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Abstract

The objective of goal recognition is to infer a goal that ac-
counts for the observed behavior of an actor. In this work,
we introduce and formalize the notion of active goal recog-
nition in which we endow the observer with agency to sense,
reason, and act in the world with a view to enhancing and
possibly expediting goal recognition, and/or to intervening in
goal achievement. To this end, we present an algorithm for
active goal recognition and a landmark-based approach to the
elimination of hypothesized goals which leverages automated
planning. Experiments demonstrate the merits of providing
agency to the observer, and the effectiveness of our approach
in potentially enhancing the observational power of the ob-
server, as well as expediting and in some cases making possi-
ble the recognition of the actor’s goal.

1 Introduction

Goal recognition is the problem of inferring a goal that ac-
counts for the observed behavior of an actor. We observe that
in many real-world settings the observer cannot passively
wait for the natural evolution of the world in order to disam-
biguate the actor’s goal. Indeed we advocate for the observer
to be active and proactive in the goal recognition process.

To advance this view of goal recognition, we introduce
and formalize the notion of active goal recognition where
we endow the observer with agency to actively sense, act, or
react as part of the goal recognition process. An active ob-
server therefore has the potential to increase observational
power, expedite, and in some cases make possible (where
without observer agency, it was impossible) the recognition
of the actor’s goal. We cast the observer’s task of deciding
how to act in service of the recognition process as a con-
tingent planning task, and discuss some of the challenges to
this characterization in the general case.

Goal recognition is situated within the broader field of
plan, activity, and intent recognition whose various sub-
problems are concerned, together, with inferring not only
the actor’s ‘top-level’ goal, but also the plan that achieves
this goal (where the plan being carried out by the actor is
possibly independent of a specific goal), and even the ‘low-
level’ actions, or activities of the actor (Sukthankar et al.
2014). While approaches to goal (and plan) recognition have
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often matched between the observed behavior of the actor
and pre-defined plan libraries (e.g., (Kautz and Allen 1986;
Avrahami-Zilberbrand and Kaminka 2005)), the past decade
has seen the rise of plan and goal recognition approaches
that utilize planning domains as a form of generative model
(e.g., (Ramı́rez and Geffner 2009; Sohrabi, Riabov, and
Udrea 2016)). Further, a body of previous work has iden-
tified that performing the recognition online, while the ac-
tor’s plan is still being carried out, is critical and has thus
proposed efficient approaches geared towards online recog-
nition (e.g., (Vered et al. 2018)). In the offline setting, the
body of work on goal recognition design can also be seen to
endow the observer with agency to modify the environment
(Keren, Gal, and Karpas 2014), improve observability via
sensor placement (Keren, Gal, and Karpas 2016) or to pro-
vide the actor with information (Keren et al. 2020) to ben-
efit recognition during the eventual runtime. Most closely
related to our work is a body of work that has provided
the observer with agency to act in the world during run-
time and disambiguate the hypothesis space. Kabanza et al.
(2010) propose to provoke the actor into performing actions
that will reveal its goal and Mirsky et al. (2018) formulate
the sequential plan recognition process wherein the actor is
queried about its ongoing plan, leading to hypothesis elimi-
nation. While our motivations partially overlap, these works
require the observer to affect the state of the world or interact
with the actor in order to eliminate hypotheses.

The main contributions of this paper are: (1) a formal-
ization of active goal recognition; and (2) an algorithm for
active goal recognition and a landmark-based approach for
hypothesis elimination which leverage automated planning.
We evaluate our approach in a diversity of domains using
off-the-shelf planning and goal recognition tools. Our evalu-
ation demonstrates the merits of providing agency to the ob-
server, and the effectiveness of our approach in potentially
enhancing the observational power of the observer.

2 Background

Automated planning is the task of selecting a goal-
leading plan based on a high-level description of the world.
In this work we give agency to our observer to sense, act,
or react. The determination of observer behavior fundamen-
tally involves planning under partial observability with sens-
ing actions. Such planning is typically referred to as con-

9957



tingent planning (e.g., (Albore, Palacios, and Geffner 2009;
Brafman and Shani 2012)). Contingent planning can be re-
alized in either an offline or an online setting. In an offline
setting, contingent planning yields a contingent plan that
takes the form of a conditional plan, since the sensing ac-
tion is not immediately executed to inform future action se-
lection. In an online setting a contingent plan is conceived
and the sensing immediately executed, updating the agent
belief state and informing ongoing planning.

Following Bonet and Geffner (2011), we specify the
partially observable planning problem with sensing ac-
tions (PPOS) in a STRIPS-like language, where actions
can have conditional effects. A PPOS problem is a tuple
〈F ,A,Ω, I, G〉 where F is the set of fluent atoms, A is the
set of actions, Ω is the set of sensing actions, I is a set of
clauses over F that determines the initial state, and G is a
conjunction of atoms over F determining the goal condition.
The specification is interpreted over a set of states, which are
truth valuations to the atoms in F . We say a literal l holds in
a state s iff s assigns l to be true. Specifically, as I is a set of
clauses, I would hold in a number of states; the belief state
b is the set of all states where I holds. By extension, we say
a formula φ holds in b iff φ holds in every state s ∈ b.

For a ∈ A, the precondition of the action, PRE(a), is a
conjunction of atoms and the effect EFF(a) is a set of pairs
〈c, l〉 that capture a’s conditional effects. A sensing action
ω ∈ Ω has a precondition PRE(ω), which is a conjunction of
fluent literals, and OBS(ω), which is the fluent literal that is
observed by the sensing action. We say an action a is appli-
cable in a state s iff PRE(a) holds in s. We say a is applica-
ble in a belief state b iff a is applicable in every s ∈ b. When
performing a in b, a successor belief state b′ is defined by
performing a in each s ∈ b. When performing a sensing ac-
tion ω in b, the successor belief state b′ is the maximal set of
states in b that agree on OBS(ω). By extension, a sequence
a0, . . . , ak, possibly involving sensing actions, is applicable
in b if a0 is applicable in b, resulting in a successor belief
state b1, and inductively, ai is applicable in bi, finally result-
ing in bk. We say that a belief state b′ is reachable from b
if there is some sequence of actions (both sensing and non-
sensing) that results in b′ when applied to b.

A conditional plan (or policy) τ is induced by the out-
comes of sensing actions and advises the next action to be
taken based on the result of sensing actions (Geffner and
Bonet 2013). We say that a conditional plan τ solves a PPOS
problem 〈F ,A,Ω, I, G〉 iff the executions advised by τ are
applicable in the belief state b for I, and result in belief states
b∗ where the goal condition G holds. We say that a PPOS
problem 〈F ,A,Ω, I, G〉 is a classical planning problem if
I defines a complete initial state (i.e., |b| = 1 where b is the
belief state for I) and Ω = ∅. We use the tuple 〈F ,A, I, G〉
to denote a classical planning problem. Note that solutions
to a classical planning problem are simple sequences of ac-
tions (plans) since Ω = ∅.

In this paper, we assume unit action costs and thus plan
cost is equivalent to plan length, and optimal plans are the
shortest plans. We use Π∗(G) to denote the set of optimal
plans for some goal G.

Goal recognition is the task of inferring a goal that ac-
counts for the observed behavior of an actor.

Definition 1 (Goal Recognition Problem) A goal recogni-
tion problem is a tuple 〈Σ, I,G, O〉 with Σ = 〈F ,A〉 and
where F and A are sets of fluents and actions, respectively,
I is a set of clauses over F that determines the initial state,
G = {G1, ..., Gn} is a finite set of goals (henceforth hy-
potheses) where each Gi is a set of positive literals inter-
preted as a conjunctive formula, and O = o1, ..., om is a
sequence of observations such that each observation oi is a
pair (αi, φi) comprising an observed action, αi ∈ A, and a
set of literals, φi drawn from F .

The actor is assumed to be pursuing one and only one
goal G∗ ∈ G. We emphasize the nonstandard definition of
observations. oi in an observation pair (αi, φi) where αi cor-
responds to an action drawn from A and φi corresponds to
the truth or falsity of some properties of the state, drawn
from F , immediately following the execution of αi, in the
case where αi is nonempty. For example, the observation
(move(lab,corridor),handsEmpty) denotes that the actor was
observed to perform the action move(lab,corridor) and the
property handsEmpty was observed in the resulting state. In
cases where only properties are observed, αi is empty. In
cases where an action is observed but no state properties,
φi is empty. The addition of state properties to the observa-
tions can be critical to goal recognition. Properties of state
can influence the actor’s decision making, and they can also
provide clues to the occurrence of past unobserved actions.

Given a goal recognition problem, 〈Σ, I,G, O〉, a se-
quence of world-altering actions a1, . . . , an satisfies obser-
vations O = (α1, φ1),. . . ,(αm, φm) if there is a monotonic
function f mapping the observation indices j = 1, ...,m into
action indices i = 1, ..., n such that af(j) = αj (trivially sat-
isfied when αj is empty), and φj holds in b′ which is the
belief state that results from performing a1, . . . , af(j), j =
1, . . . ,m, in b for I. Following Ramı́rez and Geffner (2009),
a solution to a goal recognition problem 〈Σ, I,G, O〉 is a set
of hypotheses G′ ⊆ G such that for every goal G ∈ G′ there
exists some π ∈ Π∗(G), the set of optimal plans for G, such
that π satisfies O. We denote this set of hypotheses G∗.

3 Active Goal Recognition

In standard accounts of goal recognition, the observer is a
passive observer. In this section we introduce the notion of
active goal recognition wherein we endow the observer with
agency to actively sense, act, or react as part of the goal
recognition process, thereby making the observer a first-
class citizen in the recognition process. In tandem with the
actor’s pursuit of its goal, the observer executes a sequence
of sensing and world altering actions. In the simplest case,
an observer will simply perform a sequence of sense actions
that evaluate the truth value of a fixed set of propositions. In
more sophisticated cases, the observer will determine what
to sense based on the candidate goals under consideration,
interleaving world-altering actions (e.g., moving its location,
picking up an object to look underneath it) with sensing in
order to realize more purposeful observations or perhaps, as
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we discuss briefly in Section 7, to go beyond goal recogni-
tion and actively intervene in the actor’s pursuit of its goal.
Such contingent plans—what we refer to here as observer
plans—have the potential to increase observational power,
expedite, and in some cases make possible (where without
observer agency, it was impossible) the recognition of the
actor’s goal.

The definition of active goal recognition that follows al-
lows for two views of the world—that of the actor and that of
the observer, each with its own view of the initial state, and
its own sets of actions, with the observer endowed with both
world-altering and sensing actions. These actions dictate the
subset of fluents that the actor (resp. observer) can affect,
and/or observe. Typically the actor is assumed to be oper-
ating with complete information about the fluents related to
the achievement of its goals.

Definition 2 An active goal recognition problem is a tu-
ple 〈Σ, I,G, τ〉 where Σ = 〈F ,AA ∪ AO ∪ ΩO〉, the flu-
ents and the actions, comprising the world-altering actions
of the actor and the world-altering and sensing actions of
the observer; and the initial state I = 〈IA, IO〉 comprising
two sets of clauses over F , describing the initial state of the
actor and observer, respectively; and finally τ which is the
contingent plan corresponding to the observer plan.

Notation: For notational convenience, we use ΣA to denote
the pair 〈F ,AA〉, the fluents and actions of the actor.

Note that execution of the observer plan, τ , in whole or
in part, yields a sequence of observations, O = o1, ..., om,
where each oi is a pair (αi, φi) per Definition 1. This in turn
reduces the active goal recognition problem to a goal recog-
nition problem.

We have postponed detailed discussion of the observer
plan, τ , to Section 4. In some cases, the plan is determined
a priori, and takes the form of a conditional plan. In other
cases it is desirable to generate it on the fly. In this latter
case, τ is initially empty and active goal recognition yields
a second problem—that of generating the observer plan.

Definition 3 A solution to an active goal recognition prob-
lem 〈Σ, I,G, τ〉 is a set of hypotheses G′ ⊆ G where for
each hypothesis G ∈ G′ there exists a plan π ∈ Π∗(G) that
satisfies the sequence of observations O resulting from the
(partial) execution of the observer plan τ .

Example 1. Consider a scenario (proposed by Pozanco et
al. (2018)) where a terrorist (the actor) has committed an at-
tack in the center of a city and is attempting to leave the city
by either plane, train, or bus. The police (the active observer)
are trying to prevent the actor from leaving the city and are
using cameras located in various locations around the city in
an attempt to locate the actor. Unfortunately, the police do
not have sufficient resources to set up more than one block-
ade/control point along the various escape routes (to prevent
the actor from escaping) and must therefore first recognize
the actor’s goal. To this end, in addition to the fixed cameras,
the police have at their disposal a drone that they can deploy

to scan various locations in the city in an attempt to obtain
additional observations pertaining to the actor’s location. To
illustrate, we partially model Example 1 as an active goal
recognition problem.

droneSense($loc) ∈ ΩO

PRE(droneSense) := at(Drone,$loc)
OBS(droneSense) := at(Terrorist,$loc)

cameraCityHallSense ∈ ΩO

PRE(cameraCityHallSense) := on(CameraCityHall)
OBS(droneSense) := at(Terrorist,CityHall)

G = {at(Terrorist,Airport),at(Terrorist,TrainStn),
at(Terrorist,BusStn)}

At the outset, the observer has not started to execute
τ , there are no observations, and thus G∗ = G. The ob-
server plan τ advises the observer to first perform cam-
eraCityHallSense followed by droneSense where $loc is Zoo
(which necessitates deploying the drone to the zoo to sat-
isfy at(Drone,Zoo)), and upon executing these two actions
the police observe whether or not at(Terrorist,CityHall) and
at(Terrorist,Zoo) hold. Assume that at(Terrorist,Zoo) was
observed, and further assume that the zoo is on the op-
timal path to the airport from the city center but not on
any optimal path leading from the city center to either the
bus station or the train station. Given the observations in-
duced by this partial execution of τ , it follows that G∗ =
{at(Terrorist,Airport)}.

4 The Observer Plan

The active goal recognition problem includes the observer
plan, τ , which we identify as a contingent plan (Definition
2). In some cases, this contingent plan is determined a priori,
and takes the form of a conditional plan. In other cases it is
initially a null plan and is automatically generated on the fly.

Given the active goal recognition problem, 〈Σ, I,G, τ〉,
the goal for τ is typically to generate a plan that results in
a unique hypothesis, a G′ ⊆ G where |G′| = 1. In other
cases, goal recognition might want to eliminate a particular
hypothesis from G (e.g., it might want to know that the ter-
rorist is not heading to the airport). From the perspective of
the observer, such goals are fundamentally epistemic, since
they talk about the observer’s state of knowledge, rather than
the state of the world. For example, the goal might be to
know (or believe) G1 is being pursued by the actor and to
know that G2 and G3 are not being pursued. This is of course
different from knowing G1 and knowing ¬G2 and ¬G3. We
do not want to know that the goals currently hold (resp.
do not hold), but rather that they are (resp. are not) being
pursued. Further, since our observer is endowed with both
world-altering actions as well as sensing actions, we don’t
want our observer to commandeer a helicopter to transport
the terrorist to the airport and derive certainty by changing
the state of the world.

The pursuit of epistemic goals has been studied most re-
cently in the context of the burgeoning field of epistemic
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planning (e.g., (Baral et al. 2017; Bolander 2017)) and an-
other approach to addressing this class of problems would be
to cast them as epistemic planning problems. Alternatively,
we can exploit a contingent planner that accepts epistemic
goals. Indeed in previous work Baier, Mombourquette, and
McIlraith (2014) developed an approach to contingent plan-
ning with epistemic goals that obviates the need for true
epistemic planning via a compilation method to contingent
planning. Generation of our contingent plans with epistemic
goals could be realized using such a planner, though the
problem of distinguishing between knowledge of the pursuit
of a goal vs knowledge of goal realization still remains.

For the purposes of this paper, we take a more pragmatic
approach and in Section 5 propose a goal recognition system
that generates and executes small observer plans for specific
hypothesis-related goals, interleaving these with the updat-
ing of G′, the candidate hypotheses (goals) that remain under
consideration, via standard goal recognition systems. In the
subsection that follows, we introduce theory central to the
development of this system.

4.1 Testing Hypotheses

Once you eliminate the impossible, whatever remains,
no matter how improbable, must be the truth.
- Arthur Conan Doyle

To understand how to achieve hypothesis-related goals re-
lating to goal recognition we need to understand how acting
and sensing can eliminate hypotheses from a candidate goal
set G, and we must identify any associated properties we
might want our observer plans to have in order to realize the
intended consequences of our observer plan τ . To this end,
we revisit ideas first introduced in work by McIlraith and
Reiter (1992) on hypothetical reasoning, adapting them to
the context of goal recognition.

Most sensing actions simply return the truth or falsity of a
fluent or set of fluents relative to a particular state. The defi-
nition of a test augments this fundamental notion of sensing
with a set of conditions that must be true for the test to be
realized. For example, if the observer wants to see whether
the terrorist is at the zoo entrance, it must position a camera
at the zoo entrance and then sense (i.e., look). The location
of the camera at the appropriate location, together with any
other preconditons of the sense action constitute the initial
conditions for the test that determines if the terrorist is at the
zoo entrance.

Definition 4 (Simple Test) A simple test is a tuple 〈C, ω〉
where C, the initial conditions for the test, is a conjunction
of literals and ω ∈ Ω is a sensing action.

Tests may also be complex, comprising a series of sim-
ple tests interleaved with world altering actions whose ex-
ecution satisfies the initial conditions necessary to perform
the various simple tests (McIlraith and Reiter 1992). One
would typically expect the observer plan τ to be a complex
test (possibly) comprising multiple simple tests (whose out-
comes serve as additional observations) interleaved with the
actions the observer must perform in the world to realize the
initial conditions for each simple tests.

Definition 5 (Test Outcome) The outcome of a simple test
〈C, ω〉 is OBS(ω).

Definition 6 (Refutation) Given an active goal recognition
problem 〈Σ, I,G, τ〉, a test outcome μ refutes a hypothesis
G ∈ G iff no plan for G exists that satisfies the concatenation
of observation (∅, μ) to observation sequence O, resulting
from the execution of τ .

In Example 1, a test outcome μ may inform the police that
all roads leading to the airport are blocked. μ then refutes the
hypothesis that the terrorist is attempting to escape via plane,
i.e., at(Terrorist,Airport).

Note that the definition of refutation is stronger than many
current-day goal recognition criteria (including ours) that
appeal to the set of optimal plans for membership of G ∈ G.

Definition 7 (Confirmation) Given an active goal recogni-
tion problem 〈Σ, I,G, τ〉, a test outcome μ confirms a hy-
pothesis G ∈ G iff there exists a plan π ∈ Π∗(G) that sat-
isfies the concatenation of observation (∅, μ) to observation
sequence O, resulting from the execution of τ .

In Example 1, if a test outcome μ places the terrorist on
the optimal route between the city center and the airport,
then μ confirms at(Terrorist,Airport). A refuting or confirm-
ing test outcome may eliminate a hypothesis depending on
the criteria by which a hypothesis space is defined (McIlraith
and Reiter 1992). In the active goal recognition setting, we
say that the set of hypotheses G has the following properties:

Proposition 1 A test outcome μ eliminates all hypotheses
G ∈ G that are refuted by μ.

Proposition 2 A test outcome μ eliminates all hypotheses
G ∈ G that are not confirmed by μ.

Domains and Observation Noise, and Suboptimality.
Our definitions of refutation and confirmation (and thus
of elimination) presuppose an accurate domain axiomatiza-
tion, noise-free observations, and a rational actor that single-
mindedly follows optimal paths to a goal. These assump-
tions (or slightly relaxed variants that tolerate paths that are
‘more or less’ optimal) are present in most previous work
on cost-based goal and plan recognition (e.g., (Ramı́rez and
Geffner 2009)). While reasonable in some setting these as-
sumptions can prove too strong and may cause the recog-
nizer’s performance to suffer (Masters and Sardina 2019).
To handle uncertainty, including stochasticity in the domain
model and noise in observations, goal recognition systems
can maintain a probability distribution over belief states and
hypotheses.

Properties of Observer Plans. Observers are endowed
with both sensing actions and world-altering actions that en-
able them to (at least) change the state of the world in order
to realize observer plans in service of goal recognition. In
Section 7, we discuss the case where observers may wish
to aid or impede actor goals. That scenario notwithstand-
ing, an important property for an observer plan τ is that it

9960



be non-intervening. We say that τ is a non-intervening ob-
server plan if for every hypothesis G ∈ G, the set of plans
π, whose execution achieves G are preserved under the exe-
cution of τ . That is, the execution of the observer plan does
nothing that would preclude the actor from executing a plan
to achieve a goal in G. This is a strong assumption and may
not always be desirable.

For example, the observer may introduce an obstacle
along some path and test the actor’s next action which, in
the altered domain, will make clear the actor’s goal (sim-
ilarly to the offline goal recognition design setting (Keren,
Gal, and Karpas 2014)). Such a plan would be considered
an intervening observer plan, but it has clear utility in goal
recognition.

Another potentially desirable property of observer plans is
that obfuscation, privacy, and safety constraints may be en-
forced when the observer does not wish for its actions to be
observable by the actor or for its goal to be inferred, or when
it is desirable to preclude the observer from endangering it-
self or the actor. This can be important if the actor’s aware-
ness of the observer’s actions or their consequences in some
way influences the actor’s realization of its goal. Such addi-
tional properties can be realized as additional (perhaps tem-
porally extended) state constraints that are enforced within
the plan generation process. More generally, we would like
to enforce that the observer’s actions do not influence the
actor’s decision making.

5 Computing the Observer Plan
In the previous section, we suggested various hypothesis-
related goals pertaining to goal recognition. In this sec-
tion, we define an algorithm for active goal recognition
that generates and executes small observer plans for specific
hypothesis-related goals, interleaving these with the updat-
ing of the set of hypotheses G′.

Given an active goal recognition problem P =
〈Σ, I,G, τ〉, where τ is empty, Algorithm 1 returns the set of
hypotheses G′ = G∗ ⊆ G. In Line 1, the function GENERA-
TEOBSPLAN takes P as input and generates the observer
plan τ which is then executed in Line 2 by the function
EXECUTEOBSERVERPLAN. In Line 3, RECOGNIZEGOAL
is given as input a goal recognition problem 〈ΣA, IA,G, O〉
(where O results from the execution of τ ) and returns the set
of hypotheses G′ = G∗ ⊆ G as discussed in Section 2. We
illustrate a run of Algorithm 1 at the end of this section.

Algorithm 1

Require: An active goal recognition problem
P = 〈Σ, I,G, τ〉

1: τ ← GENERATEOBSPLAN(P )
2: O← EXECUTEOBSERVERPLAN(τ )
3: G′← RECOGNIZEGOAL(〈ΣA, IA,G, O〉)
4: RETURN G′

5.1 Landmark-based Hypothesis Elimination

We leverage the notions of tests and hypothesis elimination
to realize the function GENERATEOBSPLAN which gener-
ates an observer plan τ given an active goal recognition

problem 〈Σ, I,G, τ〉. We appeal to landmarks and focus on
generating an observer plan τ on the fly comprising a single
simple test (and the actions necessary to execute the test).
We do so by constructing a PPOS problem whose solution is
the observer plan τ . We leverage fact landmarks to construct
the PPOS problem and guide test selection of observations.
Following Hoffmann et al. (2004):

Definition 8 (Fact Landmark) Given a classical planning
task P = 〈F ,A, I, G〉, a formula l is a fact landmark in P
iff l is true at some point along all plans that solve P .

We do not consider disjunctive landmarks. Let LG be the
set of landmarks for some goal G ∈ G given a classical
planning problem 〈F ,A, I, G〉. The observer’s set of sens-
ing actions, ΩO, is assumed to be augmented with sensing
actions ω ∈ ΩO that encapsulate simple tests 〈C, ω′〉, where
PRE(ω) = PRE(ω′) ∧ C and OBS(ω) is the test outcome μ.
Recalling Definitions 6 and 7:

Proposition 3 Given an active goal recognition problem
〈Σ, I,G, τ〉, a test outcome μ refutes a hypothesis G ∈ G
if ¬μ is a landmark for G and no plan for G exists that sat-
isfies the concatenation of observation (∅, μ) to observation
sequence O.

Proposition 4 Given an active goal recognition problem
〈Σ, I,G, τ〉, a test outcome μ confirms a hypothesis G ∈ G
if μ is a landmark for G (i.e., μ ∈ LG).

Proposition 4 follows from Definition 7 since if μ is a
landmark for G, it is made true at some point along all plans
in Π∗(G). Thus, there exists a prefix a1, . . . , am of some
plan in Π∗(G) which ‘satisfies’ μ. Following Definition 7, a
test outcome μ does not confirm a hypothesis G ∈ G iff there
does not exist an optimal plan for G, π, such that μ holds fol-
lowing some prefix of π. Recall that, following Proposition
2, a hypothesis G ∈ G is eliminated if G is not confirmed by
a test outcome μ. We weaken this definition to ease compu-
tation and make use of landmarks as a guide for the selection
of tests and subsequent gathering of observations.

Proposition 5 If a test outcome μ is a landmark for a hy-
pothesis Gi ∈ G but not for a hypothesis Gj ∈ G (i.e.,
μ ∈ LGi

and μ 	∈ LGj
), then μ weakly eliminates Gj .

The most ‘useful’ landmarks to be tested by the observer
are thus those that maximally (weakly) eliminate hypotheses
in G. To determine the ‘usefulness’ of a landmark, we extract
(using ΣA and IA) the set LG which comprises the sets of
landmarks (LG) for each hypothesis G ∈ G. We compute
from LG the set of landmarks Lu with the highest ‘land-
mark uniqueness value’ which represents the information
value of a given landmark (Pereira, Oren, and Meneguzzi
2017, Equation 2, pg. 4). Lu comprises the ‘most unique’
landmarks such that each landmark l ∈ Lu belongs to a min-
imal number of LG ∈ LG . For example, a landmark l ∈ Lu

could be shared by two and only two hypotheses G1 and G2

and upon observing l, all hypotheses but G1 and G2 may be
weakly eliminated (following Proposition 5).
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Next, we augment F with a special predicate done and
generate a set of actions A′′ and for each landmark l ∈ Lu

we add an action a to A′′ where PRE(a) = l and the effect of
a is done. To ease exposition, we focus on hypothesis elim-
ination via non-confirmation. However, our approach can
be extended to address hypothesis elimination via refutation
(following Proposition 1) by generating additional ‘elimi-
nation’ actions whose preconditions are landmarks with the
property formalized in Proposition 3.

To ensure that the observer plan is non-intervening, we
remove all actions a ∈ AO where EFF(a) includes a land-
mark (or a negated landmark) l ∈ LG for any G ∈ G. While
this method of enforcing non-intervention is maximally pro-
hibitive to the observer, it is minimally disruptive to the ac-
tor. We will explore other, less prohibitive methods of en-
forcing non-intervention in future work.

Finally, given an active goal recognition prob-
lem 〈Σ, I,G, τ〉, we construct a PPOS problem R =
〈F ′,A′

O,ΩO, IO, G〉, where F is augmented with done,
A′

O = AO∪A′′, and G= done. R is then given to a planner
that generates the observer plan τ that solves the planning
task. As τ may include sensing actions, it may be the case
that the results of these sensing actions will be such that G
does not hold in some resulting belief states. In such a case,
τ is considered a weak plan that reaches the goal under
at least one possible set of action outcomes of the actions
in the plan, as opposed to a strong plan which is a closed
policy that achieves the goal in all resulting belief states
(Cimatti et al. 2003). Consider Example 1 where τ may
include the sensing action droneSense. The result of this
action, which is the truth value of at(Terrorist,$loc), may or
may not satisfy the precondition of the relevant action in
A′′ (i.e., that at(Terrorist,$loc) holds) and thus done may
not hold following the execution of τ .

In Line 2, τ is executed and throughout its execution the
state of the world is updated . We assume τ remains appli-
cable throughout its execution and will address the ramifica-
tions of an ever-changing world that may render τ inappli-
cable in future work.

Theorem 1 (Complexity) Given an active goal recogni-
tion problem 〈Σ, I,G, τ〉 and the corresponding PPOS
problem used to generate the observer plan τ , R =
〈F ′,A′

O,ΩO, IO, G〉, if IO does not define a complete ini-
tial state and ΩO 	= ∅ then R is a conditional planning prob-
lem and deciding whether there exists a solution for R is
2-EXPTIME-complete.

The proof follows straightforwardly from Rintanen’s results
on the complexity of conditional planning (Rintanen 2004).

Example 1 (continued). We return to our example and
illustrate a run of Algorithm 1. In Line 1, we generate
the observer plan using the landmark-based approach de-
scribed previously in this section. Let at(Terrorist,Library)
be a landmark in the set of most unique landmarks Lu.
at(Terrorist,Library) is a landmark for at(Terrorist,Airport)
(but not for at(Terrorist,TrainStn) or at(Terrorist,BusStn))
and represents the fact that the terrorist is at the library which

is along the path from the city center to the Zoo, which, in
turn, is located along the path from the city center to the air-
port (and is itself a landmark for at(Terrorist,Airport)). Thus,
one of the newly generated elimination actions in A′′ has
the precondition at(Terrorist,Library) and the effect done.
The generated plan τ might therefore advise deploying the
drone to the library and performing the sensing action drone-
Sense. Further, assume that following the execution of τ in
Line 2, the drone observes at(Terrorist,Library). Thus, fol-
lowing Line 3, G′ = {at(Terrorist,Airport)} (since there
does not exist an optimal plan for at(Terrorist,TrainStn) or
at(Terrorist,BusStn) that passes through through the library).

6 Experimental Evaluation

Recall that in standard accounts of goal recognition, the ob-
server is a passive observer. In active goal recognition, we
endow the observer with agency to actively sense, act, or
react as part of the goal recognition process. An active ob-
server therefore has the potential to increase observational
power, expedite, and in some cases make possible (where
without observer agency, it was impossible) the recognition
of the actor’s goal. In this section, we demonstrate the merits
of an active observer with a set of experiments.

The objectives of our evaluation were four-fold: (1) to
demonstrate that endowing the observer with agency to act
in the world results in earlier recognition compared to a pas-
sive approach; (2) to illustrate that in some settings it is im-
possible for a passive observer to infer the actor’s goal with-
out agency to act in the world; (3) to illustrate that enforcing
constraints on the observer’s actions can mitigate disruptive
behavior; and (4) to demonstrate the applicability of off-the-
shelf conditional planners to active goal recognition. To this
end, we constructed active goal recognition problems from
a diversity of domains and ran them using an off-the-shelf
conditional planner. We experimented with seven domains,
with six being goal recognition benchmarks taken from an
openly available repository based on the benchmarks devel-
oped by Ramı́rez and Geffner and later extended and pub-
lished by Pereira and Meneguzzi (2017). The TERRORIST
domain was obtained with thanks to the authors.

In INTRUSION DETECTION, first introduced by Geib and
Goldman (2001), an attacker (the actor) may want to attack
a set of servers (e.g., by vandalizing a server or stealing
data from it). Actions available to the attacker include ob-
taining access to a server, as well as deleting, modifying,
or downloading files and logs. The observer’s actions in-
clude inspecting a server’s status by accessing and inspect-
ing various logs. In GRID, the actor moves in a grid with
the goal of reaching a certain cell. Moving between some
cells requires keys whose obtaining may require the actor
to obtain additional keys and so on. The observer’s actions
include moving between cells and sensing whether certain
keys have been taken by the actor. In LOGISTICS, the ob-
server is trying to ascertain the destinations of various pack-
ages that are being transported by trucks and airplanes. The
observer can inspect warehouse logs as well as communicate
with control towers in various airports. Similarly, in DEPOTS
and DWR the observer can inspect warehouse logs and in
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ZENOTRAVEL the observer can communicate with various
control towers. TERRORIST models Example 1.

We experiment with 15 problems for each domain. From
each goal recognition problem, 〈Σ, I,G, Ofull〉, we create
a set O comprising m + 1 incrementally growing obser-
vation subsequences from Ofull = o1, ..., om (i.e., 〈〉,〈o1〉,
〈o1, o2〉,...,〈o1, ..., om〉). From each problem we also create
m+1 active goal recognition problems 〈Σ, I,G, τ〉 by: (1)
augmenting ΩO and AO with actions that enable the ob-
server to test landmarks; (2) constructing an incompletely
specified initial state IO; and (3) constructing τ from the
corresponding subsequence from O (i.e., every observation
in the subsequence corresponds to an action in τ ). We as-
sume unit action cost and only experiment with traces that
represent optimal plans executed by the actor.
Early Recognition. To simulate an online recognition set-
ting, Algorithm 1 is run m+1 times for each goal recogni-
tion instance, with the m+1 derived active goal recognition
problems. In line 1, in order to construct the PPOS problem
R, we augment AO with ‘elimination actions’, as described
in Section 5. The landmarks are extracted using the land-
mark generator in the FAST DOWNWARD system (Helmert
2006) which extracts all landmarks (including the orderings
between them) given a classical planning task. From the set
of extracted landmarks, we only choose landmarks that hold
as the result of some action a ∈ AA. In the future, the or-
dering between the landmarks could be used to inform the
ordering of simple tests such that the first landmarks to be
tested are those that are expected to be achieved first (i.e.,
should be achieved next along any plan that reaches the
goal). To avoid calling the landmark generator every time
we run Algorithm 1, we store the cached landmarks and
maintain bookkeeping to determine which landmarks have
been achieved. We enforce non-intervention by removing
all actions a ∈ AO where EFF(a) includes a landmark (or
a negated landmark) l ∈ LG for any G ∈ G. Finally, we give
the constructed PPOS problem to the conditional planner
PO-PRP (Muise, Belle, and McIlraith 2014) which returns
the observer plan τ (which is concatenated with the ‘fixed’
observation actions corresponding to the observations from
Ofull. Note that PO-PRP is an offline conditional planner
and we will explore the use of online contingent planners
such as CLG (Albore, Palacios, and Geffner 2009) in future
work. In Line 2, we simulate τ ’s execution. If the landmark
l being tested belongs to G∗ (which is known to the system),
we randomly select a test outcome μ (i.e., either a ‘negative’
outcome where l does not hold or a ‘positive’ one where l
holds). Otherwise, the test outcome is negative.

In Line 3 we realize the function RECOGNIZEGOAL us-
ing two different recognizers. The first recognizer we use
was proposed by Ramı́rez and Geffner (2009) (obtained
from https://sites.google.com/site/prasplanning/ and hence-
forth called RG) which we run with the FAST DOWNWARD
planner (Helmert 2006) coupled with an admissible heuris-
tic. Since RG expects observations of actions, we replace the
observations of test outcomes by the corresponding actions
in AA. RG makes two calls to the planner each time it is
called and is thus not geared towards an online goal recog-
nition setting. The second recognizer we use is Vered et

Active Passive
Domain |G| |Ofull| T CV T CV

INTRUSION 15 11.5 1.72 79.4% 0.47 66.3%
GRID 7.5 19.2 2.1 51.7% 0.62 40.2%

LOGISTICS 10 18.7 2.9 61.4% 0.43 48.3%
TERRORIST 6 7.3 4.2 90.3% 1.3 84.8%

DEPOTS 8.5 24.1 3.1 52.4% 1.2 37.8%
DWR 6.5 38.6 4.6 65.9% 0.98 44.1%

ZENOTRAVEL 7.5 13.3 3.8 73.2% 1.27 62.7%

Table 1: Comparison between an active approach (Lines 1-3
of Algorithm 1) and a passive one (Line 3 of Algorithm 1) in
various domains using VERED. Each row describes averages
over fifteen problems, where the columns stand for number
of hypotheses (|G|), total number of observations (|Ofull|),
average time in seconds to run the relevant part of Algorithm
1 (T ), and convergence to the correct hypothesis (CV ).

al.’s (2018) landmark-based online goal recognition system
(henceforth called VERED). VERED implements Vered et
al.’s ‘Goal Mirroring with Landmarks’ approach (Algorithm
4 in their paper). Rather than returning the set of hypotheses
G∗ ⊆ G like RG, VERED returns a probability distribution
over the set of hypotheses given the observations, P (G|O).
VERED efficiently utilizes landmarks to rank the likelihood
of hypotheses in G as well as prune hypotheses that are
deemed unlikely given the observed landmarks. These hy-
potheses are assigned a probability of 0 and removed from
G. VERED requires the set of extracted landmarks for the
goal recognition instance and we therefore provide the algo-
rithm with the cached landmarks so that the landmark gener-
ator need only be called once. Lastly, VERED calls a planner
once and we use FAST DOWNWARD for this purpose. Since
we use optimal traces, neither recognizer wrongly eliminates
hypotheses. Finally, to compare between a passive approach
and an active one we ‘skip’ Lines 1-2 of Algorithm 1 in the
passive case and simply provide a goal recognition problem
(with the current subsequence of observations) to the rec-
ognizer. Thus, in the passive case O is only updated with
observations from Ofull.
Early Recognition - Results. Following (Vered et al. 2018),
we are interested in both efficiency and performance mea-
sures. For efficiency, we measure the average time T (in
seconds) required for a run of the relevant part of Algo-
rithm 1. I.e., Lines 1-3 for the active approach and Line 3
for the passive. For performance, Vered et al. define con-
vergence to the correct answer (CV ) as the percentage of
unrevealed observations in Ofull at the time when the rec-
ognizer converged to the correct hypothesis (or 0 if it failed
to converge). Thus, higher values of CV are better as they
indicate earlier convergence. Table 1 compares between an
active setting and a passive setting and shows the average
T and CV values across all problems and all ‘time steps’
for each domain. While the CV values in Table 1 indicate
the average time step in which convergence was achieved,
Figure 1 ‘breaks down’ the convergence process and shows
the average percentage of remaining (non-eliminated) hy-
potheses in G \ {G∗} as a function of the percentage of
revealed observations in Ofull across all GRID (left) and
INTRUSION-DETECTION (right) problems. That is, when all
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Figure 1: Average percentage of remaining hypotheses in G
\ {G∗} as a function of the percentage of revealed observa-
tions in Ofull across all GRID (left) and INTRUSION (right)
problems. 0% signifies that all hypotheses but the actor’s
true goal G∗ have been eliminated by the recognizer.

hypotheses but G∗ have been eliminated (i.e., the actor’s true
goal is inferred and G′ = {G∗} following Line 3), the set G
\ {G∗} will be empty. The dotted and solid curves repre-
sent a passive setting and an active setting, respectively. For
instance, in GRID, when 20% of Ofull has been revealed,
there were, on average, 10% remaining hypotheses in G \
{G∗} in the active setting compared to 80% in the passive
setting. Results in Table 1 and Figure 1 pertain to VERED.

The T values comprise the average time it took to gener-
ate the observer plan in the active setting and a call to the
recognizer in both active and passive settings. In all cases,
PO-PRP generated the observer plan in under three seconds
and FAST DOWNWARD extracted a set of landmarks for a
given planning task in under two seconds. As a call to RG
involves two calls to FAST DOWNWARD, the total runtime of
Lines 1-3 when using RG was dominated by the call to RG
with runtimes of tens (and sometimes hundreds) of seconds
for the larger problems. We thus used RG as a baseline and
do not report on these results in Table 1. In contrast, when
using VERED the runtime dropped dramatically, as reflected
in the low T values in Table 1.

With respect to our first objective, the results demon-
strate that by endowing the observer with agency to act in
the world, the observer can more expeditiously eliminate
possible hypotheses (compared to the passive case where
observations are simply ‘given’ to it), thus facilitating ear-
lier recognition of the actor’s goal (as measured by the CV
values). Earlier recognition, in turn, can facilitate a better
reaction on behalf of the observer. Note that, as will be dis-
cussed in Section 7, the observer will not necessarily achieve
earlier recognition if the resources required for plan gener-
ation and execution (e.g., the time it would take to execute
the observer plan) are not taken into consideration, as is the
case in our experimentation.
Observational Power. Consider a scenario where transmis-
sion from the various sensors has suddenly stopped in the
GRID domain and the observer is thus ‘in the dark’, with
no further observations about the actor’s movements at its
avail. In the LOGISTICS domain, the observer may lose com-
munication with the control tower and in TERRORIST the
cameras may stop working due to a power failure or cyber
attack. We simulate these scenarios in the three aforemen-
tioned domains by only updating O with observations from

Ofull (and only executing the fixed observation actions in τ
in the active case) until a random point where RG returns
|G∗| > 1 (i.e., when some hypotheses are not discriminable
given the observations). We run Algorithm 1 as previously
described and compare between a passive observer and an
active one.

Unsurprisingly, in the passive case G\{G∗} does not
change after no additional observations from Ofull are given
to the passive observer. In the active case the observer gener-
ates a plan τ in every iteration of Algorithm 1 and eventually
converges to the actor’s true goal G∗. Wrt our second objec-
tive, the results demonstrate that in some settings a passive
observer cannot discriminate between hypotheses without
acting in the world, while an active observer may increase
its observational power by acting in the world and obtaining
additional observations.
Disruptive Behavior. We augment AO with actions whose
effects comprise of the predicate done and of negated land-
marks which can render the goals in G unachievable. In
GRID, the observer can change the locks on doors and steal
keys; in INTRUSION, the observer can shut down servers and
delete files; and in LOGISTICS, the observer can break a
vehicles. We experiment by running Algorithm 1 with and
without the enforcement of non-intervention via elimination
of potentially disruptive actions.

Without enforcing non-intervention, PO-PRP (if possi-
ble) computes strong plans that refute hypotheses by causing
goals to become unachievable rather than computing weak
plans comprising sensing actions whose outcomes may or
may not cause done to hold. With respect to our third ob-
jective, the results demonstrate that without enforcing con-
straints on the observer’s actions, the latter may act in unin-
tended (and possibly undesirable) ways. For instance, while
it may not be the observer’s goal to hinder the actor by ren-
dering some hypotheses in G unachievable (as is the case in
the counterplanning literature), the disruptive nature of its
unconstrained plans may inadvertently do so.

Finally, with respect to our fourth objective, the results
in this section demonstrate that an off-the-shelf conditional
planner can be readily used to solve the constructed PPOS
problems. However, our promising results do not come with-
out caveats. The conditional planning tasks given to PO-
PRP are rather simple, which allowed the planner to gen-
erate the policy in under two seconds. However, due to the
high complexity of conditional planning (Rintanen 2004) the
runtime can grow significantly as the problem size grows (as
seen in Muise, Belle, and McIlraith’s (2014) Table 1).

7 Beyond Recognition: Aiding or Impeding
To this point, we have focused on the task of active goal
recognition—giving agency to the observer in service of rec-
ognizing the goal of the actor. Nevertheless, in most prac-
tical applications, goal recognition is not an end in itself.
Indeed, it is typically the case that goal recognition is per-
formed so that an agent (here, our observer) can perhaps aid
or impede the actor’s goal, as illustrated in our example.

The idea of endowing an observer with agency to aid
or impede the actor has been proposed by a number of re-
searchers in the context of goal or plan recognition (e.g.,
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(Geib et al. 2016)). For example, Freedman and Zilberstein
(2017) propose a method of assisting an actor by adopting
the latter’s presumed goal and generating a plan to achieve
it. When the observer wishes to impede goal achievement,
the body of work on counterplanning (e.g., (Freedman and
Zilberstein 2017; Pozanco et al. 2018; Porteous and Lind-
say 2019)) formulates a counterplanning task, wherein the
observer (called an observing agent by Freedman and Zil-
berstein, a preventing agent by Pozanco et al., and a protag-
onist by Porteous and Lindsay) attempts to prevent the ac-
tor from achieving its presumed goal. Since these works use
a goal recognition algorithm prior to assisting or impeding
goal achievement, the algorithm proposed in Section 5 and
demonstrated in our experiments can be straightforwardly
used to augment these works as a black box that returns a
subset of the hypotheses in G.
Example 1 (continued). Recall that after observing
at(Terrorist,Library), G′ = {at(Terrorist,Airport)} follow-
ing Line 3 of Algorithm 1. At this point, we can employ
Pozanco et al.’s algorithm for domain-independent coun-
terplanning (Pozanco et al. 2018, Algorithm 1, pg. 5) to
generate a plan advising the observer (the preventing agent
in their work) to set the blockade at the zoo (a landmark for
at(Terrorist,Airport)), thereby stopping the terrorist.

More generally, and perhaps more importantly, endowing
the observer with the ability to generate a contingent plan,
τ , that achieves both ontic and epistemic goals simultane-
ously, as mentioned briefly in Section 4, would in principle
enable the observer to eliminate sufficient hypotheses from
G to generate a helpful plan. Indeed, achievement of differ-
ent goals can often share subgoals, or even complete plans,
so determination of a unique hypothesis need not be a pre-
cursor to an observer selecting and performing actions that
aid or impede the actor. There is always a tension between
acting in service of further refinement of G or in service of
realizing or impeding those goals. Some of those trade-offs
can be realized by a contingent planner that performs both
sensing and acting and that is designed to minimize the over-
all cost of its plan. In such a setting, the cost of actions must
be carefully considered, potentially including elements such
as time, money, or actor frustration. Exploration of these
ideas is left to future work.

8 Discussion and Summary
In this work, we have introduced and formalized the notion
of active goal recognition in which we endow the observer
with agency to sense, reason, and act in the world with a
view to enhancing and possibly expediting goal recognition,
and/or to intervening in goal achievement. We presented an
algorithm for active goal recognition and a landmark-based
approach that leverage automated planning to facilitate hy-
pothesis elimination. Finally, we evaluated our approach on
a diversity of domains and demonstrated the merits of an
active observer compared to a passive observer.

As discussed in Section 1, our work is situated within
the broader field of plan, activity, and intent recognition.
Most closely related to our work is a body of work on
plan and goal recognition that endows the observer with

agency to act in the world (and possibly interact with the
actor) in order to disambiguate the hypothesis space during
runtime (e.g., (Bisson et al. 2011; Mirsky et al. 2018)) as
well as in an offline setting (Keren, Gal, and Karpas 2014;
Keren et al. 2020). While Kabanza et al. (2010) indepen-
dently propose to allow the observer to actively make obser-
vations, they use plan libraries and have not, to the best of
our knowledge, implemented their approach. In all of these
works, the observer selects tests whose outcomes (e.g., the
actor’s next action or response to a query) facilitate hypothe-
sis elimination and are therefore important modalities at the
avail of an active observer.

Our work is also relevant to the field of human-aware
AI which seeks to build AI agents whose behavior is in-
terpretable to the human (cast as the observer) in the loop.
Recently, there has been notable interest in this field, evi-
dent by a large body of work with applications to human-
human, human-machine, and machine-machine interaction.
Chakraborti et al. (2019) present a comprehensive survey of
the research landscape, as well as independently discuss the
notion of an active observer and how the observer’s agency
should affect the decision making of an actor keen on ob-
fuscating its plan or making it more legible. The ideas we
have formalized in this work can be leveraged to facilitate
an active observer in this context.

While in our experiments we assume a rational actor and
noise-free observations, our approach can address poten-
tially noisy observations by using outcomes of tests (i.e.,
additional observations) as evidence by which to weight hy-
potheses in a probabilistic setting. Finally, if probabilities
are associated with hypotheses in G, the observer can focus
on hypotheses that will maximize information gain wrt G.
This may be desirable in general to minimize testing time on
improbable hypotheses, as shown by Mirsky et al. (2018).
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