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Abstract

We propose improving the cross-target and cross-scene gen-
eralization of visual navigation through learning an agent
that is guided by conceiving the next observations it expects
to see. This is achieved by learning a variational Bayesian
model, called NeoNav, which generates the next expected ob-
servations (NEO) conditioned on the current observations of
the agent and the target view. Our generative model is learned
through optimizing a variational objective encompassing two
key designs. First, the latent distribution is conditioned on
current observations and the target view, leading to a model-
based, target-driven navigation. Second, the latent space is
modeled with a Mixture of Gaussians conditioned on the cur-
rent observation and the next best action. Our use of mixture-
of-posteriors prior effectively alleviates the issue of over-
regularized latent space, thus significantly boosting the model
generalization for new targets and in novel scenes. Moreover,
the NEO generation models the forward dynamics of agent-
environment interaction, which improves the quality of ap-
proximate inference and hence benefits data efficiency. We
have conducted extensive evaluations on both real-world and
synthetic benchmarks, and show that our model consistently
outperforms the state-of-the-art models in terms of success
rate, data efficiency, and generalization.

1 Introduction

Mapless visual navigation is an important skill for robots op-
erating in unknown, unstructured environments. It is charac-
terized as the ability of a robot to navigate itself from an ar-
bitrary location in the environment to a goal position, based
solely on the visual inputs from its on-board sensors. The
main challenge of visual navigation lies in understanding the
scene layout based on the visual observations and reasoning
about the spatial relation between the current and the target
location. This is the main impediment hindering the gener-
alization of navigation ability across different scenes due to
visual and structural discrepancy.

Recent years have witnessed fast advancement of visual
navigation thanks to deep learning, e.g., deep reinforcement
learning (RL) models (Zhang et al. 2017; Zhu et al. 2017;
Gupta et al. 2017; Racanière et al. 2017). Model-free ap-
proaches learn to directly map raw observations to values
or actions, which usually suffers from low data efficiency.
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Model-based methods tackle this issue through modeling the
transition dynamics of agent-environment interaction. Such
model can be used to reason about the future, thus relieving
the trial-and-error learning endeavor. However, it is difficult
to learn a powerful model that generalizes across different
scenes, which is known as the model imperfection issue.

We propose NeoNav, a model-based, supervised learning
approach to visual navigation with strong model generality.
In our method, the agent is guided by conceiving the next
observations it expects to see supposing the best action is
taken. This is realized by learning a generative model condi-
tioned on the multi-view observations at the current location
as well as the target view, from which the next expected ob-
servation (NEO) can be generated. We predict the next best
action based on the generated NEO and the current (front-
view) observation. We frame this problem as a variational
Bayesian inference where the variational lower-bound (ob-
jective) consists of three terms: reconstruction, regulariza-
tion and classification. The minimization of the reconstruc-
tion error maximizes the likelihood of the NEO given the
current observations and target view. The regularization term
drives the variational posterior to match a prior distribution.
The classification term is devised for action prediction.

The key characteristic of our approach is the modeling
of the latent space. First, to enable target-driven navigation,
the latent distribution is conditioned on current observations
and target views. Second, we model the latent space with
a Mixture of Gaussians conditioned on current observations
and next best actions. Such a variational mixture of poste-
riors prior (Tomczak and Welling 2017) effectively allevi-
ates over-regularization of the latent space, thus facilitating
cross-scene model generalization. Moreover, NEO genera-
tion via sampling over the latent space essentially models the
forward dynamics of the agent-environment interaction, i.e.
action-driven state transition. This improves the expressive-
ness of the approximation of variational inference (Cremer,
Li, and Duvenaud 2018), thereby greatly enhancing infer-
ence generalization and data efficiency.

Although our supervised setting requires denser train-
ing signals, the learned model shows significantly bet-
ter generality over unseen test scenes than RL-based ap-
proaches (even if enhanced by supervision such as in be-
havior cloning). Fortunately, target-driven navigation tasks
enjoy the easy acquisition of ground-truth paths as train-
ing data (e.g., using A∗ algorithm). We conducted extensive
evaluations on public datasets of both synthetic (AI2-THOR
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framework (Zhu et al. 2017)) and real-world (Active Vision
Dataset, AVD (Ammirato et al. 2017)) scenes. We demon-
strate that our model attains at least a 5% higher success rate
for both cross-target and cross-scene generalization, com-
pared to several state-of-the-art alternative methods, ranging
from model-based to model-free, from RL-based to super-
vised, and from target-driven to semantic-driven.

2 Related Works

Model-free navigation. This approach learns to map the
raw observations directly to actions. Mnih et al. (2015)
present the first deep reinforcement learning model, called
Deep Q-Learning, that successfully learns control policies
directly from high-dimensional sensory input. Schulman et
al. (2015) propose the Trust Region Policy Optimization
(TRPO), which is effective for optimizing large nonlinear
policies and demonstrates robust performance on a wide
variety of robotic tasks. Lillicrap et al. (2015) present the
DDPG (Deep Deterministic Policy Gradient), which can ro-
bustly solve many simulated tasks. Model-free methods usu-
ally require large training data and the policies do not readily
generalize to novel tasks in unseen environments.

Several works study using deep neural networks to re-
alize classical iterative planning algorithms without an ex-
plicit environmental model (Tamar et al. 2016; Silver et al.
2017; Oh, Singh, and Lee 2017; Lee et al. 2018). Zhang
et al. (2017) focus on the problem of robot navigation in
maze-like environments and present a successor-feature-
based deep RL algorithm that can transfer navigation poli-
cies across similar environments. Most existing models are
trained and tested on mazes; an exception is (Mirowski et al.
2018) which proposes a DRL model for navigating in cities.

Zhu et al. (2017) propose an excellent feed-forward ar-
chitecture for target-driven visual navigation by combining a
Siamese network with the A3C algorithm (Mnih et al. 2016).
They focus on cross-target generalization in smaller indoor
scenes and do not consider generalization to previously un-
seen environments. In (Mousavian et al. 2018), semantic
scene segmentation is incorporated in learning to map from
semantic information to navigation actions. Through com-
parison, we show that our method has better cross-target and
cross-scene generalization.

Model-based navigation. This approach achieves better
data efficiency, but has the issues of cross-scene gener-
alization due to model imperfections. Several approaches
have been proposed to address the model imperfection is-
sue, such as capturing model uncertainty (Deisenroth and
Rasmussen 2011; Marco et al. 2017) and incorporating se-
mantic priors into environmental models (Yang et al. 2018;
Mousavian et al. 2018). With the advances of attention
mechanisms in deep learning, many works propose model-
ing the environment with a memory unit.

Savinov et al. (2018) introduce a topological landmark-
based memory for navigation. A common issue with such
an approach is that the memory, representing an allocentric
map of the scene, grows in size as the scene exploration
proceeds, limiting its practical utility in navigating within

large environments. In (Gupta et al. 2017), the problem is
alleviated by learning an ego-centric mapper and planner,
which, however, assumes perfect odometry. Henriques and
Vedaldi (2018) develop a differentiable module that is able
to associate an egocentric representation of a scene to an
allocentric one. Our method models the environment with
the probabilistic latent distribution in a variational Bayesian
framework, where both model generality and model scala-
bility are attained by imposing a mixture-of-posteriors prior.
A similar model was proposed in (Henriques and Vedaldi
2018) in the RL setting.

Imagination-based navigation. Some model-based navi-
gation methods reason about the future based on the internal
model. Razvan et al. (2017) introduce an imagination-based
planner, which is the first model-based, sequential decision-
making agent that can learn to propose (imagine), evaluate,
and execute plans. The method demonstrates good perfor-
mance on 2D maze-solving tasks. Imagination-Augmented
Agents (I2As) (Racanière et al. 2017) was later proposed
and it learns to generate and interpret predictions as addi-
tional context for deep policy networks. These methods are
generally data-efficient, but have difficulty in scaling to com-
plex, high-dimensional tasks. Generally, similar ideas have
been well practiced in the studies of deep RL, where the
internal model is used to predict future observations and/or
rewards (Oh et al. 2015; Leibfried, Kushman, and Hofmann
2016; Dosovitskiy and Koltun 2016; Jaderberg et al. 2016;
Mirowski et al. 2016; Finn and Levine 2017; Pathak et
al. 2017). Watter et al. (2015) introduce Embed to Con-
trol (E2C), which learns to generate image trajectories from
a latent space in which the dynamics is constrained to be
locally linear, in contrast to the non-linear dynamics mod-
eled by our latent space. Although sharing a similar spirit,
our work is significantly different from the imagination-
augmented RL-based navigation (Racanière et al. 2017;
Pascanu et al. 2017). First, our model is formulated as a vari-
ational Bayesian inference trained with supervised learning
rather than RL. Second, their imaginations refer to a simu-
lated rollout of trajectories, while our imagination is a one-
step imagination of the next observation.

3 Method

3.1 Problem Setting

Target-driven visual navigation takes the current observa-
tions x captured by the agent and a target view g as input,
and predicts the next best action a at each time step to navi-
gate the agent, until reaching the target position.

Observations and goals. The agent camera has only the
azimuth DoF. At each agent location, the observation x con-
sists of K views with evenly distributed azimuth angles:
{0◦, 1

K 360◦, . . . , K−1
K 360◦}, in which 0◦ corresponds to

the front-looking view. The agent captures an image (RGB,
depth or RGB-D) at each view. The K-view observations
provide a local context of the environment, based on which
the agent is able to reason about its location and the room
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Figure 1: Model overview: the probabilistic graphical model and the network architecture. In the graphical model, the posterior
pθ(z|x, a) and generator pθ(x̂|z) are denoted with solid lines, while the variational approximation qλ(z|x, g) and the action
prediction qϕ(a|x, x̂, ã) are depicted with dashed lines. The generative model is realized with a variational auto-encoder archi-
tecture: The encoder takes the current observations x and the target view g as input. The decoder generates the NEO x̂ from a
random vector sampled from the latent space defined by the Gaussian N (μ,Σ). The feature in the decoding module is used in
predicting the next action. Three losses used for learning the generative model are marked with dashed boxes.

layout of its surroundings. The target view is consistent with
the observation views in terms of image data modality.

Action space. At each time step, the agent can choose
one action from a discrete set of allowable actions:
{move forward,move back,move left,move right,
rotate ccw, rotate cw, stop}, where move means horizon-
tal movement of the agent and rotate refers to azimuth rota-
tion of the camera. ccw and cw stands for counter-clockwise
and clockwise, respectively. If there is no next observation
view associated with an action, the action is considered to
cause a collision.

3.2 The Variational Bayesian Navigation Model

Given the current observation x, instead of directly predict-
ing the next best action a as in many other works, we opt
to first generate the next expected observation (NEO) x̂ as-
suming that the next best action a is known a priori and is
executed. This can be described with a generative model:

pθ(x̂, z|x, a) = pθ(x̂|z)pθ(z|x, a), (1)

where pθ(x̂, z|x, a) is a parametric model of the joint distri-
bution over the NEO x̂ and a latent variable z. Essentially,
this generative model is a probabilistic forward dynamics
model of the agent, where the acquirement of the next ob-
servation is driven by the selected next action.

To learn the generative model, one typically maximizes
the marginal log-likelihood log pθ(x̂|x, a). However, when
the model is parameterized by a neural network, the opti-
mization could be difficult due to the intractability of the
marginal likelihood. Moreover, the next best action a is un-
known a priori and is inherently determined by the target g.
To this end, we apply variational inference and introduce an

inference network qλ(z|x, g) with parameters λ to approxi-
mate the true posterior pθ(z|x, a). In particular, we optimize
the following lower bound of the marginal likelihood:

log pθ(x̂|x, a) ≥ Ez∼qλ(z|x,g)[log
pθ(x̂, z|x, a)
qλ(z|x, g) ] = L(x̂).

(2)
This lower bound forms our objective function:

J =− Ez∼qλ(z|x,g)[log pθ(x̂|z)]
+KL[qλ(z|x, g)||pθ(z|x, a)] = −L(x̂), (3)

where KL denotes the Kullback-Leibler divergence. Dur-
ing training, pθ(z|x, a) can be estimated as a Gaussian dis-
tribution conditioned on the current observation x and the
ground-truth action a, leading to a mixture-of-posteriors
prior imposed on the latent distribution.

To realize robot navigation, we learn a navigation action
classifier qϕ(a|x, x̂, ã) which predicts the next best action a
based on the current observation x , the generated NEO x̂ as
well as the previous action ã. Integrating action prediction,
the objective function becomes:

J =− αEz∼qλ(z|x,g)[log pθ(x̂|z)]
+ βKL[qλ(z|x, g)||pθ(z|x, a)]
+ γEa∼p(a)[− log qϕ(a|x, x̂, ã)],

(4)

where a ∼ Cat(1/C). A complete derivation of this ob-
jective is given in the supplemental material. The objective
function in (4) is composed of a reconstruction loss, a KL
divergence loss and a cross entropy loss. The three hyper-
parameters are empirically set as α = 0.01, β = 0.0001 and
γ = 1 throughout our experiments. Figure 1(left) shows the
probabilistic graphical model of our navigation model.
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3.3 The Network Architecture

Corresponding to the variational objective, the architecture
of our network consists of three subnetworks (see Figure 1).
The variational inference module takes the full observa-
tion views at the current robot position as well as the target
view as input and extracts a 2048-D feature vector for each
of them using a ResNet-50. The input image resolution is
64 ∗ 64. These output 2048-D feature vectors are then used
to infer a vector of latent variables of dimension 400 with
a MLP. Here, a KL divergence loss is minimized to impose
the distribution of the latent variables to match a prior es-
timated from the current observation (front view only) and
the ground-truth action. The NEO generation module then
generates the NEO in the front view out of a latent vector,
using a two-layer MLP followed by a 5-layer convolutional
network (please refer to the supplemental material for de-
tails). This task is trained with the supervision of ground-
truth next observation. The action prediction module maps
the concatenation of the last layer feature of the NEO gen-
eration module (2048-D), the feature of the current observa-
tion (2048-D) and the feature (1024-D) extracted from the
previous action (7-D one-hot vector) into the predicted next
action (7-D), using a four-layer MLP. Ground-truth actions
are used to train this subnetwork.

Model training and testing. Our model is trained and
tested with both real-world environments from the Active
Vision Dataset (AVD) (Ammirato et al. 2017) and synthetic
scenes of AI2-THOR (Zhu et al. 2017). Each scene in the
dataset is represented as a grid of robot locations (see Fig-
ure ??). The size of the grid cell is 0.25-0.5 meters. For each
grid point, 6 azimuth camera views are captured for AVD
and 4 for AI2-THOR. For the task of target-driven naviga-
tion, the ground-truth navigation path is simply the shortest
path over the grid. The optimization of the variational ob-
jective is achieved by Monte Carlo sampling, where the gra-
dients are backpropagated with the standard reparameteriza-
tion trick (Kingma and Welling 2013).

At test time, our model is used as a controller for the agent
to predict the next action given the current observations. We
feed the current observation views and the target view into
the inference module to obtain a Gaussian component in the
latent space. The features used for NEO prediction and ex-
tracted for the current front-view observation, as well as the
previous action, are used for next action prediction. The ac-
tual generation of NEO, however, is not needed in testing.

4 Experiments

We evaluate both cross-target and cross-scene generaliza-
tion, as well as a few other important characteristics, of our
model by comparing it with one baseline and a few state-of-
the-art methods. We also compare our method to two ablated
variants of it to justify our major design choices. In addition,
we visualize the latent space of our model for a better under-
standing of what we learn, as well as the navigation paths for
a qualitative evaluation.

Experimental settings. Our evaluations are conducted on
both AVD and AI2-THOR. AVD contains 11 relatively com-
plex real-world houses, of which 8 houses were used for
training and 3 for testing. AI2-THOR contains 120 scenes in
four categories including kitchen, living room, bedroom, and
bathroom. Each category includes 30 scenes, out of which
20 are used for training and 10 for testing. For all the meth-
ods being compared, we train a single model for all the AVD
scenes and separate models for the categories of AI2-THOR.

For each training scene, we choose fifteen different views
as the target, each of which contains a targeted object such as
a dining table, a refrigerator, a sofa, a television, etc. During
testing, the target views are randomly sampled from the test
scenes, encompassing both views similar to trained targets
and views unseen in training. When sampling start points,
we consider the ratio of the shortest path distance to the Eu-
clidean distance between start and goal positions (Savva et
al. 2019). We perform aggressive rejection sampling to en-
sure that 15% of the tasks have a ratio within the range of
[1, 1.1]. As in many navigation systems, a collision detection
module is devised. When a collision is detected, the action
with the next largest probability is chosen.

Success criteria. In each episode, the agent runs until ar-
riving at the goal (the distance to the target position is less
than 1 meter and the angle between the current and tar-
get view direction is less than 90◦), reaching the maximum
number of steps (100), or issuing a stop action. In the setting
with stop action, an episode is successful if and only if the
agent issues a stop action exactly when it reaches the goal.
This success criterion is apparently stricter than that in the
setting without a stop action. We will evaluate both cases.

Evaluation metrics. We adopt two evaluation metrics,
success rate and success weighted by (normalized inverse)
path length (SPL) (Anderson et al. 2018). Success rate is the
fraction of the runs that successfully navigate to the goal.
SPL is defined as 1

N

∑N
i=1 Si

Li

max{Pi,Li} , where N is the
number of navigation tasks, Si a binary indicator of success
in the i-th task. Pi and Li denote the actual path length and
the shortest path distance for the i-th task, respectively.

We compare with the following baselines/alternatives:

• Random Walk, a baseline where the agent randomly
chooses an action at each time step.

• TD-A3C, a target-driven visual navigation model based
on deep RL (Zhu et al. 2017). The reactive policy is
trained with the views of the previous three steps in addi-
tion to the current view. In addition, we did not freeze the
ResNet-50 when training the model. We compare against
two variants of the model, with or without supervision,
denoted as TD-A3C and TD-A3C-U, respectively.

• I2A, i.e., Imagination-Augmented Agents (Racanière et
al. 2017), which is a model-based deep RL model. The
original method is developed for 2D maze-solving tasks;
we re-implemented it for visual navigation by changing
its input to first-person views.
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Table 1: Navigation performance (success rate and SPL, in %) comparison on novel scenes from AVD with stop action.

�������Model
Target Table Exit Couch Refrigerator Sink Avg.

Random Walk 4.0 / 2.7 4.6 / 3.1 3.4 / 2.1 3.2 / 2.1 3.6 / 2.7 3.8 / 2.7
TD-A3C-U 5.3±0.6 / 2.4±0.3 6.7±0.4 / 4.2±0.2 4.3±0.4 / 2.5±0.2 5.6±0.3 / 2.7±0.2 7.1±0.5 / 3.6±0.2 5.8 / 3.1
TD-A3C 12.4±2.1 / 1.5±0.6 23.0±1.6 / 2.8±0.5 15.0±1.9 / 1.7±0.2 7.2±1.1 / 1.1±0.2 13.4±1.4 / 1.7±0.3 14.2 / 1.8
Gated-LSTM-A3C 6.5±0.7 / 1.3±0.3 16.2±0.8 / 4.0±0.2 8.0±0.5 / 1.2±0.3 14.3±0.7 / 3.3±0.4 6.5±0.5 / 0.9±0.2 10.3 / 2.1
I2A 10.6±1.1 / 1.3±0.3 21.7±1.3 / 2.2±0.4 14.3±0.9 / 2.1±0.3 8.9±0.7 / 2.3±0.3 11.2±0.9 / 1.6±0.3 13.3 / 1.9
Ours 12.1±1.3 / 3.4±0.8 30.4±1.6 / 8.4±0.9 11.0±1.1 / 2.9±0.9 35.0±1.4 / 11.9±1.0 11.0±0.9 / 2.7±0.4 19.9 / 5.9

Table 2: Navigation performance (success rate and SPL, in %) comparison on novel scenes from AVD without stop action.

�������Model
Target Table Exit Couch Refrigerator Sink Avg.

Random Walk 34.8 / 12.9 29.0 / 11.3 29.8 / 10.8 27.4 / 10.7 23.0 / 10.2 28.8 / 11.2
TD-A3C-U 39.7±4.4 / 13.1±2.6 29.3±4.3 / 10.9±2.1 30.1±4.1 / 9.9±2.0 28.4±3.3 / 10.1±1.7 22.9±3.0 / 9.7±1.9 30.1 / 10.7
TD-A3C 45.8±5.3 / 5.8±1.7 37.6±3.6 / 6.3±1.4 37.2±4.0 / 5.0±1.3 16.8±3.2 / 4.4±1.0 23.4±3.7 / 4.7±1.9 32.2 / 5.2
Gated-LSTM-A3C 31.0±3.3 / 8.6±1.0 31.1±2.7 / 13.7±1.5 25.3±2.3 / 5.8±1.1 31.4±2.9 / 12.9±1.9 23.0±2.4 / 8.3±1.0 28.4 / 9.9
I2A 40.6±4.2 / 6.7±2.1 37.3±3.6 / 6.9±2.0 35.9±3.3 / 6.3±1.7 17.3±3.1 / 5.6±1.2 20.1±3.0 / 6.3±1.4 30.2 / 6.4
Ours 57.6±4.5 / 32.6±2.9 52.4±4.1 / 23.9±2.7 43.4±3.9 / 21.1±2.1 46.4±3.4 / 24.3±1.9 38.8±3.3 / 25.8±1.7 47.7 / 25.5

Ours-FrontView 49.9±4.1 / 24.3±1.6 40.6±3.9 / 13.4± 1.2 38.1±4.0 / 16.1± 1.5 28.7±3.4 / 12.1±1.3 28.1±3.5 / 11.9± 2.1 37.1 / 15.6
Ours-NoGen 43.6±2.1 / 28.6±0.9 34.3±2.3 / 19.4±0.7 31.7±1.9 / 18.4±0.7 37.7±2.0 / 20.1±1.1 26.8±2.6 / 22.0±1.5 34.8 / 21.7
Ours-NoMoP 50.7±5.3 / 28.2±3.6 49.9±4.2 / 22.8±3.1 42.9±4.3 / 20.4±2.9 34.4±3.9 / 19.9±2.0 23.7±3.7 / 17.2±2.1 40.3 / 21.7
Ours (RGB) 48.4±4.9 / 25.7±3.1 32.4±3.1 / 16.7±2.0 28.7±2.7 / 16.8±1.4 37.9±4.5 / 18.8±2.9 38.2±2.3 / 26.4±1.1 37.1 / 20.9
Ours (RGBD) 59.6±4.3 / 36.8±3.0 38.4±4.4 / 18.5±2.9 31.5±3.7 / 17.8±1.6 43.5 ±4.1 / 15.3±2.4 37.8±3.2 / 21.7±2.0 42.2 / 22.0

• Gated-LSTM-A3C, an LSTM-based variant of A3C
model adapted from (Wu et al. 2018), where we train the
model with back-propagation through time over 10 un-
rolled time steps; the goal is specified as an image.

• TD-Semantic, a state-of-the-art target-driven navigation
model based on deep supervised learning. The method
leverages the semantic and contextual representations ob-
tained by off-the-shelf object detection and segmentation
methods (Mousavian et al. 2018).

• Ours-FrontView, a variant of ours where the current ob-
servation at each time step is only the front view rather
than four views.

• Ours-NoGen, a non-generative variant of our model
where the next expected observation is predicted directly
from the current observations and the target view. This is
implemented simply by removing the Gaussian sampling
and the KL-loss in Eq. (4).

• Ours-NoMoP, a baseline variant of our model in which
the latent space follows the standard normal distribution
prior, instead of the mixture-of-posteriors prior.

Except for the Random Walk and TD-A3C-U, all alterna-
tives are trained with supervision. TD-A3C, I2A and Gated-
LSTM-A3C are all first trained via behavioral cloning using
ground-truth paths. After pre-training, we update the three
policy layers using a shaped reward based on the geodesic
distance to the goal, geo(x, g), as described in (Gordon et al.
2019): rt = geo(xt−1, g)−geo(xt, g)+ζ,where ζ = −0.01
is a small constant time penalty. More implementation de-
tails are provided in the supplemental material. Unless ex-
plicitly stated otherwise, all methods take depth images as
the input observation. For our model, we also implement

variants taking RGB and/or RGBD images as input.

Cross-target generalization. Over the 8 training scenes
of AVD, we evaluate navigation performance for 40 novel
targets that are unseen in the training phase. These targets
are classified into five intervals of the shortest distance be-
tween the test and the nearest trained targets: [2, 3], [4, 5],
[6, 7], [11, 13], and [14, 16]. For each interval, we sample
1000 navigation tasks with different starting points. The re-
sults on the two metrics (with standard deviation measured
from five times training) are reported in Figure 2. Generally,
the success rate decreases as the distance between the test
and trained targets increases. Our model with default depth
input outperforms the state-of-the-art alternatives by > 5%
for average success rate and by > 4% for average SPL. An
observation is that the success rate is related to the degree
of presence of the targeted object in the target views. If the
targeted object is completely visible in the target view, the
target is more instructive and thus easier to reach.

Cross-scene generalization. To evaluate model generality
over unseen scenes, we perform navigation with 15 sampled
target views from the testing split of AVD. The targets are
classified into five groups according to the object of inter-
est in the target views; see Table 1. Note that object labels
were not used for navigation. For each group, we sample
1000 navigation tasks (starting points). Our model achieves
> 5% higher average success rate and > 2% higher average
SPL than the alternative methods. The standard deviations
in the table are measured from training each model for five
times. In Table 2, we report the results for the case without
a stop action. The results of the tasks reversing the start and
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Figure 2: Navigation performance (success rate and SPL, in
%) comparison for novel targets on AVD with stop action.

Table 3: Comparing navigation performance (success rate
and SPL) on novel scenes from AI2-THOR with stop action.
Note that all methods in this comparison use RGB input.

Category Kitchen Living Bed. Bath. Avg.
Random Walk 7.0 / 3.5 1.8 / 1.0 2.6 / 1.5 17.9 / 8.0 7.3 / 3.5
TD-A3C-U 8.2 / 3.0 2.0 / 1.1 3.2 / 1.9 19.0 / 9.1 8.1 / 3.0
TD-A3C 11.4 / 1.6 5.6 / 0.4 5.3 / 0.7 24.3 / 2.3 11.7 / 1.3
Gated-LSTM-A3C 13.1 / 3.2 4.9 / 1.1 5.1 / 1.2 19.3 / 7.9 10.6 / 3.4
I2A 12.3 / 1.9 5.4 / 0.3 6.2 / 0.8 22.3 / 2.1 11.5 / 1.3
Ours 19.8 / 10.6 11.5 / 5.3 13.6 / 5.9 21.9 / 9.6 16.7 / 7.9

target points can be found in the supplemental material. The
plot in Figure 3(left) compares average success rate (with-
out the stop action) of different models over an increasing
number of time steps, tested on AVD. Our method achieves
the steepest increase.

Table 3 evaluates target-driven navigation over synthetic
scenes from AI2-THOR. For each of the four room cate-
gories, 1000 randomly generated navigation tasks are sam-
pled from the testing split of the dataset. All methods being
compared take RGB input, following the original work (Zhu
et al. 2017). The random walk baseline can be used as a ref-
erence to assess the difficulty of the navigation tasks. For
example, living rooms are more challenging while small
bathrooms are relatively easy. For the bathrooms, however,
our method fails to beat the TD-A3C, because the transpar-
ent glass and texture-less furniture make it difficult for our
model to infer the surrounding layout which is important to
NEO imagination and action prediction. Overall, our model
has much better cross-scene generality.

Ablation study. The lower part of Table 2 shows an ab-
lation study. Comparing to the front-view only input, four-
view input leads to better results. Our generative method per-
forms much better than its non-generative variant (NoGen)
under the same amount of training. This conforms to the
consensus that learning a stochastic state space is often more
data-efficient than learning a deterministic one (Buesing
et al. 2018). The comparison to NoMoP shows that our
carefully designed mixture-of-posteriors prior leads to a
more powerful internal model by overcoming the over-
regularization of latent space caused by the commonly used
standard normal distribution prior.

Table 4: Performance (success rate and SPL) for different
number of training scenes from AVD without stop action.

# Scenes 8 6 4 2
# Samples 616, 630 524, 934 313, 652 152, 836

TD-A3C-U 26.0 / 9.5 25.9 / 8.3 25.9 / 8.5 23.4/ 6.9
TD-A3C 33.4 / 6.1 32.1 / 5.9 28.4 / 3.9 25.9 / 2.8
Gated-LSTM-A3C 25.1 / 9.4 24.7 / 8.9 20.4 / 6.0 19.3 / 4.8
I2A 31.4 / 7.1 29.7 / 6.9 28.2 / 3.2 26.1 / 2.5
Ours 47.9 / 25.8 47.1 / 24.9 45.3 / 22.7 35.1 / 16.9

Table 5: Performance (success rate) comparison of
semantic-driven navigation on the AVD test split.

Target label Couch Table Refrig. Micro. TV Avg.
TD-Semantic (Obj.) 80.0 38.0 68.0 38.0 44.0 53.6
Ours (RGB) 64.7 73.7 61.3 38.7 31.3 53.9
Ours (Depth) 83.4 67.4 57.8 41.1 82.0 66.3
Ours (RGBD) 73.5 83.5 72.1 41.5 11.8 56.4

Input modality. Through comparison on different input
modalities (Tables 2), the conclusion is that depth informa-
tion is apparently more useful to our model. This is because
depth images contain rich geometry information which ben-
efits a powerful reasoning about the surrounding layout and
the modeling of action-observation dynamics.

Data-efficiency. We also evaluate how well our model
generalizes when trained on decreasing numbers of scenes
(or training samples) from the training split of AVD; see
Table 4. The evaluation involves 1000 different navigation
tasks sampled from the testing split of AVD. All models
show increasing success rates and SPLs with increasing
numbers of training scenes. From the results, our method
performs consistently better than the alternatives, demon-
strating better data-efficiency. In the supplemental material,
we compare the training curves of the methods.

Figure 3: Left: Success rate over increasing number of time
steps. Right: Success rate over different values of distance-
to-goal thresholds. Each curve is measured based on 1000
navigation tasks from the AVD test split.
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Figure 4: A t-SNE visualization of the latent space z ∼
q(z|x, g) of our model (top-left) and its NoMoP variant (top-
right). The color of data points indicates action prediction.
Some of the data points are marked with an index of the
current (front-view) observation x and a shape symbol indi-
cating the target view g (see the indexing of the correspond-
ing view images at the bottom). The ground-truth action of
a data point is visualized as the fill color of the correspond-
ing shape symbol. From the color correspondence between
the data points and the co-located shape symbols, our model
leads to more accurate action prediction.

Close-to-goal stability. In most navigation methods, the
agent’s path tends to oscillate when the agent gets close to
the goal. The main reason is that situations in which the
agent is close to the goal are generally sparse in training.
This leads to imbalanced positive and negative situations in
training data. Therefore, it is difficult for the trained agent
to make a stop decision precisely and decisively when ap-
proaching the goal. Using 1000 sampled navigation tasks,
Figure 3(right) studies the percentage of tasks that succeeds
within 40 time steps (disabling the stop action) over vary-
ing distance-to-goal thresholds used for judging navigation
success. In general, smaller thresholds lead to lower success
rates due to a higher chance of close-to-goal oscillation. The
plot shows that our method achieves more stable close-to-
goal convergence for all thresholds, thanks to the expres-
sive approximation of variational inference learned through
modeling the agent-environment interaction. The latter leads
to high data efficiency even for sparse training samples.

Navigation driven by semantic labels. In methods
like TD-Semantic (Mousavian et al. 2018), the navi-
gation goal is defined in the form of a one-hot vec-
tor over a prescribed set of semantic labels; for exam-
ple, {Couch, Table, Refrigerator,Microwave, TV }. To
compare with TD-Semantic, we adapt our method to take the
same navigation goal. The comparison is conducted on AVD
with the same training/testing split, and the success criterion
is within 5 steps to the goal, as in (Mousavian et al. 2018).
TD-Semantic can learn visual representations for navigation
either from RGB and/or depth input or from semantic input
of object detection and segmentation obtained by off-the-

shelf state-of-the-art methods. Under the same input modal-
ity, our method outperforms TD-Semantic by 23% for RGB
input, 35% for depth input, and 28% for RGBD input for av-
erage success rate. Our best performance (with depth input)
is 12.7% higher than theirs with semantic input.

Table 5 reports the breakdown results over various target
labels for TD-Semantic with semantic input and our method
with RGB and/or depth as input. We attribute the good per-
formance to the natural design of the learning task in our
model. In TD-Semantic, a deep neural network is learned
to predict action cost from the current observation, the goal
and the previous action. In contrast, our model predicts the
next observation from a latent space modeling the dynamics
of action-driven observation transition, making it easier to
learn an enriched, meaningful representation (see Figure 4).
Moreover, the variational inference module learns to reason
about the surrounding layout based on multi-view observa-
tions, which is helpful for goal-directed decision making
even if the goal is represented in an abstract form of a se-
mantic label instead of a view image.

Visualization of the latent space. To investigate how well
our latent space models the navigation policy based on the
current observation and the target view, we show in Fig-
ure 4 a t-SNE visualization of the latent space z ∼ q(z|x, g)
learned by our model and its NoMoP baseline. There are
two observations. First, the latent space of our model ex-
hibits clear structure w.r.t. action predictions (see the color-
coding), making it well suited for navigation decision mak-
ing. Such expressive latent distribution is facilitated by im-
posing the mixture-of-posteriors prior conditioned on cur-
rent observations and next actions p(z|x, a). In contrast,
the latent space constrained by a standard Gaussian prior
(NoMoP) p(z) is highly unstructured. Second, our action
prediction is highly accurate (see the correspondence be-
tween data point color (action prediction) and shape symbol
fill color (ground-truth action)) thanks to the action-driven
variational model for NEO estimation and the separate ca-
pacity in the network of action prediction.

In the supplemental material, we also provide visualiza-
tion of the agent paths for different navigation tasks in un-
seen scenes, as well as visual comparison of navigation paths
against alternative methods.

5 Conclusion

We have presented a generative model for visual navigation
that predicts the next action based on the imagination of the
next expected observation. The NEO generation models the
forward dynamics of agent-environment interaction. The ex-
pressive approximation of the variational posterior as a Mix-
ture of Gaussians leads to a data-efficient model with strong
model generality. We see great potential in incorporating this
generative model into a deep RL framework to address the
model imperfection issue in novel scenes.
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