
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Symbolic Top-k Planning

David Speck, Robert Mattmüller, Bernhard Nebel
University of Freiburg, Germany

{speckd, mattmuel, nebel}@informatik.uni-freiburg.de

Abstract

The objective of top-k planning is to determine a set of k
different plans with lowest cost for a given planning task. In
practice, such a set of best plans can be preferred to a single
best plan generated by ordinary optimal planners, as it allows
the user to choose between different alternatives and thus take
into account preferences that may be difficult to model. In
this paper we show that, in general, the decision problem ver-
sion of top-k planning is PSPACE-complete, as is the de-
cision problem version of ordinary classical planning. This
does not hold for polynomially bounded plans for which the
decision problem turns out to be PP-hard, while the ordinary
case is NP-hard. We present a novel approach to top-k plan-
ning, called SYM-K, which is based on symbolic search, and
prove that SYM-K is sound and complete. Our empirical anal-
ysis shows that SYM-K exceeds the current state of the art for
both small and large k.

Introduction

The objective of cost-optimal planning is to find a single
plan, which is a sequence of actions that leads to a goal state
with minimal cumulative costs. The problem of determin-
ing not only a single best plan, but a set of the k best plans
is called top-k planning (Katz et al. 2018). While an opti-
mal plan may be sufficient in some cases, in practice it is
often better to have many good alternative plans. A variety
of good alternative plans makes it possible to take into ac-
count user preferences and environmental influences that are
difficult to model or may have changed at the time the plan
is executed. A top-k planner also allows to “generate and
test” high quality plans, which is relevant for various areas,
such as goal recognition (Sohrabi, Riabov, and Udrea 2016),
diverse planning (Katz and Sohrabi 2019), morally permis-
sible planning (Lindner, Mattmüller, and Nebel 2019), or ex-
planation generation (Eifler et al. 2019). In addition, collec-
tions of plans for planning tasks can serve as practical train-
ing sets for machine learning algorithms (Toyer et al. 2018;
Gnad et al. 2019) and enable empirical studies on properties
of different planning tasks (Corraya et al. 2019).

Although the problem of determining k shortest paths for
a given graph is a well studied topic going back to 1957

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Bock, Kanter, and Haynes 1957), the problem of determin-
ing k cheapest plans for a given planning task has more re-
cently been raised (Riabov, Sohrabi, and Udrea 2014). There
are several approaches to the k shortest paths problem, such
as a generalization of A� (Hart, Nilsson, and Raphael 1968),
called K� (Aljazzar and Leue 2011), which partially gener-
ates and processes parts of the input graph. For top-k plan-
ning, there are currently two different approaches: K� and
FORBID-K (Katz et al. 2018). While K� can be applied to
top-k planning without major changes, FORBID-K is a novel
iterative approach based on a replanning loop that forbids
already found plans and preserves all other plans. It turns
out that FORBID-K dominates K� if only a small number of
plans are desired. However, the replanning is too expensive
if a larger number of plans is desired, which leads to a large
decrease in performance. This raises the question whether
there are approaches that are efficient for small k and also
scale well to larger k.

Over the past decade, symbolic search has proven to be a
competitive approach to cost-optimal planning (Edelkamp,
Kissmann, and Torralba 2015). In contrast to explicit search,
in which individual states are generated and expanded, sym-
bolic search operates on whole state sets. Interestingly, sym-
bolic planning often finds not only one (optimal) plan, but
several at once. However, only one of these plans is re-
ported and all other plans are ignored (Torralba 2015). To the
best of the authors’ knowledge, symbolic planning has never
before been used for top-k planning. However, Günther,
Schuster, and Siegle (2010) proposed a symbolic search
based on Binary Decision Diagrams (Bryant 1986) to de-
termine the most probable paths of a given graph with tran-
sition probabilities. The approach of Günther, Schuster, and
Siegle (2010) explores the entire state space to determine
these paths and is closely related to the k shortest path prob-
lem of graphs.

This paper has a theoretical and a practical contribution to
top-k planning. On the theoretical side, we answer the ques-
tion whether top-k planning is computationally harder than
ordinary planning. On the practical side, we introduce a new
symbolic approach to top-k planning and prove soundness
and completeness. An empirical study on various planning
domains shows that the algorithm presented is a top-k plan-
ner that exceeds the current state of the art for both small
and large values of k.

9967

Preliminaries

We consider classical planning tasks that are characterized
by the SAS+ formalism (Bäckström and Nebel 1995).
Definition 1 (Classical planning task). A classical plan-
ning task is a tuple Π = 〈V, I,O,G〉 consisting of four
components. V is a finite set of state variables, each asso-
ciated with a finite domain Dv . A fact is a pair (v, d), where
v ∈ V and d ∈ Dv , and a partial variable assignments over
V is a consistent set of facts. If s assigns a value to each
v ∈ V , s is called a state. States and partial variable assign-
ments are functions which map variables to values, i.e., s(v)
is the value of variable v in state s (analogous for partial vari-
able assignments). O is a set of operators, where an operator
is a pair o = 〈preo, eff o〉 of partial variable assignments
called preconditions and effects, respectively. Each opera-
tor has non-negative cost co ∈ N0. The state I is called the
initial state and the partial variable assignment G specifies
the goal condition, which defines all possible goal states S�.
With S we refer to the set of all states defined over V , and
with |Π| we refer to the size of planning task Π, i.e., the
number of operators and facts.

We call an operator o ∈ O applicable in state s iff preo is
satisfied in s, i.e., s |= preo. Applying operator o in state s
results in a state s′ where s′(v) = eff o(v) for all variables
v ∈ V for which eff o is defined and s′(v) = s(v) for all
other variables. We also write s[o] for s′. The objective of
ordinary classical planning is to determine a plan, which is
defined as follows.
Definition 2 (Plan). A plan π = 〈o0, . . . , on−1〉 for plan-
ning task Π is a sequence of applicable operators which gen-
erates a sequence of states s0, . . . , sn, where s0 = I, sn ∈
S� is a goal state and si+1 = si[oi] for all i = 0, . . . , n− 1.
The cost of plan π is the sum of its operator costs. Plan π is
optimal if there is no cheaper plan. With PΠ we refer to the
(possibly infinite) set of all plans for a planning task Π.

Top-k Planning

The objective of top-k planning is to determine a set of k
different plans P ⊆ PΠ with lowest costs for a planning
task Π. It is important that there exists no plan π ∈ PΠ for Π
that is not included in P and has lower costs than some plan
in P . We want to point out that ordinary classical planning is
an important special case of top-k planning (k = 1). Similar
to Katz et al. (2018), we formally define top-k planning as
follows.
Definition 3 (Top-k planning). Given a planning task Π
and a natural number k, top-k planning is the problem of
determining a set of plans P ⊆ PΠ such that:
1. there exists no plan π′ ∈ PΠ with π′ �∈ P that is cheaper

than some plan π ∈ P , and
2. |P | = k if |PΠ| ≥ k, and |P | = |PΠ|, otherwise.

We call an algorithm A sound for top-k planning iff al-
gorithm A reports only valid plans and satisfies condition
(1.) of Definition 3. Note that this definition of soundness
already implies optimality. Intuitively this makes sense, be-
cause a top-k planner should only report top plans. Alter-
natively, it would be possible to define soundness without

optimality to describe algorithms which find k different but
not necessarily optimal plans. Similarly, we say that an al-
gorithm A is complete for top-k planning iff algorithm A
terminates and satisfies condition (2.) of Definition 3.

Symbolic Search

Symbolic versions of search algorithms resemble their ex-
plicit counterparts, but expand and generate whole sets of
states in contrast to individual states. In recent years, sym-
bolic planning has become a competitive alternative to ex-
plicit optimal classical planning (Edelkamp, Kissmann, and
Torralba 2015). In symbolic planning, a set of states S ⊆ S
is represented by its corresponding characteristic function
χS , which is a Boolean function χS : S �→ {
,⊥}. More
precisely, states contained in S are mapped to
 and all oth-
ers to ⊥, i.e., χS(s) =
 if s ∈ S and χS(s) = ⊥ other-
wise. Usually such functions are represented by compact and
efficient data structures such as Binary Decision Diagrams,
also known as BDDs (Bryant 1986). Operators can be rep-
resented as transition relations (TRs) which are defined over
sets of states. A set of operators O ⊆ O can be represented
as a TR containing the set of all state pairs (s, s′) such that
s′ is reachable from s by applying an operator o ∈ O. For a
given set of states S and a TR T , the image/preimage opera-
tion computes all successors/predecessors of S with respect
to the operators represented by T .

Symbolic Dijkstra search (Dijkstra 1959) in forward di-
rection (progression) starts with the characteristic function
of the initial state χI and iteratively computes the successors
until a function is found that is consistent with the goal con-
dition. Technically, a BDD at the beginning represents the
initial state, and image operations are applied iteratively un-
til a BDD with a non-empty intersection with the BDD rep-
resenting the goal conditions/states is found. Symbolic back-
ward search (regression) can be realized by starting with the
goal states, applying the preimage operation until the initial
state is found. The combination of these two searches forms
a bidirectional search used by most modern symbolic plan-
ners (Torralba 2015).

Computational Complexity

One interesting question is, of course, whether top-k plan-
ning is computationally harder than ordinary planning. It
turns out that the short answer is: it depends. Let us first in-
troduce two decision problem versions of the planning prob-
lem, which correspond to generating optimal plans.

Definition 4 (Bounded plan existence). BOUNDED PLAN
EXISTENCE is the problem of deciding for a given planning
task Π and a natural number �, whether there exists a plan
of length � or less. POLYNOMIALLY BOUNDED PLAN EX-
ISTENCE is the same problem where � is bounded by some
polynomial p in the size of Π, i.e., � ≤ p(|Π|).

Bylander (1994) has shown that BOUNDED PLAN EX-
ISTENCE is a PSPACE-complete problem. Hardness has
been shown using a generic reduction from a Turing ma-
chine. From that it follows straightforwardly that the more
restricted version POLYNOMIALLY BOUNDED PLAN EXIS-

9968

TENCE is NP-complete. Parallel to the planning problems
we now introduce the top-k-existence problems.

Definition 5 (Bounded top-k-existence). BOUNDED TOP-
K-EXISTENCE is the following decision problem: Given a
planning task Π and two natural numbers � and k, are there at
least k different plans of length at most �? POLYNOMIALLY
BOUNDED TOP-K-EXISTENCE is the decision problem with
� ≤ p(|Π|) for some polynomial p.

For the analysis of the new problems we need to introduce
a few less well-known complexity classes: FP, FPSPACE,
#P (Valiant 1979), #PSPACE (Ladner 1989), and PP (Gill
1977). FP is the set of functions computable in polynomial
time. Similarly, FPSPACE is the class of functions com-
putable in polynomial space. The space of the output tape is
not taken into account, i.e., the result of a function can have
a size exponential in the instance size. #P is the set of func-
tions f such that there exists a non-determinstic polynomial-
time Turing machine where the result of f is equal to the
number of accepting computations. #PSPACE is a similar
class where we allow for polynomial space. Finally, PP is
the decision problem version of #P. It is the class of de-
cision problems such that there exists a non-deterministic
polynomial-time Turing machine where the majority of the
computations are accepting.

Short Plans

Now, it is natural to consider the counting problem #POLY-
NOMIALLY BOUNDED PLAN EXISTENCE, i.e., the problem
of determining the number of plans with a plan length less
than or equal to �. This problem is by definition in the com-
plexity class #P. It is also hard for this class using Bylan-
der’s (1994) above mentioned generic reduction, because
the reduction has the property that the number of success-
ful plans and the number of accepting runs are identical.

Proposition 1. #POLYNOMIALLY BOUNDED PLAN EXIS-
TENCE is #P-complete.

This does not tell us whether POLYNOMIALLY BOUNDED
TOP-K-EXISTENCE is harder than POLYNOMIALLY
BOUNDED PLAN EXISTENCE, but it gives an indication
that the problem is indeed difficult. The natural decision
problem counterpart to #P is PP, i.e., the set of problems
that can be solved by a nondeterministic Turing machine
in polynomial time where the acceptance condition is
that a majority of computation paths accept (Gill 1977).
Obviously, the majority condition is a special case of asking
for a particular k.

Proposition 2. POLYNOMIALLY BOUNDED TOP-K-
EXISTENCE is PP-hard.

Using Toda’s (1991) Theorem, which shows that the
entire polynomial hierarchy is included in PPP, demon-
strates that POLYNOMIALLY BOUNDED TOP-K-EXISTENCE
appears indeed to be much harder than POLYNOMIALLY
BOUNDED PLAN EXISTENCE. From the assumption that
POLYNOMIALLY BOUNDED TOP-K-EXISTENCE is of the
same complexity as POLYNOMIALLY BOUNDED PLAN EX-
ISTENCE, i.e., to be a member of NP, it would follow that

the polynomial hierarchy collapses at PNP, which is consid-
ered to be very unlikely.

The General Case

When we consider the unrestricted problem, then one does
not see a difference in complexity between BOUNDED
PLAN EXISTENCE and BOUNDED TOP-K-EXISTENCE. As
we will show, BOUNDED TOP-K-EXISTENCE is a PSPACE-
complete problem. With the same arguments as above, we
arrive at the following characterization of #BOUNDED PLAN
EXISTENCE.
Proposition 3. #BOUNDED PLAN EXISTENCE is
#PSPACE-complete.

One should note that the number of plans can be exponen-
tial in �, which itself is not any longer restricted to be poly-
nomial in |Π|. So it seems unclear whether BOUNDED TOP-
K-EXISTENCE could still be decided in polynomial space.
As the next theorem shows, we need indeed only polyno-
mial space.
Theorem 4. BOUNDED TOP-K-EXISTENCE is PSPACE-
complete.

Proof. Hardness follows for k = 1 from the complexity
of bounded plan existence. Membership follows because of
Proposition 3, the fact that #PSPACE = FPSPACE (Ladner
1989), and the fact that BOUNDED TOP-K-EXISTENCE is a
member of PFPSPACE. In order to see that the latter claim is
true, let us assume the Turing machine for #BOUNDED TOP-
K-EXISTENCE returns a very large number k′ that is expo-
nential in �. However, we only need to read the log2 k�+2
least significant bits of k′ in order to decide whether k′ ≥ k.
This, can be done in time polynomial in the representation
of k (and hence the instance). Finally, since PFPSPACE ⊆
PSPACE by definition, membership of BOUNDED TOP-K-
EXISTENCE in PSPACE follows.

A Symbolic Algorithm for Top-k Planning

In contrast to explicit state space search, symbolic search
expands sets of states rather than single states. One con-
sequence of this is that often not only one (optimal) plan
but several are found at once. Clearly, if multiple goal states
are expanded, also multiple plans are found. However, even
if only one goal state is expanded it is possible that differ-
ent plans are found which lead to this particular goal state.
However, in the literature so far, only one of these plans is
reconstructed and all other plans are ignored.

In general, symbolic planning is split in two parts. In the
beginning, all reachable states are generated until a goal state
is found, followed by a plan reconstruction phase which re-
gresses the search to reconstruct a goal path and the corre-
sponding plan. Interestingly, the generalization of the Dijk-
stra algorithm for top-k planning and K� also contains two
phases: a) search for reachable states and b) a plan con-
struction phase using an additional data structure to store
paths. For the sake of simplicity, we first describe SYM-K for
symbolic forward search (progression) and ignore actions
with zero cost. Backward search (regression), bidirectional
search and actions with zero cost are addressed afterwards.

9969

s0 = I s1 s2 s3 |= G

pick-up (p)
drop (d) move (m)

drop (d)
pick-up (p)

Figure 1: Visualization of a planning task based on the GRIP-
PER domain (International Planning Competition 1998).

Similar to modern symbolic planning systems (Torralba
et al. 2014; Speck, Geißer, and Mattmüller 2018b) SYM-K
performs a variant of symbolic Dijkstra search (SYM-DIJ).
However, SYM-K differs from normal SYM-DIJ in three as-
pects:
1. once a goal state is expanded, all plans leading to that

goal state are reconstructed,
2. states are not closed, and
3. SYM-K terminates if either k plans are found or the open

list contains only states that have already been expanded
at least once and are not part of a goal path induced by a
plan already found.

We explain the functionality of SYM-K in detail below, give
an example, and prove its soundness and completeness.

Symbolic Top-k Planning

In each step of SYM-K, all states Sc that appear most promis-
ing, i.e., currently have the lowest reachability cost c, are
extracted from the open list and expanded. If goal states are
contained in Sc, the (modified) plan reconstruction is per-
formed and all new plans are added to the set of already
found plans P . However, if during this process the desired
number of plans k is found, the search terminates and returns
the set of plans P . Otherwise, all newly generated states
with their corresponding reachability costs are included in
the open list. Note that in ordinary SYM-DIJ all expanded
states are stored in a closed list and all newly generated
states are filtered using the closed list. This filtering is not
performed in SYM-K to prevent the loss of suboptimal plans.
However, as in ordinary symbolic planning, the closed list is
maintained and factorized by the costs of the states it con-
tains. The latter is necessary to allow for plan reconstruction,
which is described in detail afterwards. Finally, the termina-
tion criteria need to be adapted. Usually, SYM-DIJ is termi-
nated when a plan is found or the open list is empty. SYM-K
terminates if k plans are found or the open list contains only
“known” states that do not lead to a goal state. The second
condition ensures termination when no more plans can be
found. Note that SYM-K has an anytime behavior, since the
actual search is independent of the desired number of plans.

Plan Reconstruction

In explicit search, each state keeps track of its predecessor
state, making it easy to construct a plan when a goal state is

s0 s1
s0
s2

s1
s3

s0
s2

s1
s3

. . .

S0 S1 S2 S3 S4 S5

p d

m d

p
m

p d

Figure 2: Visualization of SYM-K on the basis of the GRIP-
PER example of Figure 1.

found. In symbolic search, however, the predecessor states
are not directly known, but all predecessors are stored in the
closed list with their reachability costs. Therefore, it is pos-
sible to perform a greedy backward search with the perfect
heuristic obtained by the closed list. More precisely, the plan
reconstruction iterates over all operators (descending cost)
and selects an explicit predecessor contained in the closed
list. The latter process is repeated until the initial state is
reached. Note that a greedy search in combination with the
perfect heuristic leads the search directly from a goal state to
the initial state. To reconstruct all found plans, we perform
an exhaustive greedy backward search using the provided
perfect heuristic (again without closing states). Thus, we do
not stop if the initial state was found once, but continue the
search until we have found enough plans or we have ex-
plored the entire state space represented by the closed list.
In this way, all possible plans that lead from the initial state
via any expanded states included in the closed list to the de-
tected goal states are reconstructed and added to the set of
plans P . Although this exhaustive search may appear expen-
sive, the perfect heuristics makes it goal-driven, and each
time the initial state is reached, a new plan is created.

Example 1. Consider a planning task with two rooms, a
ball and a robot with a gripper (Figure 1). The robot can
only move from room A to room B if it carries the ball
and can never return to room A again if it has moved to
room B. Furthermore, suppose the desired number of plans
is three, i.e., k = 3. Figure 2 depicts the functioning of SYM-
K. First all states S0, which can be reached with costs 0,
are extracted from the open list and expanded. Obviously S0

contains only the initial state, which is not a goal state. The
only state reachable from s0 is s1 with a cost of 1. Also, s1
is not a goal state and is expanded, which leads to a set of
two reachable states S2 = {s0, s2}, whose cost is 2. Note
that s0 is included again, although it was expanded previ-
ously and would therefore no longer be considered in or-
dinary symbolic planning. Next, the set of states S2 is ex-
panded, resulting in the set S3 = {s1, s3} with cost of 3.
Now S3 is extracted, which contains the goal state s3. There-
fore, the plan reconstruction procedure is executed. The ex-
haustive greedy backward search results in exactly one plan
〈pick-up,move, drop〉 visualized in red in Figure 2. Since
three plans are desired and we have only found one, the set
of states S3 is expanded, which leads to S4 and then to S5,
which again contains a goal state, namely s3. The plan re-
construction returns two plans for s3 with a cost of 5 each,
which terminates the algorithm because the desired number
of plans is found. If more plans are desired, the search will
continue.

9970

Actions with Zero Costs

Up to this point, we have only considered actions with non-
zero costs. In symbolic search, before applying non-zero
cost actions, it is necessary to perform an additional SYM-
DIJ with zero cost actions in order to obtain all states reach-
able with certain costs (Torralba 2015). We will illustrate
this with Example 1 depicted in Figure 1, where this time
the pickup and drop actions cost 0 and the move action costs
1. In this example, a SYM-DIJ initialized with s0, which
only considers zero cost actions and closes states results in
S0 = {s0, s1}. In other words, only s0 and s1 are reachable
with a cost of 0. These sets of states are partitioned accord-
ing to plan length in order to preserve the predecessor rela-
tionships and enable plan reconstruction. SYM-K performs
exactly the same search (with closing states) within any set
of states Sc. Note that SYM-DIJ without closing states, can
have an infinite execution if the transition system induced by
zero cost actions contains loops. In Example 1 exactly this is
the case, because a SYM-DIJ without a closed list would al-
ternately add s0 and s1 to the open list and the search would
never get past this point. However, as explained in Example
1, closing states can discard plans. To solve the explained
issue, the plan reconstruction in SYM-K considers all states
reachable with the same cost c, i.e., those contained in Sc,
as possible predecessors with a tiebreaking for states closer
to the initial state. The following example illustrates this in
more detail.

Example 2. Consider Example 1 where the pickup and drop
actions cost 0 and the move action costs 1. The search starts
with the initial state s0 and the first SYM-DIJ, which con-
siders only zero cost actions, determines that s0 and s1 are
reachable with cost 0, i.e., S0 = {s0, s1}. From S0, only s2
is reachable with a non-zero cost action (= move). Initial-
ized with s2, the subsequent zero cost SYM-DIJ determines
that s2 and s3 are reachable with cost 1, i.e., S1 = {s2, s3}.
Now the goal state s3 is expanded and the plan reconstruc-
tion starts with s3 and finds the unique predecessor s2. Next,
there are two possible predecessors of s2, namely s1 and s3.
Note that s3 is only considered as possible predecessor be-
cause it is reachable with the same cost as s2, namely 1. Pre-
decessor s1, however, was reachable with cost 0 and is thus
closer to the initial state and processed next. The only prede-
cessor of s1 is s0. Now, s0 is processed and because it is the
initial state, we found the first plan 〈pick-up,move, drop〉.
In addition, s0 has the unique predecessor s1, which again
is considered as predecessor because it is reachable with the
same cost as s0. Finally, s1 is again processed which forms
an infinite loop until k plans are found and returned.

Theoretical Properties

In the following, we show that SYM-K is sound and complete
for top-k planning.

Theorem 5. SYM-K is sound for top-k planning.

Proof. By construction, SYM-K expands all reachable states
with increasing costs. The plan reconstruction performs an
exhaustive greedy best-first search on the “induced reacha-
bility graph”, which therefore finds all plans generated by

SYM-DIJ. Also, all subplans with cost zero are found within
a partitioned state set Sc, since all states contained in Sc are
considered as possible predecessors. This and the fact that
states are expanded with increasing costs proves that SYM-K
is sound for top-k planning.

Theorem 6. SYM-K is complete for top-k planning.

Proof. SYM-K terminates either when a) k plans are found
or b) the open list contains only states that have already been
expanded and are not part of a goal path induced by a plan
already found. In case a), with the same argument as in the
proof of Theorem 5, we know that SYM-K finds all existing
plans with increasing costs. Thus, if at least k plans exist,
SYM-K finds k plans at some point in time. In case b), since
all states S contained in the open list have already been ex-
panded, they can again only lead to already expanded states.
Thus, S together with all reachable states from S forms a
fixpoint. If a goal state s� can be reached from a state s ∈ S,
s must be part of a goal path induced by a plan that has not
yet been found. If this is the case, at least one state of this
path between s and s� must be included in the open list and
never expanded before. This is a contradiction that shows
that SYM-K always terminates, either by a) reporting k plans
or b) by reporting k′ < k plans, if only k′ plans exist.

Finally, we want to mention that SYM-K is strongly opti-
mal for planning task without zero cost actions, i.e., SYM-K
reports plans in increasing length among the cheapest plans.
In general, this does not hold if zero cost actions exist, be-
cause once a plan is found which contains a loop consisting
of actions with zero costs, that loop is extended until enough
plans are found and other, perhaps shorter, plans are ignored.

Bidirectional Search

A strength of symbolic planning is that regression can be
easily realized by exchanging the initial state with the goal
states and using the preimage operation instead of the image
operation. This enables a bidirectional search, which is used
by modern symbolic planning systems (Torralba et al. 2014;
Speck, Geißer, and Mattmüller 2018b). It is also possible
to perform symbolic bidirectional search for top-k planning
without significant modifications of the SYM-K algorithm.
Both search directions maintain their own open and closed
lists and only close states within a partitioned state set Sc.
Plan reconstruction is again a greedy best-first search, but is
performed twice, always opposing the actual search direc-
tion. More specifically, both plan reconstructions are initial-
ized with the meeting point and one search is a regression to
the initial state, while the other search is a progression to the
goal states. Each combination of those two subplans results
in a new final plan.

Further Extensions

In the past, symbolic planning was generalized to sup-
port conditional effects (Kissmann, Edelkamp, and Hoff-
mann 2014), state-dependent actions cost (Speck, Geißer,
and Mattmüller 2018a) and axioms (Speck et al. 2019). Such
extensions to classical planning can be combined, resulting
in a widely applicable and competitive planning strategy.

9971

Figure 3: The k-coverage of the presented symbolic top-
k planner SYM-K with forward and bidirectional search in
comparision to K� and FORBID-K with different plan re-
ordering strategies. The benchmark set consists of 73 do-
mains (without axioms) of the optimal track from the Inter-
national Planning Competition 1998-2018.

This also applies to the presented symbolic top-k planner
SYM-K. In contrast, other approaches to top-k planning such
as K� or FORBID-K are based on heuristics that often do not
support concepts such as conditional effects or axioms.

Empirical Evaluation

The presented symbolic top-k algorithm SYM-K1 is imple-
mented in the SYMBA� (Torralba et al. 2014) planner, which
is built on top of the FAST DOWNWARD planning system
(Helmert 2006). We evaluated the performance in terms of
the k-coverage, i.e., the sum of instances for which a plan-
ner reports a set of k best plans or reports only k′ < k
plans but proves that only k′ plans exist (see Definition 3).
We compared our approach with planners that support PDDL
(McDermott 2000) and are currently state of the art in top-
k planning (Katz et al. 2018): K� and FORBID-K. K� (Al-
jazzar and Leue 2011; Katz et al. 2018) is a top-k plan-
ning approach that generates and processes parts of the im-
plicit search tree as needed. The search of K� can be en-
hanced by a heuristic. Note that the search has no anytime
behaviour, i.e., the search is influenced by the desired num-
ber of plans k. FORBID-K (Katz et al. 2018) is an iterative
approach that searches for additional plans through a re-
planning loop that forbids already found plans and preserves
all other plans. The underlying search is an orbit space
search with structural symmetries (Alkhazraji et al. 2014;
Domshlak, Katz, and Shleyfman 2015) and a version of the
LM-cut heuristic (Helmert and Domshlak 2009) supporting
conditional effects. Between the replanning steps, different
reordering strategies (naive and neighbour) can be used to
generate several plans from a single plan. The benchmark
set we use consists of 73 planning domains from the opti-
mal tracks of the International Planning Competitions 1998-
2018. Only domains containing axioms were not considered,

1Available online: https://github.com/speckdavid/symk

because the FORBID-K planner does not support these. Fur-
thermore, we evaluated K� only with the BLIND heuristic,
because planning-specific versions of K� require a consis-
tent heuristic, but no modern heuristic that is consistent sup-
ports conditional effects. However, K� is very memory in-
tensive, which is why the differences between K� with the
blind heuristic and K� with, e.g., the iPDB heuristic (Haslum
et al. 2007), on all domains without conditional effects are
minor anyway (< 2% difference in coverage). For the exper-
iment we use a time limit of 30 minutes and a 4 GB memory
limit for translation, preprocessing, search and plan reports.

Figure 3 shows the k-coverage of SYM-K compared to K�

and FORBID-K. The x-axis indicates the number of desired
plans k, while the y-axis represents the number of instances
in which the corresponding k-coverage has been reached.
Informally, the higher and flatter a line, the better the k-
coverage and the better is the scaling of the corresponding
algorithm. Since K� has no anytime behavior, we evaluated
K� for k = 1 and k = 10 000 separately and used a linear
interpolation to estimate the k-coverage between these ex-
tremes. K� however only solved 6 instances more for k = 1
than for k = 10 000 due to the high memory consump-
tion that forms the bottleneck of the approach. As Katz et
al. (2018) have already shown, FORBID-K dominates K� for
small k. But for larger k it turns out that replanning is too
extensive, so K� works just as well as the best version of
FORBID-K for larger k. SYM-K for k = 1 is only slightly bet-
ter than FORBID-K, but already for k = 2, SYM-K with bidi-
rectional search clearly has the highest k-coverage. Similar
to ordinary symbolic planning, forward search is dominated
by bidirectional search (Torralba 2015). However, SYM-K
with forward search also performs better than FORBID-K
and K� when five or more plans are requested. The most
important observation is that SYM-K also scales to larger k
where the replanning approach of FORBID-K shows a de-
crease in performance. If we compare the performance of
SYM-K and FORBID-K for k = 1 and k = 10 000, we can
see that SYM-K with bidirectional search has less than 5%
performance decrease in terms of k-coverage, while the best
scaling FORBID-K configuration (naive) has more than 60%
performance decrease. Furthermore, we expect that SYM-K
will dominate K� and FORBID-K even for very large k until
the high number of plan reports is the limiting factor, i.e.,
the limiting factor is to write the plans to the disk.

Table 1 shows a domainwise comparison of SYM-K with
bidirectional search and FORBID-K with naive plan con-
struction. As usual, symbolic and explicit approaches shine
in different domains. However, it can be assumed that it is
more difficult to find 10 000 plans than only one plan. But in
52 of 73 domains, the same number of instances is solved by
SYM-K for k = 1 and k = 10 000. This raises the question
in how many instances there are 10 000 plans at all. In other
words, is the main challenge of this benchmark set to prove
that only k′ < k plans exist or to find and report k different
plans? It turns out that all algorithms together can only show
in 41 different instances that less than 10 000 plans exist. For
example, the first seven instances of the PEGSOL08 domain
have only between 4 and 2 678 plans. Intuitively this makes
sense, because with each action the number of pegs on the

9972

Algorithm SYM-K (bidirectional) FORBID-K (naive)

Domain (#Tasks) / k 1 100 10 000 1 100 10 000

AGRICOLA (20) 6 6 6 0 0 0
AIRPORT (50) 23 23 21 28 26 26

BARMAN11 (20) 8 8 8 8 8 0
BARMAN14 (14) 6 6 6 3 3 3
BLOCKS (35) 30 30 30 28 16 0
CALDERA-SPLIT (20) 11 11 11 10 10 3
CAVEDIVING (20) 7 7 7 7 0 0
CHILDSNACK (20) 1 1 1 6 6 6
CITYCAR (20) 15 15 15 18 18 18
DATA-NET (20) 13 13 13 12 9 1
DEPOT (22) 5 5 5 9 9 7
DRIVERLOG (20) 12 12 12 13 13 7
ELEVATORS08 (30) 24 24 22 22 19 14
ELEVATORS11 (20) 19 19 18 18 15 12
FLOORTILE11 (20) 14 14 14 8 8 8
FLOORTILE14 (20) 20 20 20 8 8 8
FREECELL (80) 21 21 21 15 10 0
GED (20) 15 15 7 15 5 0
GRID (5) 2 2 2 2 1 0
GRIPPER (20) 20 20 20 20 20 20
HIKING (20) 15 15 15 13 13 11
LOGISTICS98 (35) 5 5 5 6 6 5

LOGISTICS00 (28) 20 20 20 20 20 17
MAINTENANCE (5) 5 5 5 5 5 2
MICONIC (150) 116 116 114 142 95 36
MICONIC-SA (150) 150 150 150 143 91 4
MOVIE (30) 30 30 30 30 30 30
MPRIME (35) 18 16 14 23 13 0
MYSTERY (30) 25 23 21 21 15 4
NOMYSTERY (20) 14 14 14 15 15 1
NURIKABE (20) 11 11 11 10 6 0
OPENSTACKS (30) 20 20 20 7 6 5
OPENSTACKS08 (30) 30 30 29 24 24 22
OPENSTACKS11 (20) 20 20 20 19 19 19
OPENSTACKS14 (20) 13 13 8 5 5 5
ORGANIC-SPLIT (20) 13 12 12 19 15 10
PARCPRINTER08 (30) 18 18 18 19 19 16
PARCPRINTER11 (20) 13 13 13 14 14 12
PARKING11 (20) 0 0 0 2 0 0

PARKING14 (20) 0 0 0 3 0 0
PATHWAYS (30) 5 5 5 5 0 0
PATHWAYS-NN (30) 5 5 5 5 0 0
PEGSOL08 (30) 29 29 29 29 21 5
PEGSOL11 (20) 19 19 19 19 10 0
PETRI-NET (20) 17 17 10 9 9 9
PIPESWORLD-NT (50) 15 15 13 21 19 6
PIPESWORLD-T (50) 13 13 12 16 15 7
PSR-SMALL (50) 50 50 50 50 49 11
ROVERS (40) 14 14 14 9 9 5
SATELLITE (36) 11 11 11 14 14 9
SCANALYZER08 (30) 12 12 10 17 16 8
SCANALYZER11 (20) 9 9 7 14 13 8
SCHEDULE (150) 46 46 46 44 44 25
SETTLERS (20) 6 6 6 9 9 6
SNAKE (20) 3 0 0 6 0 0

SOKOBAN08 (30) 28 28 25 30 23 10
SOKOBAN11 (20) 20 20 19 20 14 5
SPIDER (20) 6 3 0 11 2 0
STORAGE (30) 14 14 14 17 17 4
TERMES (20) 16 16 16 6 2 0
TETRIS (17) 9 9 9 8 8 6
TIDYBOT11 (20) 12 12 10 14 14 0
TIDYBOT14 (20) 4 4 2 8 8 1
TPP (30) 8 8 8 8 8 5
TRANSPORTER08 (30) 11 11 11 11 7 1
TRANSPORTER11 (20) 7 7 7 7 3 1
TRANSPORTER14 (20) 6 6 6 6 2 1
TRUCKS (30) 12 12 12 12 12 5
VISITALL11 (20) 12 12 12 12 9 0
VISITALL14 (20) 6 6 6 6 1 0
WOODWORK08 (30) 30 30 30 20 20 15
WOODWORK11 (20) 20 20 20 14 14 14
ZENOTRAVEL (20) 10 10 10 13 13 4
∑

(2242) 1293 1282 1232 1280 1020 503

Table 1: A domainwise comparison of SYM-K with bidirec-
tional search and FORBID-K with naive plan reordering for
different numbers of desired plans k.

board is monotonically reduced and so there are only a fi-
nite number of plans. In contrast, there are domains in which
there exist an infinite number of plans. Interestingly, in some
domains there are even infinitely many optimal plans. For
example, in the ELEVATOR domain, it is possible to board
and unboard passengers without any costs. This leads to in-
finitely many (similar) plans by simply adding these two ac-
tions to a valid plan infinitely often. These plans can be very
lengthy and expensive to report. The shortest plan found by
SYM-K in the first instance of the ELEVATORS08 domain has
14 actions, while the longest plan consists of 20 012 actions
(both with cumulative cost of 42). Nevertheless, the domain-
wise comparison shows that for k = 10 000, SYM-K has
more than twice the k-coverage of FORBID-K and K�. For
k = 10 000, SYM-K dominates FORBID-K in 60 domains,
while FORBID-K dominates SYM-K only in 5 domains.

Conclusion

On the theoretical side, we have proven that the BOUNDED
TOP-K-EXISTENCE problem, i.e., the problem of answer-
ing whether there are at least k different plans of length
at most � for a given planning task, is PSPACE-complete.
This result is surprising, because the ordinary BOUNDED
PLAN EXISTENCE problem, i.e., answering the question if
only one such plan exists, is also PSPACE-complete (By-
lander 1994). However, if the plan length � is polynomially
bounded by the input, the problem of deciding whether k
different plans exist is PP-hard and thus very likely much
more difficult than deciding whether a single polynomially
bounded plan exists which is known to be NP-complete.

On the practical side, we presented a novel approach
to top-k planning, SYM-K, based on symbolic search, and
proved that SYM-K is a sound and complete top-k plan-
ning algorithm. We have empirically shown that SYM-K per-
forms better than other state-of-the-art approaches even for a
small number of desired plans k. In addition, SYM-K scales
to larger k better than all other approaches, making SYM-K
suitable regardless of the number of desired plans.

For future work, we want to evaluate how well top-
k planning performs in scenarios where complex con-
cepts for plans are required, such as preferences (Ceri-
ani and Gerevini 2015), state-trajectory constraints (Wright,
Mattmüller, and Nebel 2018) or even moral permissibility
(Lindner, Mattmüller, and Nebel 2019). In addition, we plan
to generalize SYM-K to search for diverse plans (Katz and
Sohrabi 2019), since in some cases it may be desirable to
find plans that differ according to a certain specification in
order to avoid plans that are, e.g., different orders of the
same actions. In general, it is possible to create plans until
any requirement is met. SYM-K can, however, also be used
to meet requirements more efficiently by restricting the plan
reconstruction to ensure such constraints.

Acknowledgments. David Speck was supported by the
German Research Foundation (DFG) as part of the project
EPSDAC (MA 7790/1-1).

9973

References

Aljazzar, H., and Leue, S. 2011. K*: A heuristic search al-
gorithm for finding the k shortest paths. AIJ 175(18):2129–
2154.
Alkhazraji, Y.; Katz, M.; Mattmüller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming Fast
Downward with pruning and incremental computation. In
IPC-8 planner abstracts, 88–92.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bock, F.; Kanter, H.; and Haynes, J. 1957. An algorithm
(the r-th best path algorithm) for finding and ranking paths
through a network. Armour Research Foundation.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Ceriani, L., and Gerevini, A. E. 2015. Planning with always
preferences by compilation into STRIPS with action costs.
In Proc. SoCS 2015, 161–165.
Corraya, S.; Geißer, F.; Speck, D.; and Mattmüller, R. 2019.
An empirical study of the usefulness of state-dependent ac-
tion costs in planning. In Proc. KI 2019, 123–130.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
03, Technion.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2015. BDDs
strike back (in AI planning). In Proc. AAAI 2015, 4320–
4321.
Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2019. Explaining the space of plans through
plan-property dependencies. In ICAPS 2019 Workshop on
Explainable Planning.
Gill, J. 1977. Computational complexity of probabilistic
turing machines. SIAM J. Comput. 6(4):675–695.

Gnad, D.; Torralba, Á.; Domı́nguez, M.; Areces, C.; and
Bustos, F. 2019. Learning how to ground a plan – partial
grounding in classical planning. In Proc. AAAI 2019, 7602–
7609.
Günther, M.; Schuster, J.; and Siegle, M. 2010. Symbolic
calculation of k-shortest paths and related measures with the
stochastic process algebra tool Caspa. In Proceedings of
the First Workshop on DYnamic Aspects in DEpendability
Models for Fault-Tolerant Systems, 13–18. ACM.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Katz, M., and Sohrabi, S. 2019. Reshaping diverse planning:
Let there be light! In ICAPS 2019 Workshop on Heuristics
and Search for Domain-independent Planning.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
novel iterative approach to top-k planning. In Proc. ICAPS
2018.
Kissmann, P.; Edelkamp, S.; and Hoffmann, J. 2014. Gamer
and dynamic-gamer – symbolic search at ipc 2014. In IPC-8
planner abstracts, 77–84.
Ladner, R. E. 1989. Polynomial space counting problems.
SIAM J. Comput. 18(6):1087–1097.
Lindner, F.; Mattmüller, R.; and Nebel, B. 2019. Moral
permissibility of action plans. In Proc. AAAI 2019.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Riabov, A. V.; Sohrabi, S.; and Udrea, O. 2014. New al-
gorithms for the top-k planning problem. In ICAPS 2014
Scheduling and Planning Applications woRKshop, 10–16.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In Proc. IJCAI 2016, 3258–
3264.
Speck, D.; Geißer, F.; Mattmüller, R.; and Torralba, Á. 2019.
Symbolic planning with axioms. In Proc. ICAPS 2019, 464–
572.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018a. Symbolic
planning with edge-valued multi-valued decision diagrams.
In Proc. ICAPS 2018, 250–258.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018b. SYMPLE:
Symbolic Planning based on EVMDDs. In IPC-9 planner
abstracts, 91–94.
Toda, S. 1991. PP is as hard as the polynomial-time hierar-
chy. SIAM J. Comput. 20(5):865–877.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional
A* planner. In IPC-8 planner abstracts, 105–109.
Torralba, Á. 2015. Symbolic Search and Abstraction Heuris-
tics for Cost-Optimal Planning. Ph.D. Dissertation, Univer-
sidad Carlos III de Madrid.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Proc. AAAI 2018, 6294–6301.
Valiant, L. G. 1979. The complexity of computing the per-
manent. Theoretical Computer Science 8:189–201.
Wright, B.; Mattmüller; and Nebel, B. 2018. Compiling
away soft trajectory constraints in planning. In Proc. KR
2018, 474–482.

9974

