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Abstract

We present new algorithms for computing and approximating
bisimulation metrics in Markov Decision Processes (MDPs).
Bisimulation metrics are an elegant formalism that capture
behavioral equivalence between states and provide strong the-
oretical guarantees on differences in optimal behaviour. Unfor-
tunately, their computation is expensive and requires a tabular
representation of the states, which has thus far rendered them
impractical for large problems. In this paper we present a new
version of the metric that is tied to a behavior policy in an
MDP, along with an analysis of its theoretical properties. We
then present two new algorithms for approximating bisimula-
tion metrics in large, deterministic MDPs. The first does so
via sampling and is guaranteed to converge to the true metric.
The second is a differentiable loss which allows us to learn an
approximation even for continuous state MDPs, which prior
to this work had not been possible.

Introduction

A finite Markov Decision Process (MDP) is defined as a
5-tuple M = 〈S,A,P,R, γ〉, where S is a finite set of
states, A is a finite set of actions, P : S × A → Δ(S) is the
next state transition function (where Δ(X) is the probability
simplex over the set X), R : S × A → R is the reward
function (assumed to be bounded by Rmax), and γ ∈ [0, 1)
is a discount factor. An MDP is the standard formalism for
expressing sequential decision problems, typically in the con-
text of planning or reinforcement learning (RL). The set of
states S is one of the central components of this formalism,
where each state s ∈ S is meant to encode sufficient infor-
mation about the environment such that an agent can learn
how to behave in a consistent manner. Figure 1 illustrates a
simple MDP where each cell represents a state.

There is no canonical way of defining the set of states for a
problem. Indeed, improperly designed state spaces can have
drastic effects on the algorithm used. Consider the grid MDP
in the bottom of Figure 1, where an agent must learn how to
navigate to the green cells, and imagine we create an exact
replica of the MDP such that the agent randomly transitions
between the two layers for each move. By doing so we have
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Figure 1: A grid MDP (bottom) with a copy of itself (top).
The goal of an agent is to find the shortest path to the green
cells. At each iteration, the agent has a 50% chance of jump-
ing to the other level.

doubled the number of states and the complexity of the prob-
lem. However, from a planning perspective the two copies of
each state should be indistinguishable. A stronger notion of
state identity is needed that goes beyond the labeling of states
and which is able to capture behavioral indistinguishability.

In this paper we explore notions of behavioral similarity
via state pseudometrics1 d : S × S → R, and in particular
those which assign a distance of 0 to states that are behav-
iorally indistinguishable. Pseudometrics further allow us to
reason about states based on what we may know about other
similar states. This is a common use-case in fields such as for-
mal verification, concurrency theory, and in safe RL, where
one may want to provide (non-)reachability guarantees. In
the context of planning and reinforcement learning, these can
be useful for state aggregation and abstraction.

Our work builds on bisimulation metrics (Ferns, Panan-
gaden, and Precup 2004) which provide us with theoretical
guarantees such as states that are close to each other (with
respect to the metric) will have similar optimal value func-
tions. These theoretical properties render them appealing for
planning and learning, and they have previously been used
for state aggregation (Ferns, Panangaden, and Precup 2004;
Ferns et al. 2006), policy transfer (Castro and Precup 2010),
representation discovery (Ruan et al. 2015), and exploration
(Santara et al. 2019).

Unfortunately, these metrics are expensive to compute
(Chen, van Breugel, and Worrell 2012) and require fully enu-

1A pseudometric is a metric d where ∀s, t ∈ S. s = t =⇒
d(s, t) = 0, but not the converse.
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merating the states, even when using sampling-based approxi-
mants (Ferns et al. 2006), on-the-fly approximants (Comanici,
Panangaden, and Precup 2012; Bacci et al. 2013b), or approx-
imants which exploit structure in the state space (Bacci et
al. 2013a). The full-state enumeration requirement has thus
far rendered bisimulation metrics impractical in problems
with large state spaces, and completely incompatible with
continuous state spaces. Additionally, bisimulation metrics
can be overly pessimistic in the sense that they consider
worst-case differences between states. Although desirable for
certain applications, such as in guaranteeing safe behaviors,
it can prove overly restrictive for many practical problems of
interest.

In this paper we address these impracticalities with the
following key contributions:

1. An on-policy variant of bisimulation which focuses only
on the behavior of interest, rather than worst-case scenar-
ios, along with an analysis of its theoretical properties.

2. A new sampling-based online algorithm for exact compu-
tation of the original and on-policy bisimulation metrics
with guaranteed convergence.

3. A differentiable loss function for learning an approxi-
mation of the two bisimulation metrics using neural net-
works. We provide empirical evidence of this learning al-
gorithm on MDPs with large and continuous state spaces.
To the best of the author’s knowledge, this is the first work
proposing a mechanism for approximating bisimulation
metrics with neural networks.

Background

Given an MDP M, a policy π : S → Δ(A) induces a corre-
sponding state-value function V π : S → R (Puterman 1994):
V π(s) = Ea∼π(s)

[
R(s, a) + γEs′∼P(s,a)V

π(s′)
]
. In the

control setting, we are typically in search of the optimal
value function (Bellman 1957):
V ∗(s) = maxa∈A

[
R(s, a) + γEs′∼P(s,a)V

∗(s′)
]
.

Bisimulation relations, originally introduced in the field
of concurrency theory, were adapted for MDPs by Givan,
Dean, and Greig (2003), capture a strong form of behavioral
equivalence: if s, t ∈ S are bisimilar, then V ∗(s) = V ∗(t).

Definition 1. Given an MDP M, an equivalence relation
E ⊆ S×S is a bisimulation relation if whenever (s, t) ∈ E
the following properties hold, where SE is the state space S
partitioned into equivalence classes defined by E:

1. ∀a ∈ A,R(s, a) = R(t, a)

2. ∀a ∈ A, ∀c ∈ SE ,P(s, a)(c) = P(t, a)(c), where
P(s, a)(c) =

∑
s′∈c P(s, a)(s′),

Two states s, t ∈ S are bisimilar if there exists a bisimula-
tion relation E such that (s, t) ∈ E. We denote the largest2

bisimulation relation as ∼.

Equivalence relations can be brittle: they require exact
equivalence under probabilistic transitions. This can be espe-

2Note that there can be a number of equivalence relations satis-
fying these properties. The smallest is the identity relation, which is
vacuously a bisimulation relation.

cially problematic if we are estimating transition probabilities
from data, as it is highly unlikely they will match exactly.

Extending the work of Desharnais et al. (1999) for labeled
Markov processes, Ferns, Panangaden, and Precup (2004)
generalized the notion of MDP bisimulation relations to met-
rics, yielding a smoother notion of similarity than equiva-
lence relations. Let M be the set of all pseudometrics on
S. A pseudometric d ∈ M induces an equivalence relation
Ed := {(s, t)|d(s, t) = 0}. That is, any two states with
distance 0 will be collapsed onto the same equivalence class.
Definition 2. (Ferns, Panangaden, and Precup 2004) A pseu-
dometric d ∈ M is a bisimulation metric if Ed is ∼.

Bisimulation metrics use the 1-Wasserstein metric W1 :
M → P, where P is the set of all metrics between prob-
ability distributions over S. Given two state distributions
X,Y ∈ Δ(S) and a pseudometric d ∈ M, the Wasserstein
W1(d)(X,Y ) can be expressed by the following (primal)
linear program (LP), which “lifts” a pseudometric d ∈ M

onto one in P (Villani 2008):

max
u

∈ R
|S| ∑

s∈S
(X(s)− Y (s))us (1)

∀s, s′ ∈ S, us − us′ ≤ d(s, s′)
0 ≤ u ≤ 1

Theorem 1. (Ferns, Panangaden, and Precup 2004): Define
F : M → M by

F(d)(s, t) = (2)
max
a∈A

(|R(s, a)−R(t, a)|+ γW1(d)(P(s, a),P(t, a)))

then F has a unique fixed point, d∼, and d∼ is a bisimulation
metric.

The operator F can be used to iteratively compute a
bisimulation metric as follows. Starting from an initial es-
timate d0, we can compute dn+1 = F(dn) = Fn+1(d0).
By iteratively applying F 
 ln δ

ln γ � times, one can compute
d∼ up to an accuracy δ, with an overall complexity of
O
(
|A||S|4 log |S| ln δln γ

)
.

On-policy bisimulation

The strong theoretical guarantees of bisimulation relations
and metrics are largely due to their inherent “pessimism”:
they consider equivalence under all actions, even patholog-
ically bad ones (i.e. actions that never lead to positive out-
comes for the agent). Indeed, there exist systems where
V ∗(s) = V ∗(t), but d∼(s, t) can be arbitrarily large, pro-
viding no useful bounds on the optimal behaviour from s
and t (see Figure 2). Castro and Precup (2010) also demon-
strated that this pessimism yields poor results when using
bisimulation metrics for policy transfer.

Another disadvantage of bisimulation relations and metrics
is that they are computed via exact action matching between
states; however, actions with the same label may induce very
different behaviours from different states, resulting in an
improper behavioral comparison when using bisimulation. In
the system in Figure 2, s and t have equal optimal values,
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Figure 2: Edge labels indicate action ({a, b}) and non-zero
rewards ([K]). When γ = 0.9, V ∗(s) = V ∗(t) = 10K,
while d∼(s, t) = 10K. Lax bisimulation assigns distance 0
between s and t (action a from s would be matched with
action b from t).

but their optimal action is different (a from s, b from t).
Taylor, Precup, and Panagaden (2009) overcame this problem
by the introduction of lax-bisimulation metrics (definition
and theoretical results provided in the supplemental). We
note, however, that their method is still susceptible to the
pessimism discussed above.

It is often the case that one is interested in behaviours
relative to a particular policy π. In reinforcement learning,
for example, many algorithms maintain a behaviour policy
which is improved iteratively as the agent interacts with the
environment. In these situations the pessimism of bisimula-
tion can become a hindrance: if the action maximizing the
distance between two states is never chosen by π, we should
not include it in the computation!

We introduce a new notion of bisimulation, on-policy
bisimulation, defined relative to a policy π. This new no-
tion also removes the requirement of matching on action
labels by considering the dynamics induced by π, rather than
the dynamics induced by each action. We first define:

Rπ
s :=

∑
a

π(a|s)R(s, a)

∀C ∈ SEπ ,Pπs (C) :=
∑
a

π(a|s)
∑
s′∈C

P (s, a)(s′)

Definition 3. Given an MDP M, an equivalence relation
Eπ ⊆ S × S is a π-bisimulation relation if whenever
(s, t) ∈ Eπ the following properties hold:

1. Rπ
s = Rπ

t

2. ∀C ∈ SEπ ,Pπs (C) = Pπt (C)

Two states s, t ∈ S are π-bisimilar if there exists a π-
bisimulation relation Eπ such that (s, t) ∈ Eπ. Denot-
ing the largest bisimulation relation as ∼π, d ∈ M is a
π-bisimulation metric if Ed is ∼π .

Theorem 2. Define Fπ : M → M by Fπ(d)(s, t) = |Rπ
s−

Rπ
t |+ γW1(d)(Pπs ,Pπt ), then Fπ has a least fixed point dπ∼,

and dπ∼ is a π-bisimulation metric.

Proof. (Sketch) This proof mimics the proof of Theorem 4.5
from (Ferns, Panangaden, and Precup 2004). All complete
proofs are provided in the supplemental material.

The following result demonstrates that π-bisimulation met-
rics provide similar theoretical guarantees as regular bisimu-
lation metrics, but with respect to the value function induced
by π.

Theorem 3. Given any two states s, t ∈ S in an MDP M,
|V π(s)− V π(t)| ≤ dπ∼(s, t).

Proof. (Sketch) This is proved by induction. The result fol-
lows by expanding V π, taking the absolute value of each
term separately, and noticing that V π is a feasible solution
to the primal LP in Equation 1, so is upper-bounded by
W1(d

π
n).

Under a fixed policy π, an MDP reduces to a Markov chain.
Bisimulation relations for Markov chains have previously
been studied in concurrency theory (Baier et al. 2006; Katoen
et al. 2007). Further, π-bisimulation can be used to define
a notion of weak-bisimulation for MDPs (Baier et al. 2006;
Ferrer Fioriti et al. 2016).

Bisimulation metrics for deterministic MDPs

In this section we investigate the properties of deterministic
MDPs, which in concurrency theory are known as transition
systems (Sangiorgi 2011).

Definition 4. A deterministic MDP M is one where for all
s ∈ S, a ∈ A, there exists a unique N (s, a) ∈ S such that
P(s, a)(N (s, a)) = 1.

As the next lemma shows, under a system with determin-
istic transitions, computing the Wasserstein metric (and ap-
proximants) is no longer necessary.

Lemma 1. Given a deterministic MDP M, for any two
states s, t ∈ S, action a ∈ A, and pseudometric d ∈ M,
W1(d)(P(s, a),P(t, a)) = d(N (s, a),N (t, a)).

Proof. (Sketch) The result follows by considering the dual
formulation of the primal LP in Equation 1, which implies
the dual variables λs,t must all be either 1 or 0, by virtue of
determinism.

By considering only deterministic policies (e.g. policies
that assign probability 1 to a single action) in the on-policy
case, Lemma 1 allows us to rewrite the operator F(d)(s, t)
in Theorem 1 and Fπ(d)(s, t) in Theorem 2 as:
maxa∈A (|R(s, a)−R(t, a)|+ γd(N (s, a),N (t, a)))
and
|R(s, π(s)) − R(t, π(t))| + γd(N (s, π(s)),N (t, π(t))),
respectively. Note the close resemblance to value functions,
there is in fact a strong connection between the two: Ferns
and Precup (2014) proved that d∼ is the optimal value
function of an optimal coupling of two copies of the original
MDP.

Even in the deterministic setting, the computation of bisim-
ulation metrics can be intractable in MDPs with very large or
continuous state spaces. In the next sections we will leverage
the results just presented to introduce new algorithms that are
able to scale to large state spaces and learn an approximant
for continuous state spaces.
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Computing bisimulation metrics with sampled

transitions

We present the algorithm and results in this section for the
original bisimulation metric, d∼, but all the results presented
here hold for the on-policy variant dπ∼; the main difference
is that actions in the trajectory are given by π and thus, may
differ between states being compared.

The update operator F is generally applied in a dynamic-
programming fashion: all state-pairs are updated in each
iteration by considering all possible actions. However, re-
quiring access to all state-pairs and actions in each iteration
is often not possible, especially when data is concurrently
being collected by an agent interacting with an environment.
In this section we present an algorithm for computing the
bisimulation metric via access to transition samples. Specif-
ically, assume we are able to sample pairs of transitions
{〈s, a,R(s, a),N (s, a)〉, 〈t, a,R(t, a),N (t, a)〉} from an
underlying distribution D (note the action is the same for
both). This can be, for instance, a uniform distribution over
all transitions in a replay memory (Mnih et al. 2015) or some
other sampling procedure. Let T be the set of all pairs of valid
transitions; for legibility we will use the shorthand τs,t,a ∈ T
to denote a pair of transitions from states s, t ∈ S under
action a ∈ A. We assume that D(τ) > 0 for all τ ∈ T .

We first define an iterative procedure for computing d∼ by
sampling from D. Let d0 ≡ 0 be the everywhere-zero metric.
At step n, let τsn,tn,an ∈ T be a sample from D and define
dn as:

dn(s, t) = dn−1(s, t), ∀s = sn, t = tn

dn(sn, tn) = max

[
dn−1(sn, tn),

|R(sn, an)−R(tn, an)|+
γdn−1(N (sn, an),N (tn, an))

]

(3)

In words, when we sample a pair of states, we only update
the distance estimate for these two states if applying the F
operator gives us a larger estimate. Otherwise, our estimate
remains unchanged.

Theorem 4. If dn is updated as in Equation 3 and d0 ≡ 0,
limn→∞ dn = d∼ almost surely.

Proof. (Sketch) We first show that since we are sampling
state pairs and actions infinitely often, all state pairs will re-
ceive a non-vacuous update at least once (Maximizing action
lemma); then show that dn ≤ d∼ for all n ∈ N (Monotonic-
ity lemma). We then use these two results to show that the
difference ‖d∼−dn‖∞ is a contraction and the result follows
by the Banach fixed-point theorem. Note that the maximizing
action lemma as presented here is for the original bisimula-
tion metric; for the on-policy variant, the equivalent result is
that all states in the Markov chain induced by π are updated
infinitely often.

Learning an approximation

We leverage the sampling approach from the previous section
to devise a learning algorithm for approximating d∼ and

dπ∼ for MDPs with large (or continuous) state spaces, using
function approximators in the form of neural networks. Let φ :
S → R

k be a k-dimensional representation of the state space
and let ψθ : R2k → R be a neural network parameterized by
θ, that receives a concatenation of two state representations
such that ψθ([φ(s), φ(t)]) ≈ d∼(s, t) (see Figure 3).

Following the practice introduced by (Mnih et al. 2015)
we make use of online parameters θ and target parameters
θ−, where the online parameters are updated at each iteration
while the target parameters are updated every C iterations.
Given a pair of states s = t and action a ∈ A, at iteration i
we define the target objective Tθ−i

(s, t, a) for d∼ as:

max

[|R(s, a)−R(t, a)|+ γψ
θ−i

([φ(N (s, a)), φ(N (t, a))]),

ψ
θ−i

([φ(s), φ(t)])

]

and equal to 0 whenever s = t. The target objective Tπ
θ−i

(s, t)

for dπ∼ is:

|R(s, π(s))−R(t, π(t))|+
γψπ

θ−i
([φ(N (s, π(s))), φ(N (t, π(t)))])

We can then define our loss L(π)
s,t,a as:

ED
(
T

(π)

θ−i
(s, t, a)− ψ

(π)
θi

([φ(s), φ(t)])
)2

. This loss is
specified for a single pair of transitions, but we can define an
analogous target and loss with mini-batches, which allows us
to train our approximant more efficiently using specialized
hardware such as GPUs:

T = (1− I)⊗max
(
R2 + γβψθ−i

(N2), βψθ−i
(S2)

)
Li(θi) = ED

[
W ⊗

(
ψθi(S

2)−T
)2]

Tπ = (1− I)
(
R2 + γβψπ

θ−i
(N2)

)
Lπi (θi) = ED

[(
ψπθi(S

2)−T
)2]

R2, S2, and N2 are batches of rewards, states, and next-
states, respectively, W is a mask used to enforce action
matching when approximating d∼, and I is the identity ma-
trix. ψ(X) indicates applying ψ to a matrix X elementwise,
and ⊗ stands for the Hadamard product. We multiply by
(1 − I) to zero out the diagonals, since those represent ap-
proximations to d(π)∼ (s, s) ≡ 0. The parameter β is a stability
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Figure 3: Using a neural network for learning ψ as an approx-
imant to d∼ or dπ∼.
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Figure 4: GridWorld and its (x, y) representation. Black den-
sities illustrate the sampled states when adding noise.

parameter that begins at 0 and is incremented towards 1 every
C iterations. Its purpose is to gradually “grow” the effective
horizon of the bisimulation backup and maximization. This
is helpful since the approximant ψθ can have some variance
initially, depending on how θ is initialized. Further, Jiang
et al. (2015) demonstrate that using shorter horizons dur-
ing planning can often be better than using the true horizon,
especially when using a model estimated from data. Note
that, in general, the approximant ψ is not guaranteed to be a
proper pseudometric. A lengthier discussion, including the
derivation of these matrices, is provided in the supplemental
material.

Empirical evaluation

In this section we provide empirical evidence for the effec-
tiveness of our bisimulation approximants3. We begin with
a simple 31-state GridWorld, on which we can compute the
bisimulation metric exactly, and use a “noisy” representation
which yields a continuous-state MDP. Having the exact met-
ric for the 31-state MDP allows us to quantitatively measure
the quality of our learned approximant.

We then learn a π-bisimulation approximant over poli-
cies generated by reinforcement learning agents trained on
Atari 2600 games. In the supplemental material we provide
an extensive discussion of the hyperparameter search we
performed to find the settings used for both experiments.
Training was done on a Tesla P100 GPU.

GridWorld

We first evaluate our learning algorithms on the 31-state
GridWorld environment illustrated in Figure 4. There are 4
actions (up, down, left, right) with deterministic transitions,
and where an action driving the agent towards a wall keeps
the agent in the same cell. There is a single reward of +1.0
received upon entering either of the green cells, and a reward
of −1.0 for taking an action towards a wall. We display the

3Code available at https://github.com/google-research/google-
research/tree/master/bisimulation aaai2020

bisimulation distances between all states in the supplemental,
computed using the sampling approach.

We represent each state by its coordinates (x, y) ∈ R
2, as

illustrated in Figure 4. To estimate d∼ we use a network with
an input layer of dimension 4, one fully connected hidden
layer with 729 hidden units, and an output of length 1. The in-
put is the concatenation of two state representations, normal-
ized to be in [−1, 1], while the output value is the estimate to
d∼. We sampled state pairs and actions uniformly randomly,
and ran our experiments with γ = 0.99, C = 500, b = 256,
and increased β from 0 to 1 by a factor of 0.9 every time the
target network was updated; we used the Adam optimizer
(Kingma and Ba 2015) with a learning rate of 0.01. Because
of the maximization term in the target, these networks can
have a tendency to overshoot (although the combination of
target networks and the β term helps stabilize this); we ran
the training process for 2500 steps, which, for this problem,
was long enough to converge to a reasonable solution before
overshooting. The full hyperparameter settings are provided
in the supplemental.

To evaluate the learning process, we measure the absolute
error: ‖d∼ − ψ‖∞ using the true underlying state space for
which we know the value of d∼. Note that because there is
no fixed learning target, absolute errors are not guaranteed
to be bounded. For this reason we also report the normalized
error: ‖ d∼

‖d∼‖2
− ψ

‖ψ‖2
‖∞ as in practice one is mostly inter-

ested in relative, rather than absolute, distances. Figure 5a
and Figure 5b display the results of our experiments over
10 independent runs; the shaded areas represent the 95%
confidence interval.

In addition to training on the 31 state-MDP, we constructed
a continuous variant by adding Gaussian noise to the state
representations; this noise is centered at (0, 0) with standard
deviation 0.1, and clipped to be in [−0.3, 0.3]. The per-cell
noise is illustrated by the black gradients in Figure 4. As
Figure 5 shows, there is little difference between learning
the metric for the 31-state MDP versus learning it for its
continuous variant. Adding noise does not seem to hurt per-
formance, and in fact seems to be helpful. We hypotheisze
that noise may be acting as a form of regularization, but this
requires further investigation. In the supplemental material
we include a figure exploring using the metric approximant
for aggregating states in the continuous MDP setting with
promising results.

Atari 2600

To evaluate the performance of our learning algorithm on
an existing large problem, we take a set of reinforcement
learning (RL) agents trained on three Atari 2600 games from
the Arcade Learning Environment (Bellemare et al. 2013).
The RL agents were obtained from the set of trained agents
provided with the Dopamine library (Castro et al. 2018).
Because our methods are designed for deterministic MDPs,
we only used those trained without sticky actions4 (Machado
et al. 2018) (evaluated in Section 4.3 in (Castro et al. 2018));
the trained checkpoints were provided for only three games:
Space Invaders, Pong, and Asterix. We used the Rainbow

4Sticky actions add stochasticity to action outcomes.
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(a) Absolute metric errors on the GridWorld. (b) Normalized metric errors.

Figure 5: Metric errors for the learned metric on the GridWorld as training progresses.

agent (Hessel et al. 2018) as it is the best performing of the
provided Dopamine agents. We used the penultimate layer of
the trained Rainbow agent as the representation φ.

To approximate the on-policy bisimulation metric dπ∼ we
loaded a trained agent and ran it in evaluation mode for each
respective game, filling up the replay buffer while doing so.
Once 10,000 transitions have been stored in the replay buffer,
we begin sampling mini-batches and update our approximant
ψπθ using the target and loss defined previously. (note that we
still continue populating our replay buffer). We ran our ex-
periments using a network of two hidden layers of dimension
16, with γ = 0.99, C = 500, b = 128, and increased the
β term from 0 to 1 by a factor of 0.99 every time the target
network was updated. We used the Adam optimizer (Kingma
and Ba 2015) with a learning rate of 7.5e−5 (except for Pong
where we found 0.001 yielded better results). We trained the
networks for around 600K steps, although in practice we
found that about half that many steps were needed to reach
a stable approximant. The configuration file specifying the
full hyperparameter settings as well as the learning curves
are provided in the supplemental.

After training we evaluated our approximant
ψπθ ([φ(s), φ(t)]) by fixing s to be the first state in the
game and varying t throughout the episode; that is, we
evaluate how similar the other states of the game are to
the initial state w.r.t. our metric approximant. In Figure 6
we display the first 500 steps of one evaluation run on
Space Invaders; as can be seen, the learned metric captures
more meaningful differences between frames (start of
episodes, enemy alien destroyed) that go beyond simple
pixel differences. Interestingly, when sorting the frames
by distance, the frames furthest away from s are typically
those where the agent is about to be killed. It is worth
noting that the way states are encoded in Dopamine is by
stacking the last four frames; in our visualization we are
only displaying the top frame in this stack. We observed
similar results for Asterix and Pong; we include these and
more extensive results, as well as videos for the three games,
in the supplemental material.

Related work

There are a number of different notions of state similarity
that have been studied over the years. Li, Walsh, and Littman
(2006) provide a unified characterization and analysis of
many of them. MDP-homomorphisms (Ravindran and Barto
2003) do not require behavioral equivalence under the same
action labels, and this idea was extended to a metric by Taylor,
Precup, and Panagaden (2009).

Ferns et al. (2006) introduced a sampling-based approxima-
tion to d∼ which exchanges the computation of the Wasser-
stein with an instance of the assignment problem from net-
work optimization; although Castro (2011) derived a PAC-
bound for this approximant, the number of samples required
is still prohibitive. Bacci et al. (2013a) exploit the underlying
structure in S to compute d∼.

Although there has been some work in concurrency theory
to approximate large systems via ‘polynomially accurate’
simulations (Segala and Turrini 2007), they make no use of
function approximators in the form of neural networks. We
believe our use of neural networks may grant our approach
greater generalizability.

Deterministic on-policy systems can be reduced to a graph.
As such, our notion of π-bisimulation metrics bears a close
relationship to graph similarity measures (Zager and Vergh-
ese 2008). However, graph similarity notions compare two
full systems (graphs), as opposed to two nodes within a single
graph, as we evaluate here. Nonetheless, the relationship war-
rants further investigation, which we leave for future work.

Perhaps most related to our sampling method is the on-
the-fly methods introduced by Comanici, Panangaden, and
Precup (2012). The authors replace the use of standard dy-
namic programming in their computation with something
akin to asynchronous dynamic programming (Sutton and
Barto 1998), where not all state-pairs are updated at each
iteration, but rather S is split into disjoint sets that are up-
dated at different intervals. A few strategies for sampling
state-pairs are discussed, of which the most similar to ours is
the “uniform asynchronous update”.

Gelada et al. (2019) introduced DeepMDP latent models
and established a close relationship with bisimulation metrics
(specifically, Theorem 4 in their paper). Although closely re-
lated, there are some important differences. Their work deals
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Figure 6: Evaluating the approximant to dπ∼ with an eval run on Space Invaders. We plot the distance between the source state s
(pictured in the bottom left) and every other state, highlighting the relatively low distances in game or level starts (green shading
pointing to left and right side of the plot), as well as the peaks occuring when an enemy alien is destroyed (blue shading pointing
to the distance peaks). On the bottom right we display the distribution of distances and the four furthest states for this run.

with state representations, where the distance between states
is their distance in the representation space; by contrast, our
proposed neural networks approximate the bisimulation met-
ric between two states, independent of their representation.
Further, the authors use the DeepMDP losses as an auxil-
iary task without a guarantee that their representations are
consistent with their theoretical results. In our work we are
able to show that our approximant is valid both quantitatively
(GridWorld) and qualitatively (Atari 2600). Nonetheless, a
natural extension of our work is to use the bisimulation losses
we introduced as a means to learn better representations.

Conclusion

We introduced new methods for computing and approximat-
ing bisimulation metrics in large deterministic MDPs. The
first is an exact method that converges to the true metric
asymptotically, and the second is a differentiable method for
approximating the metric which we demonstrated can learn
a good approximant even in continuous state spaces. Since
their introduction, bisimulation metrics have been used for
theoretical analysis or in MDPs of small-to-moderate size,
but they have scarcely been used in larger problems. Our
results open the doors for their application in systems with a
large, and even continuous, state space.

One important avenue for research is to extend these results
to stochastic systems. Computing the Wasserstein metric
without access to a generative model is challenging for deep
RL environments, as the next-state samples typically come
from single trajectories in replay buffers. One possibility is to
build a model of the transition dynamics from the transitions
in the replay buffer and compute the Wasserstein metrics
from this estimate.

Although the network architecture and hyperparameters
used to train dπ∼ are by no means optimal, the results we
presented for the Atari 2600 domain are very promising and

suggest that bisimulation metrics can be used effectively for
deep reinforcement learning. Some promising areas we are
currently exploring are using bisimulation metrics as an aux-
iliary task for improved state representation, as a mechanism
for compressing replay buffers, and as a tool for more effi-
cient exploration.
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