
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Computing Superior Counter-Examples for Conformant Planning

Xiaodi Zhang,1 Alban Grastien,1 Enrico Scala2

1Research School of Computer Science, Australian National University, Canberra
2Università degli Studi di Brescia

xiaodiz@outlook.com, alban.grastien@anu.edu.au, enricos83@gmail.com

Abstract

In a counter-example based approach to conformant plan-
ning, choosing the right counter-example can improve perfor-
mance. We formalise this observation by introducing the no-
tion of “superiority” of a counter-example over another one,
that holds whenever the superior counter-example exhibits
more tags than the latter. We provide a theoretical explanation
that supports the strategy of searching for maximally superior
counter-examples, and we show how this strategy can be im-
plemented. The empirical experiments validate our approach.

1 Introduction

Conformant planning is the problem of finding a robust
plan despite uncertainty in the initial state (Smith and Weld
1998). This problem is EXPSPACE-COMPLETE (Haslum and
Jonsson 1999). One of the aspects that make it hard is the
fact that the number of possible initial states is exponential in
the number of state variables; this exponential burden makes
brute-force enumeration impractical.

We are interested in a recent approach proposed by
Grastien and Scala (2017; 2018) and dubbed gCPCES, that
addresses this specific issue. In gCPCES, a candidate plan is
computed based on a small number of initial states (the sam-
ple) that are assumed to be representative of the planning
problem. The validity of this plan for the complete prob-
lem is then tested. If the plan is found invalid, a counter-
example (i.e., an initial state for which the plan is invalid)
is generated and added to the sample, since this counter-
example is clearly representative of some relevant aspect
of the planning problem. This process is repeated until a
conformant plan is discovered or it is proved that the prob-
lem yields no solution. Notwithstanding its simplicity, this
counter-example guided search works well in practice since
it generates only relevant counter-examples.

In the general framework, a large freedom is left to
gCPCES for choosing the counter-example. This freedom
however can bring the planner to enrich the sample in a man-
ifestly suboptimal way, as we illustrate in Section 3. There
are, instead, good choices that can make the planner con-
verge much faster. In this paper we show how some counter-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

examples are more informative than others. We argue that
selecting such counter-examples reduces the number of iter-
ations required to find a valid plan, which leads to improved
performance and more succinct explanations when the sam-
ple is used as a justification for the conformant plan.

The goal of this work is to study why some counter-
examples are better than other ones, and how such better
counter-examples can be generated. The paper defines su-
periority between counter-examples by exploiting the no-
tion of tags, a well-known concept in conformant planning
that can be interpreted as a “contingency” that the planner
must address. A counter-example is considered superior to
another one if the former exhibits more new tags than the
latter (compared to the tags already covered by the current
sample). The paper provides a SAT-based procedure that tar-
gets the computation of optimal counter-examples under this
criterion, and, through an empirical evaluation, studies the
implications of using it in an extended version of gCPCES.
For problems that can be decomposed (those where a state
covers several tags at once) this technique improves perfor-
mance greatly. This not only extends the applicability of
gCPCES to a larger class of problems, but also, and more
importantly, shows how to exploit problem structure in a
non-heuristic search framework. As we show in the experi-
ments, this allows us to approach the performance of heuris-
tic search planners that greatly exploit the problem structure,
and at the same time to leverage from the learning power of
a counter-example guided refinement technique that proves
particularly beneficial in highly constrained problems such
as conformant planning.

Section 2 provides the technical background necessary to
understand this work. Section 3 introduces the notion of su-
periority between counter-examples, first with an example
and then formally. Section 4 shows how the procedure for
generating a counter-example can be adapted to guarantee
that that counter-example is optimal. Section 5 discusses re-
lated work. Section 6 presents an empirical evaluation.

2 Background

2.1 Conformant Planning

We are interested in the problem of deterministic conformant
planning, which we present now. We reuse the notation from

10017



Grastien and Scala (2017).
We write V the set of state variables. Each variable v ∈

V is associated with a domain Dv of values. A state s is a
function that assigns each variable v to a value s(v) ∈ Dv .

An action a is a pair 〈prec, eff〉 where prec is the precon-
dition and eff is the conditional effect function. The action is
applicable in a state if the precondition prec evaluates to true
in that state. The conditional effect function eff associates
each pair 〈v, �〉 with a condition, so that the application of
the action assigns v to � whenever eff(v, �) evaluates to true
in the current state. Formally, the application of action a in
state s leads to the state s′ = s[a] where s′(v) = � iff

• either eff(v, �) evaluates to true in the current state s (we
assume that eff(v, �1) and eff(v, �2) cannot both evaluate
to true for the same variable v and two values �1 �= �2);

• or variable v is already assigned to � (s(v) = �) and
eff(v, �′) evaluates to false for all values �′ ∈ Dv .

A plan π = a1 . . . an is a sequence of actions. It is ap-
plicable in state s if all of its actions ai are applicable in
s[a1] . . . [ai−1]. It leads to state s[a1] . . . [an].

A belief state B is a propositional formula defined over
assignments of the form (v = �). B represents implicitly the
set of states that make the formula evaluate to true. We use
the formula and the set of states interchangeably.

A (deterministic) conformant planning problem is a tuple
P = 〈V, A,ΦI ,ΦG〉 where V is the set of state variables,
A is the set of actions, ΦI is the initial belief state, and ΦG

is the goal belief state. The plan π is valid for state s if it is
applicable in this state and this application leads the system
to a goal state (s[π] ∈ ΦG ). The plan π is valid for problem
P if it is valid for all initial states.

The purpose of the conformant planning problem is to
compute a valid plan for this problem, or to determine that
no such a plan exists.

2.2 gCPCES

We build our work on top of the conformant planner gCPCES
(Grastien and Scala 2018). Classical planning problems are a
special class of conformant planning problems where ΦI in-
cludes only one initial state. Classical problems are easier to
solve both in the computational theory sense and in practice.
Indeed, a number of effective domain independent heuris-
tics have been proposed in the literature, and modern plan-
ners scale nowadays reasonably well with respect to prob-
lem size (Vallati et al. 2015). A conformant problem P can
be translated into a classical one, but the resulting problem
has a size linear in the number of initial states, which is often
intractable.

gCPCES (Algorithm 1) addresses this issue by replacing
the initial belief state with a small number of initial states
called the sample B, and using the sample to propose a can-
didate plan π, i.e., a plan valid for the sample; if no such
plan exists then the conformant planning problem is unsolv-
able. Then it searches for a counter-example, i.e., an initial
state for which π is invalid. If no such state exists, the plan
is valid; otherwise the state is added to the sample and a
new iteration starts. The procedures that produce a candi-

Algorithm 1 The conformant planner gCPCES.
1: input: conformant planning problem P
2: output: a conformant plan, or no plan
3: B := ∅
4: loop
5: π := produce-candidate-plan(P,B)
6: if there is no such π then
7: return no plan
8: q := generate-counter-example(P, π)
9: if there is no such q then

10: return π
11: B := B ∪ {q}

date plan and that generate a counter-example are described
by Grastien and Scala (2017).

We write Π(P ) the set of valid plans for the problem
P , and, for a subset of initial states (B ⊆ ΦI ), we write
Π(B) the set of valid plans when ΦI is replaced with B.
gCPCES relies on the property B1 ⊆ B2 ⇒ Π(B1) ⊇ Π(B2).
Therefore adding elements to the sample reduces the set of
valid plans of this sample so that, eventually, Π(B) equals
Π(P ). This property guarantees that no plan will be missed
by gCPCES.

Performance-wise, gCPCES has proved to be competitive
with alternative conformant planning approaches, in partic-
ular for problems that have a non-trivial width (cf. Subsec-
tion 3.3).

3 What is a Good Counter-Example

3.1 Example

We use the planning domain DISPOSE to illustrate the short-
coming of gCPCES that we address in this paper. This do-
main asks a robot to collect a number of items scattered
around on a map and then drop them in a specific “trash-at”
location. The initial location of the items is unknown. The
robot has access to three actions: PICK-UP an item in its cur-
rent location (the robot will then hold the item if it is in the
location—it can hold several items at the same time); MOVE
from one location to a neighbouring location; and DROP an
item in the trash-at location. The solution to the problem is
for the robot to visit all locations, in each location try to pick
up each item, then move to the trash-at location and dispose
of all items.

For an instance of the DISPOSE domain with 3 items and
4 locations (A to D), we illustrate on Table 1 a “bad” exe-
cution and a “good” execution of gCPCES, where the assess-
ment is defined by how fast gCPCES finds a valid plan; so
the second execution is “good” because it involves only four
iterations against the ten iterations of the “bad” execution.
In both cases we assume that the candidate plan produced
by the planner is optimal for the current sample.

The first execution appears on the top array of Table 1.
The initial candidate plan π0 is always the empty plan (per-
form no action). The first counter-example generated to in-
validate the initial plan is represented by first column of the
table, and it assumes that all items start in location A. Con-
sequently the next candidate plan π1 will be: go to location

10018



# 1 2 3 4 5 6 7 8 9 10
L1 A B A A C A A D A A
L2 A A B A A C A A D A
L3 A A A B A A C A A D

# 1 2 3 4
L1 A B C D
L2 A B D C
L3 A B C D

Table 1: Bad and good executions of gCPCES: each column
describes a counter-example generated by gCPCES at a given
iteration; Li is the initial location of the ith item.

A, pick up all items, go to the trash-at location, and drop all
items. The second counter-example (second column) then
assumes that the first item is in location B while the sec-
ond or third items in location A. Therefore the next plan
π2 expands π1 by asking the robot to visit location B and
try to pick up the first item from this location; however the
robot will not be instructed to pick up the second or third
items from location B (this is unnecessary given the current
sample). Hence the third counter-example assumes that the
second item starts in location B, and so on.

Comparatively the good execution is illustrated on the
bottom array in Table 1. In this execution the second
counter-example assumes that B is not only the starting lo-
cation of the first item, but also that of the second and third
items. We see that the execution requires fewer iterations as
only four counter-examples are necessary to converge. (No-
tice also that the items do not need to start in the same lo-
cation in each counter-example, as illustrated with the third
and fourth counter-example.)

3.2 Analysis

What the example of Table 1 illustrates is that we want
the counter-examples generated by gCPCES to be as differ-
ent from one another as possible, because similar counter-
examples highlight the same aspects of the planning prob-
lem. This raises the question of what “different” means.

One idea would be to maximise the number of assign-
ments that the counter-examples exhibit. There is no guaran-
tee however that this solution will be satisfactory. Consider
for instance a planning problem where the state variables
have a binary (0/1) domain. Assume that the first counter-
example associates each state variable with 0 and the second
counter-example associates each state variable with 1. Then
all possible assignments are covered with these two counter-
examples and it is unclear what the next counter-example
should look like. One could try to maximise the difference
between the new counter-example and all existing counter-
examples, for example having precisely half the variables
associated with 0. Once again however there is no real guar-
antee that this solution is particularly good. It is very easy to
come up with examples where this approach will fail.

Fundamentally using the variable assignment is flawed
because it shallowly consider only the syntactical aspects
of the problem description. Instead we propose and study a
more profound measure of similarity that is more concerned

with the semantics of the conformant planning problem at
hand. Interestingly, this measure can be grounded on the no-
tion of tags, a well known notion identified in literature that
targets at possible ways to decompose the problem.

3.3 Tags and Conformant Planning

We now recall known definitions that relate tags (Palacios
and Geffner 2009) to conformant planning problems. A sub-
goal ϕ is a conjunct of an action precondition or the goal; in
other words, action preconditions and the goal are conjunc-
tions of subgoals. Importantly a subgoal is a logic formula
that may be required to evaluate to true at some point of the
execution for a plan to be valid.

A variable v depends on another variable v′ if there ex-
ists an action a = 〈prec, eff〉 and a value � ∈ Dv such that
the conditional effect eff(v, �) mentions variable v′. The con-
text ctx(ϕ) of subgoal ϕ is the set of variables mentioned by
ϕ, the variables they depend on and, by transitivity, all the
variables that they depend on. So, consider the DISPOSE do-
main; the action PICK-UP-1-A (which picks up the first item
if it currently sits in location A) has precondition LR = A
and conditional effect: if L1 = A then holding1 = �. This
action defines a dependency between variable holding1 and
L1, which can be interpreted as follows: the value of L1 at
any time during execution (and, in particular, initially) may
affect the value of holding1 later in the execution. Notice
however that the preconditions are not used in the definition
of dependency: in DISPOSE, holding1 does not depend on
LR. Preconditions are handled through subgoals.

We write C the set of contexts of the conformant planning
problem. The width w(c) of a context c is the number of state
variables of c that are uncertain in the initial state. The width
w(P ) of the conformant planning problem P is the largest
width of some context of P : w(P ) = maxc∈C w(c).

Given a context c and a state q, the tag (Palacios and
Geffner 2009) of q for c is the restriction of the state q to
the variables in c and is denoted tagc(q). Given a belief
state B and a context c, the set of tags of B for c is the set
Tc(B) = {tagc(q) | q ∈ B}. We write T (B) = ⋃

c∈C Tc(B)
the set of tags of the belief B for all contexts.

It is possible (Palacios and Geffner 2009) to associate
each tag t with a set Π(t) of plans so that for all belief state
B, the following statement holds:

Π(B) =
⋂

t∈T (B)

Π(t). (1)

At this point we notice that if a context c is a subset of
another context c′, then the information in the tag tagc(q) is
included in the tag tagc′(q) (since tagc(q) is the restriction
of tagc′(q) to the variables in c). Therefore it is possible to
narrow C down to those contexts that are superset maximal.

There is an interesting connection between tags and
gCPCES. Indeed, the equality (1) holds both when B is the
initial belief state or a sample. In particular if the sample B
is such that T (B) equals T (ΦI ), then Π(B) = Π(P ) and the
candidate plan produced for B will be valid for P . Notice
that the equality of the sets of tags is a sufficient condition
but not necessary. For instance, some tags can be redundant

10019



(i.e., some tag t′ satisfies Π(t′) ⊇ ⋂
t∈T (B)\{t′} Π(t)). Fur-

thermore gCPCES’s procedure aimed at producing the candi-
date plan can be lucky and come up with a plan that is valid
for the conformant problem before the equality holds.

Whenever a candidate plan π is proved invalid, the
counter-example q that is generated is such that it exhibits
a new tag t �∈ T (B) that disproves this plan (i.e., π �∈ Π(t)).
Completeness of gCPCES is guaranteed by the convergence
of T (B) towards T (P ). Maximising the number of new tags
can accelerate convergence. We formalise this notion next.

3.4 Superior Counter-Examples

We exploit tags by introducing the notion of superiority of
counter-examples given a current belief state.
Definition 1. Given a belief state B, counter-example q′ is
strictly superior to counter-example q, denoted q′ �B q, if
the following holds:

T (B ∪ {q′}) ⊃ T (B ∪ {q}).
We use the notation q′ �B q and we say that q′ is superior

to q when the relation is not strict (T (B ∪ {q′}) ⊇ T (B ∪
{q})). The naming “superior” is based on the following two
lemmas that show that a superior counter-example makes it
more likely to find a valid plan and thus reduces the number
of iterations of gCPCES.
Lemma 1. If q′ is superior to q for belief state B then the
property Π(B ∪ {q′}) ⊆ Π(B ∪ {q}) holds.

In other words the counter-example q′ is such that the be-
lief state B ∪ {q′} dominates B ∪ {q} (Grastien and Scala
2018).
Lemma 2. If q′ is superior to q for belief state B then for
all set of states B′, q′ is superior to q for belief state B ∪ B′.

Proof Sketch. This result relies on the decomposability of
T (·) wrt. the set of states: T (B ∪{q}∪B′) = T (B ∪{q})∪
T (B′) ⊆ T (B ∪ {q′}) ∪ T (B′) = T (B ∪ {q′} ∪ B′).

Lemma 1 shows that superiority increases the chances of
finding a valid plan. Lemma 2 shows that superiority is car-
ried over as more counter-examples are generated, which
means that there is no regret associated with choosing a
counter-example q′ that is superior to q in the current sit-
uation (i.e., when B is known while B′ is not).

4 Computing Good Counter-Examples

In this section we show how to compute an optimal
(maximally superior) counter-example. Deciding whether
a plan is valid for a conformant planning problem (and
thereby finding a counter-example to the plan) is CO-NP-
COMPLETE (Grastien and Scala 2018); consequently this
problem has been solved with SAT techniques. Finding an
optimal counter-example can be reduced to a MAXSAT prob-
lem that maximises the number of new tags covered. The
solution set for this reduction, however, is unnecessarily too
narrow: the set of new tags of an optimal counter-example
is not always cardinality maximum, merely subset maximal.
For this reason, we propose instead to start from any counter-
example and improve it until it is maximally superior.

Algorithm 2 compute-optimal-counter-
example: (⊥ indicates that there is no solution).

input: candidate plan π, current sample B
q := generate-counter-example(π)
if q = ⊥ then

return π is valid
loop
q′ := improve-counter-example(B, q)
if q′ = ⊥ then

return q
q := q′

4.1 The General Improvement Algorithm

The algorithm for computing an optimal counter-example
works in an iterative fashion. This is expressed in
Algo. 2, which replaces compute-counter-example
of Algo. 1. The procedure first searches for a counter-
example. If there is no such counter-example, the plan
is valid. Otherwise the algorithm incrementally improves
the counter-example, i.e., searches for a counter-example
that is strictly superior to the current counter-example.
The subroutines generate-counter-example and
improve-counter-example are described in the next
subsections.

The procedure of Algo. 2 is guaranteed to terminate for
the following reason: the state q′ computed at some iteration
is strictly superior to q. This implies that q′ exhibits more
new tags than q: T (q′) \ T (B) ⊃ T (q) \ T (B). The number
of tags of a state is bounded by the number of subgoals;
therefore the termination is ensured.

For invalid plans, notice that Algo. 2 always ends exactly
when the subroutine improve-counter-example ter-
minates with no counter-example. This differs from the
original implementation of gCPCES for which finding no
counter-example happens only once, when the plan is valid.
This may become an issue in situations where showing that
no better counter-example exist is hard.

4.2 Computing a Counter-Example

We now show how a counter-example can be computed
(Grastien and Scala 2017) using SAT, as we use a similar
method to find a strictly superior counter-example.

Assume the plan is π = a1 . . . an. Finding a counter-
example consists in finding an initial state q0 ∈ I such that
executing the plan makes the system go through the states
q1, . . . , qn and either one of the actions is not applicable or
the goal is not satisfied in the final state qn.

In practice for every state variable v ∈ V , for every
value � ∈ Dv in the domain of v, and for every timestep
i ∈ {0, . . . , n}, a SAT variable vi,� is defined that evaluates
to true iff the value of the variable v in the state qi is �. The
following three constraints are then defined:

1. φI encodes that q0 is an initial state;

2. φA encodes that each state qi is the result of applying ai
in state qi−1 (ignoring whether the action is applicable);

10020



3. φnval encodes the fact that either one of the actions is
inapplicable or the goal is not reached in qn.

The definition of these constraints is fairly standard and we
do not detail them here.
φπ is the formula φI ∧ φA ∧ φnval. There is a counter-

example to plan π iff φπ is satisfiable and a counter-example
is represented by the variables vi,� for i = 0.

4.3 Computing a Better Counter-Example

We now discuss how, given a sample B and a counter-
example q, a strictly superior counter-example q′ can be
computed. As for the previous subsection, we achieve this by
taking a model (if any), and hence a counter-example from
the following SAT formula, namely, φB,q:

φI ∧ φ�B ∧ φ ��B

where φ�B and φ ��B are defined next. Intuitively φ�B spec-
ifies that the new tags of q will be kept (formally q′ �B q);
φ ��B specified that q′ exhibits at least one extra new tag (for-
mally q′ ��B q).

We write Cnew(B, q) the set of contexts for which the tag
of q is not a tag of B. Formally:

Cnew(B, q) = {c ∈ C | tagc(q) �∈ Tc(B)}.
We then define φ�B as

∧
c∈Cnew(B,q)

tagc(q)[V/V0]

where t[V/V0] is the conjunction of literal v0,� for each as-
signment v → � of a tag t. For instance, if t is {v1 →
�1, v2 → �2, v3 → �3} then t[V/V0] is v0,�11 ∧ v0,�22 ∧ v0,�33 .
This constraint essentially encodes the fact that all the new
tags of the current counter-example should also be covered
by the superior counter-example.

Furthermore we define φ ��B as
∨

c∈C\Cnew(B,q)

¬
∨

t∈Tc(B)

t[V/V0].

This constraint encodes the fact that there should be a con-
text for which the current counter-example does not exhibit
a new tag, while the superior counter-example does.
Lemma 3. There exists a state q′ that is strictly superior to q
for B iff φB,q is satisfiable, and one such state is represented
by the variables vi,� where i = 0.

Essentially the lemma relies on the following observa-
tions. First if q′ is superior to q for B, then it must exhibit the
new tags T (q) \T (B) of q (compared to B); this is achieved
by the formula φ�B .

Second if q′ is strictly superior to q for B, then it must
exhibit at least one extra tag. This is achieved by the for-
mula φ ��B which we explain now. Since we ask q′ to ex-
hibit the same new tags as q the extra tag must come from
a context outside of Cnew(B, q). Given a context c the tag
t′ = tagc(q

′) of q′ associated with c is new and t′ is not
in Tc(B). Therefore one of the extra tags of q′ is associated

with c iff ¬∨
t∈Tc(B) t[V/V0] holds. Hence, the definition

φ ��B guarantees that q′ exhibits an extra tag.
Finally notice that the definition of φB,q is accurate, i.e.,

it only excludes the states that are not initial or not strictly
superior to q.

4.4 Example and Remark

We illustrate φB,q on the simplified example of Table 1. We
consider the execution on the bottom table at the third itera-
tion. At this stage, B equals {q1, q2} where q1 = {L1 →
A,L2 → A,L3 → A} and q2 = {L1 → B,L2 →
B,L3 → B}. We assume that the counter-example q is
{L1 → C,L2 → A,L3 → A}. In this example, each
context is defined precisely as each location: c1 = {L1},
c2 = {L2}, and c3 = {L3}. We notice that q exhibits one
new tag t = {L1 → C} associated with context c1. The
formula πB,q is then defined as φI ∧ φ�B ∧ φ ��B where

φ�B = L0,C
1

and

φ ��B = ¬
(
L0,A
2 ∨ L0,B

2

)
∨ ¬

(
L0,A
3 ∨ L0,B

3

)
.

A result to φB,q will assign C to L1, and a value differ-
ent from A and B to either L2 or L3 (or both). A counter-
example that satisfies this formula will be superior q.

Let us discuss how φπ and φB,q differ, which should im-
pact the expected complexity of the SAT problem. φB,q is
only defined on variables vi,� where i = 0, which should
make this problem simpler. Furthermore, in φB,q the new
tags of q are enforced, which reduce further the number of
free variables. On the other hand, the number of solutions to
φB,q is much smaller than that of φπ since we are looking
for much more specific counter-examples.

5 Related Work

Conformant planning is a research topic that attracted a sig-
nificant amount of research in the last two decades, and we
will not provide a complete description of the existing work
here. The problem has been looked at from very different
perspectives. Some are based on exploiting compact repre-
sentations for the belief tracking such as BDDs (Cimatti and
Roveri 2000) or CNFs (To, Pontelli, and Son 2011). One of
the difficulties of these approaches lies in coming up with
good ways to target the particular structure of the problem
at hand. To overcome this limitation, other researchers have
proposed a more explicit approach for the exploration of
the belief states which could make a more direct use of the
power of heuristic search (Bonet and Geffner 2000). The for-
mer of this family of work is due to Hoffmann and Brafman
(2006), with the Conformant FF planner, an extension of FF
(Hoffmann and Nebel 2001) that reasons over the belief en-
tailed by the prefix under exploration. A SAT solver is used
to check entailment of preconditions and goals.

Another branch of research has instead focused on the ex-
ploitation of decompositions that can be automatically ex-
tracted from the computational structure of the problem. No-
tions as tags and width have shown a useful characterisation

10021



Coverage Plan Quality Planning Time

Domain Classes gCPCES SUPERB T1 gCPCES SUPERB T1 gCPCES SUPERB T1

LOOKANDGRAB (18) (6,0,18,0) 18 18 15 41.87 41.87 33.73 21.59 36.46 117.49
DISPOSE (11) (4,7,0,0) 4 6 8 183.50 184.00 211.75 579.58 258.94 6.00
BLOCKWORLD (3) (0,0,3,0) 3 3 2 12.50 12.50 13.00 0.67 0.75 0.24
UTS (15) (15,0,0,0) 13 13 11 36.40 36.40 40.60 2.73 4.29 0.23
RAOSKEYS (2) (0,0,3,0) 2 2 1 16.00 16.00 21.00 0.59 1.20 0.45
DISPOSE-ONE (10) (5,0,5,0) 5 5 4 61.75 68.00 79.25 29.59 67.13 376.75
WALLGRID (18) (0,0,18,0) 18 18 4 17.50 17.50 17.50 0.73 0.86 0.09
EMPTYGRID (4) (0,0,18,0) 4 4 4 17.50 17.50 17.50 0.64 1.30 0.07
BOMB (9) (0,9,0,0) 7 9 9 106.00 106.00 101.14 95.52 3.67 0.10
COINS (9) (0,9,0,0) 8 8 9 88.00 86.13 148.63 3.42 3.47 0.62

Table 2: Overview of the results among competing planners along the three main dimensions: coverage, plan length and planning
time. These two last parameters are only evaluated over instances solved by all systems. Bold for best coverage. In parenthesis,
number of instance. The classes column indicates with a tuple the number of instances both vertical and horizontal, non-
horizontal but vertical, horizontal but non-vertical, and non-vertical non-horizontal.

of such decompositions, and have led to powerful reductions
to classical planning. These decompositions have been stud-
ied extensively by Palacios et al. (2009) and Albore et al.
(2010). In particular, in a close but successive work (Albore,
Ramı́rez, and Geffner 2011) the authors managed to com-
bine the Conformant FF basic search over the belief with
a novel tag-based heuristic obtained from an unsound-but-
complete reduction to classical planning. In this work we
also use tags as a way to capture the structure of the prob-
lem; our novelty stems from showing how to do that into a
non-heuristic search framework (i.e., gCPCES). Next section
shows when and why this is practically beneficial, and when
not.

Other approaches use a sampling based mechanism as we
do, but in ways that depart substantially from how our solver,
SUPERB, works. The fragment planner (Kurien, Nayak, and
Smith 2002) tries to find a conformant plan by combining
plans resulting from solving each initial state independently;
such initial states are randomly sampled. The authors in-
vestigate different ways of performing this search, yet none
guarantees a systematic reduction of the initial states that
is able to exploit the structure of the problem; as noted by
Nguyen et al. (2012), the fragment planner does not scale
well. With the aim of overcoming the fragment planner lim-
itations, Nguyen et al. (2012) propose the so called generate-
and-complete approach. The idea is to find a plan for a sub-
problem P (s0) of the conformant planning problem using
a classical planner, try to repair it to account for other ini-
tial states, and if that does not work explore another classi-
cal planning solution for P (s0). As for the sampling strate-
gies in the CPCES framework, the sampling adopted in SU-
PERB explores only those states that are able to contradict
some plan solution; this contrasts the work by Nguyen et
al. (2012) in that SUPERB does not explore several classi-
cal planning solutions for the same initial state but iterates
over an increasing set of initial states. The smarter selection
of counter-examples provided by SUPERB can be seen as a
more systematic way of selecting initial worlds in Kurien,
Nayak, and Smith (2002) terms. Note that, SUPERB inherits
the gCPCES properties, i.e, soundness and completeness in a

number of iterations that is linearly bounded by the number
of tags (Grastien and Scala 2018); the other strategies, i.e.,
refined and heuristic, can iterate a number of times that is
exponential in the number of tags.

6 Experiments

We implemented our planner, SUPERB, on top of
the readily available planner gCPCES by replacing
the method compute-counter-example with
compute-optimal-counter-example (Section 4).1
In particular we used the same underlying classical planner
FF (Hoffmann and Nebel 2001) and the SAT solver Z3 (de
Moura and Bjørner 2008).

6.1 Expectations

We start with a description of how we expect our variation of
gCPCES will affect the performance of the planner. We base
our expectation on the structure of the problem instance,
which we classify through a geometric analogy. While width
usually refers to the size of the largest context of a problem
instance, we call height its number of (superset maximal)
contexts. We then say that an instance is horizontal if its
height is one, and vertical if its width is one. This classi-
fication leads us to four overlapping classes of problem in-
stances.

For non-horizontal instances (so, including vertical ones)
we expect SUPERB to outperform gCPCES because it should
be able to cover more tags in fewer iterations than gCPCES.
Horizontal instances have only one tag, so a counter-
example cannot be improved by the SUPERB procedure.
Hence, because of its overhead, we expect SUPERB to per-
form slightly worse than gCPCES. Finally, non-vertical in-
stances (so, including horizontal ones) are the hardest for
planners using a mechanism based on low width (Albore,
Ramı́rez, and Geffner 2011; Palacios and Geffner 2009). In
non-vertical instances gCPCES already provides good per-
formances w.r.t. the state of the art. We expect SUPERB

1The source code and the benchmarks are available at this ad-
dress: bitbucket.org/enricode/cpces/.

10022



Planning Time Iterations Sampling Time

Dom Pro gCPCES SUPERB gCPCES SUPERB gCPCES SUPERB T1 Time
M

A
W

A
L

L
G

R
ID

4 4 2 1.43 1.17 10 7 0.41 0.42 0.1
4 4 3 20.02 10.34 19 11 0.86 1.09 0.3
6 6 2 4.29 4.25 13 12 0.7 1.14 0.1
6 6 3 1037.74 904.75 14 14 1.08 1.74 4.9
8 8 2 124.14 77.75 29 25 2.74 3.31 TO
8 8 3 TO TO NA NA NA NA TO

10 10 2 874.49 1876.62 40 50 4.11 9.75 TO
10 10 3 TO TO NA NA NA NA TO
11 11 2 2287.07 1606.3 43 38 6.09 9.3 TO
11 11 3 TO TO NA NA NA NA TO

D
IS

P
O

S
E

4 1 2.33 2.34 17 17 1.01 1.24 0.09
4 2 5.07 3.78 32 17 2.05 2.59 0.18
4 3 9.44 4.99 38 17 3.62 3.36 0.39
4 4 13.68 5.96 37 17 5.02 4.14 0.47
4 5 14.48 8.05 37 17 5.08 5.85 0.93
4 6 26.15 11.03 38 17 5.58 7.07 0.88

Table 3: In-depth analysis on instances of MAWALLGRID,
and on instances of DISPOSE. Problem cells represent grid
parameters (x×y) and number of agents for MAWALLGRID.
For DISPOSE instance number 4 (grid size 4× 4) is used for
1 to 6 objects. T1’s time only reported as a reference

to improve on even further when instances are both non-
vertical and non-horizontal.

6.2 Experimental Setup

To assess the usefulness of SUPERB we ran experiments over
the set of benchmarks from Grastien and Scala (2018). We
then compared SUPERB to gCPCES to analyse the improve-
ment of the novel counter-example finding technique, and
to T1 (Albore, Ramı́rez, and Geffner 2011) to evaluate how
close SUPERB can get to a heuristic search engine that is no-
toriously very good at exploiting the structure of the prob-
lem. Depending on the competing planner, our analysis mea-
sures the amount of time needed to find a solution, the time
devoted to finding the counter-examples, the number of iter-
ations, and the quality (length) of the resulting plans.

Our benchmark suite contains 10 domains: DIS-
POSE, DISPOSE-ONE, BLOCKWORLD, LOOKANDGRAB,
RAOSKEY, WALLGRID, EMPTYGRID, COINS, BOMB and
UTS. Among these domains, DISPOSE, COINS and BOMB
feature some non-horizontal and vertical instances; all other
domain instances are horizontal. The following domain in-
clude non-vertical instances: BLOCKWORLD, RAOSKEY,
EMPTYGRID, WALLGRID. DISPOSE-ONE. As we expect
SUPERB to provide a substantial boost on non-horizontal in-
stances, we give more attention to some of them. We also
define a new domain, called MAWALLGRID, a multi-agent
version of WALLGRID; the initial belief does not exclude any
initial position for any agent; the goal is to get all agents in
a given cell. Agents can share the same location, and simi-
larly to WALLGRID none of them can traverse the sink posi-
tion. As an additional feature, agents need to move in turn;
that is, before starting to move agent i needs to wait agent
i− 1 has reached its goal position. These instances are both
non-horizontal and non-vertical. Experiments were run on
Ubuntu with 16GB memory on a 3.6GHz CPU. Timeout was
set to 3600 secs.

Planning Time Iterations Sampling Time

Dom gCPCES SUPERB gCPCES SUPERB gCPCES SUPERB

LOOKANDGRAB 27.78 47.33 10.61 10.61 2.17 3.70
DISPOSE 579.58 258.94 53.75 29.00 58.22 83.75
BLOCKWORLD 120.04 120.05 27.75 27.75 2.66 3.48
UTS 15.08 27.88 16.38 16.38 4.14 8.04
RAOSKEY 1.86 2.49 14.00 11.00 0.78 1.32
DISPOSE-ONE 29.59 67.13 20.50 28.00 1.65 3.12
WALLGRID 38.11 55.52 33.22 33.22 3.30 5.83
EMPTYGRID 0.64 1.30 6.00 6.00 0.19 0.52
BOMB 95.52 3.67 61.00 3.00 19.27 2.94
COINS 3.42 3.47 12.00 8.50 1.55 2.14

Table 4: Instances solved by gCPCES and SUPERB.

6.3 Results and Analysis

Figure 2 provides an overview of the performance of
gCPCES, SUPERB and T1. As can be observed from this high
level overview, SUPERB mitigates gCPCES’s inability to ex-
ploit the structure of the problem. Indeed, all the domains in-
volving vertical instances bring SUPERB much closer to the
performances of T1, whilst the benefit of gCPCES over non-
vertical ones is maintained. This is particularly evident in
the BOMB domain where coverage is increased by two units
and speed-up is almost two orders of magnitude. In DIS-
POSE also, coverage is increased and runtime is improved
substantially. In DISPOSE, in particular, the number of con-
texts grows with the number of objects to be disposed. As
shown by Table 3, SUPERB exploits this decomposition in
a way that the number of iterations remains constant when
the number of objects grows. Comparatively, gCPCES’s per-
formance is affected in a more pronounced way. Note also
the T1 remains the state of the art in DISPOSE as this do-
main exhibits a width equals to one. The experiments also
show that SUPERB does not sacrifice plan quality for these
runtime improvements.

Table 3 reports some instances for MAWALLGRID; we fo-
cus our attention on two and three agents (therefore two and
three contexts) for various grid sizes. Note that T1 only man-
ages to solve instances of the setting 4 × 4 and 6 × 6. This
confirms our expectations on the performance of SUPERB in
domains where the width is non-trivial and the problems are
yet decomposable (non-vertical non-horizontal).

Finally, Table 4 reports an overall picture of the number
of iterations, and sampling time spent by gCPCES and SU-
PERB. This data confirms our hypothesis that decreasing the
number of iterations translates in better runtime, and also
that the overhead spent by SUPERB is beneficial, especially
in non-horizontal problems. Notice that in practice the im-
provement of counter-examples should be turned off after it
has been determined that the problem instance features only
one context; we did not implement this trick here in order to
better understand the performance of SUPERB.

7 Conclusion

In this article we argue that a counter-example based pro-
cedure such as gCPCES for conformant planning can benefit
from finding better examples. We show that one such cri-
teria is to maximise the number of tags covered by the set

10023



of counter-examples. This gives theoretical guarantees and
proves practically beneficial too. We present SUPERB, an
implementation of this idea for gCPCES, and demonstrate
that it performs better for non-horizontal problems, i.e.,
problem instances that can be decomposed. In the “Explain-
able Planning” context (Fox, Long, and Magazzeni 2017),
the counter-examples computed by gCPCES can be used as
a justification for the resulting plan; our approach ends up
with an even more compact (and thus more comprehensible)
set.

This paper provides a way to combine a method that
does not explicitly consider any problem structure (such as
gCPCES) with techniques that do (such as the procedure for
computing superior counter-examples), and to get the best
of both worlds. It would be interesting to see how much fur-
ther this work can be pushed and determine, for instance,
which tags are redundant and can be safely ignored by the
conformant planner.

Acknowledgments

Alban Grastien is with the ANU Grand Challenge Human-
ising Machine Intelligence; his work was partly performed
while working for Data61.

References

Albore, A.; Palacios, H.; and Geffner, H. 2010. Compil-
ing uncertainty away in non-deterministic conformant plan-
ning. In Nineteenth European Conference on Artificial In-
telligence (ECAI-10).
Albore, A.; Ramı́rez, M.; and Geffner, H. 2011. Effective
heuristics and belief tracking for planning with incomplete
information. In 21st International Conference on Automated
Planning and Scheduling (ICAPS-11).
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Fifth Inter-
national Conference on AI Planning and Scheduling (AIPS-
00), 52–61.
Cimatti, A., and Roveri, M. 2000. Conformant planning via
symbolic model checking. J. Artif. Intell. Res. 13:305–338.
de Moura, L., and Bjørner, N. 2008. Z3: an efficient SMT
solver. In Fourteenth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS-08), 337–340.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.
Grastien, A., and Scala, E. 2017. Intelligent belief
state sampling for conformant planning. In 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-17),
4317–4323.
Grastien, A., and Scala, E. 2018. Sampling strategies for
conformant planning. In 28th International Conference on
Automated Planning and Scheduling (ICAPS-18), 97–105.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Fifth
European Conference on Planning (ECP-99), 308–318.

Hoffmann, J., and Brafman, R. 2006. Conformant planning
via heuristic forward search: a new approach. Artificial In-
telligence (AIJ) 170:507–541.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-
based conformant planning. In Sixth International Confer-
ence on Artificial Intelligence Planning Systems, 153–162.
Nguyen, K.; Tran, V.; Son, T.; and Pontelli, E. 2012.
On computing conformant plans using classical planners:
a generate-and-complete approach. In 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-12), 190–198.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research (JAIR) 35:623–
675.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Fifteenth Conference on Artificial Intelligence (AAAI-98),
889–896.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the effective-
ness of CNF and DNF representations in contingent plan-
ning. In 22nd International Joint Conference on Artificial
Intelligence (IJCAI-11), 2033–2038.
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts,
M.; and Sanner, S. 2015. The 2014 international planning
competition: Progress and trends. AI Magazine 36(3):90–98.

10024


