE returns -1, 0, 1 for <,=, >, respectively
5: nx← INSERT(SO-table, x + COMPARE(gx, x))
6: ny ← INSERT(SO-table, y + COMPARE(gy, y))
7: yield

Listing 2: Excerpt of the Plant Watering HTN domain, the
ADJACENT SA is described separately.
(:attachments (adjacent ?x ?y ?nx ?ny ?gx ?gy))
(:method (travel ?a ?gx ?gy)

base
(; preconditions
(call = (call function (x ?a)) ?gx)
(call = (call function (y ?a)) ?gy) )

() ; empty subtasks
keep_moving
(; preconditions
(adjacent (call function (x ?a))
(call function (y ?a)) ?nx ?ny ?gx ?gy))

(; subtasks
(!move ?a ?nx ?ny)
(travel ?a ?gx ?gy)))
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Figure 4: Time in seconds to solve Plant Watering problems.

small speed to safely stop. The idea is to propagate process
effects to state functions, in this case acceleration to speed
and speed to position, while being constrained to an accept-
able speed and acceleration. The planner must decide when
and for how long to increase or decrease acceleration, there-
fore becoming a temporal planning problem. We use a STEP
SA to iterate over the time variable and propagate temporal
effects and constraints, i.e. speed at time t. We compare the
execution time of our approach with ENHSP with aibr,
ENHSP main configuration for planning with autonomous
processes, in Table 1. There is no comparison with a native
HTN approach, as one would have to add a discrete finite set
of time predicates (e.g. 〈time 0〉) to the initial state descrip-
tion to be selected as time points during planning.

Algorithm 8 Compiled output of the Plant Watering HTN
domain excerpt from Listing 2.
1: function TRAVEL(a, gx, gy)
2: if x(a) = gx ∧ y(a) = gy then yield ∅
3: else
4: free variables nx, ny
5: for each ADJACENT(x(a), y(a), nx, ny, gx, gy) do
6: yield [〈move, a, nx, ny〉, 〈travel, a, gx, gy〉]

Problem 1 2 3 4 5 6 7 8 9
ENHSP (aibr) 0.484 0.432 0.411 0.443 0.461 0.474 0.465 0.436 63.585
HTN with SA 0.016 0.019 0.014 0.016 0.018 0.019 0.017 0.018 01.402

Table 1: Time in seconds to solve Car Linear problems.

Conclusion

We developed a notion of semantic attachments for HTN
planners that not only allows a domain expert to easily de-
fine external numerical functions for real-world domains,
but also provides substantial improvements on planning
speed over comparable classical planning approaches. The
use of semantic attachments improves the planning speed
as one can express a potentially infinite state representa-
tion with procedures that can be exploited by a strategy de-
scribed as HTN tasks. As only semantic attachments present
in the path decomposed during planning are evaluated, a
smaller amount of time is required when compared with
approaches that precompute every possible value during
operator grounding. Our description language is arguably
more readable than the commonly used strategy of devel-
oping a domain specific planner with customized heuris-
tics, or attaching procedures that must have all variables
ground (Ghallab, Nau, and Traverso 2004, chapter 11).
Specifically, we allow designers to easily define external
functions in a way that is readable within the domain knowl-
edge encoded in HTN methods at design time, and also dy-
namically generate symbolic representations of external val-
ues at planning time, which makes generated plans easier to
understand.

Our work is the first attempt at defining the syntax and
operation of semantic attachments for HTNs, allowing fur-
ther research on search in SA-enabled domains within HTN
planners. This kind of extension comes in line with recent
attempts at including more expressive planning languages
than vanilla PDDL, and which include more functional ele-
ments in it (e.g. Tarski3). Dornhege et al. (2009) uses seman-
tic attachments to compute the truth value of propositions in
preconditions, and effects on numerical fluents that would
be too complex to describe otherwise. Dornhege, Hertle, and
Nebel (2013) adds action grounding and action costs as se-
mantic attachment modules. By contrast, our method can be
used to both compute the truth value of a ground proposi-
tion or to unify free-variables with values in preconditions.
Such unified values can be symbolic or numeric, and can
be generated indefinitely, which is useful when searching
for a numeric value that satisfies some property as one can
define the equivalent of an iterator as a predicate. Further

3github.com/aig-upf/tarski
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the grounding action approach (Dornhege, Hertle, and Nebel
2013) does not match the HTN domain style, where most op-
erator parameters (groundings) are decided by method pre-
conditions before decomposing to primitive tasks.

Future work includes implementing a cache to reuse pre-
vious values from external procedures applied to similar
previous states (Dornhege, Hertle, and Nebel 2013) and a
generic construction to access such values in the symbolic
layer, to obtain data from explored branches outside the state
structure, i.e. to hold mutually exclusive predicate informa-
tion. We plan to develop more domains, with varying levels
of domain knowledge and SA usage, to obtain better com-
parison with other planners and their resulting plan quality.
The advantage of being able to exploit external implementa-
tions conflicts with the ability to incorporate such domain
knowledge into heuristic functions, as such knowledge is
outside the description. Further work is required to expose
possible metrics from a SA to heuristic functions.
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