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Abstract

Learning from demonstrations (LfD) is an efficient paradigm
to train AI agents. But major issues arise when there are differ-
ences between (a) the demonstrator’s own sensory input, (b)
our sensors that observe the demonstrator and (c) the sensory
input of the agent we train.
In this paper, we propose a causal model-based framework for
transfer learning under such “sensor-shifts”, for two common
LfD tasks: (1) inferring the effect of the demonstrator’s actions
and (2) imitation learning. First we rigorously analyze, on the
population-level, to what extent the relevant underlying mech-
anisms (the action effects and the demonstrator policy) can
be identified and transferred from the available observations
together with prior knowledge of sensor characteristics. And
we device an algorithm to infer these mechanisms. Then we
introduce several proxy methods which are easier to calculate,
estimate from finite data and interpret than the exact solutions,
alongside theoretical bounds on their closeness to the exact
ones. We validate our two main methods on simulated and
semi-real world data.

1 Introduction

Motivation. Learning from demonstrations is an important
paradigm to train AI agents (Argall et al. 2009; Schaal 1999;
Ho and Ermon 2016; Jeon, Seo, and Kim 2018). Ideally, one
would like to harness as much cheaply available (and rele-
vant) demonstrator data as possible. But major issues arise
when there are differences between the sensors of demon-
strator, us and agent we train. When ignoring such issues, or
addressing them in a naive way, wrong and potentially harm-
ful conclusions can result: about demonstrator’s behavior and
the demonstrator’s actions’ effects on the environment.

Example 1 (Highway drone data). In the development of
self-driving cars, recently drones have been deployed to fly
over highways and record the behavior of human-driven cars
(Krajewski et al. 2018; Zhan et al. 2019). Clearly, in such
drone recordings, some crucial variables are either more noisy
than observed from within the car, or completely missing,
such as indicator lights.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: In highway drone data, the indicator light of the
lead car would be missing, introducing a hidden common
cause between acceleration of demonstrator car and lane
changing behavior of the lead car.

Assume we want to use such data to learn, say, how an
acceleration action A of a “demonstrator car” affects the lane
changing behavior Z of a “lead car” in front of it on the
slower lane, as depicted in Figure 1. Slightly simplifying
reality, assume the indicator light of the lead car serves as
a perfect coordination device: it is on if and only if, subse-
quently, (1) the demonstrator car decelerates and (2) the lead
car changes lane to the fast lane. Now assume we just use
the variables recorded in the drone data, where the indicator
light is not contained, estimate P (Z|A) from it, and naively
consider it as the causal effect of A on Z.

This leads us to the conclusion that an agent in the place
of the demonstrator can arbitrarily chose any acceleration or
deceleration action as A, and the lead car will perfectly adapt
Z and only change lane when agent decelerates – which in
practice can lead to crashes. In the language of causal models
(Pearl 2009; Spirtes et al. 2000), the indicator light is a hidden
common cause (confounder).

Main tasks, approach and contributions: In this paper,
we address learning from demonstrations (LfD) under sensor-
shift, i.e., when there are differences between (a) the demon-
strator’s own sensory input, (b) our sensors that observe the
demonstrator and (c) the sensory input of the agent we train.
Specifically, we consider two closely related “subtasks” of
LfD: (1) inferring the effect of the demonstrator’s decisions
(as in Example 1) and (2) imitating the demonstrator.

Our approach is based on causal models (Pearl 2009;
Spirtes et al. 2000; Peters, Janzing, and Schölkopf 2017),
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which allow us to generalize from data beyond i.i.d. settings.
The idea is that, while some modular causal mechanisms
that govern the data vary (the sensors), other mechanisms are
invariant (e.g., the action-effect).

Our main contributions are:

• We rigorously analyze, on the population-level, to what
extent the relevant underlying mechanisms (the action-
effect and the demonstrator policy) can be identified and
transferred from the available observations together with
prior knowledge of sensor characteristics (Sections 5, 6.1,
6.2 and 7.1). And we propose algorithms to calculate them
(Algorithms 1 and 2).

• We introduce several proxy methods (Sections 6.3 and 7.2)
which are easier to calculate, estimate from finite data and
interpret than the exact solutions, alongside theoretical
bounds on their closeness to the exact ones (Propositions 2,
4 and 5). (Proofs are in the supplement1 of this paper.)

• We conduct experiments to validate our two main methods
on simulated and semi-real world highway drone data used
for autonomous driving (Section 8).

2 Related work

Learning from demonstrations (LfD) (Argall et al. 2009) is a
broad area, with two concrete tasks being the ones we also
consider in this paper: (1) inferring the effect of action on
outcome given observation (we call it “action-effect” in our
a-temporal framework, while in the language of (Argall et al.
2009) this is called the “system model” or “world dynamics”),
and (2) imitation learning (see next paragraph). Generally in
LfD, the problem that sensors differ between demonstrator,
observer and target AI agent has been considered (Argall et
al. 2009; Ude, Atkeson, and Riley 2004; Atkeson and Schaal
1997). In the language of (Argall et al. 2009), this is described
as the “recording mapping” or “embodiment mapping” not
being the identity. However, we are not aware of any treat-
ment of this problem which is as systematic and general as
ours in terms of guarantees on exact and approximate identi-
fiability. Instead, approaches are practically-focused, tailored
to specific, say, robot tasks (Ude, Atkeson, and Riley 2004;
Atkeson and Schaal 1997).

Within LfD, imitation learning means learning to perform
a task from expert demonstrations (Ho and Ermon 2016;
Muller et al. 2006). There are two main approaches to address
this problem: behavioral cloning (Pomerleau 1991), which
we are focusing on, and inverse reinforcement learning (IRL)
(Ng, Russell, and others 2000; Ziebart et al. 2008).

The problem of bounding as well as transferring and inte-
grating causal relations across different domains has been
studied by (Balke and Pearl 1994; Bareinboim 2014; Magli-
acane et al. 2017). But all this work does not consider the
training of AI agents. Within causal modelling, maybe closest
related to our paper are (Bareinboim, Forney, and Pearl 2015;
Forney, Pearl, and Bareinboim 2017; Zhang and Bareinboim
2017; Geiger, Hofmann, and Schölkopf 2016), who also
study the integration of data from heterogeneous settings

1The supplement can be found at “https://doi.org/10.5281/
zenodo.3549981”.

for training agents (often with latent confounders and from a
multi-armed bandit perspective).

For example, (Zhang and Bareinboim 2017) tackle the
problem of transferring knowledge across bandit agents in
settings where causal effects cannot be identified by standard
learning techniques. Their approach consists of two steps:
(1) deriving bounds over the effects of selecting arms and
(2) incorporating these bounds to search for more promising
actions. However, when bounding the causal effect, they
focus on binary variables, while we consider arbitrary finite
as well as continuous ranges (which are highly relevant in
practice) and they do not focus on general sensor-shifts.

The authors of (P. Haan 2018) study “causal confusion” in
causal-model-free imitation learning. There, additional obser-
vations can lead to worse performance due to the mechanism
(policy) that generates them differing between demonstra-
tions and target environment. However, in their model they
assume that both the demonstrator and the imitator have (at
least) the same observations. This is not always the case, and
therefore our treatment allows the observations to differ.

3 Background

Conventions: We use D(·||·), H(·), and I(·; ·|·) to denote
the Kullback-Leibler (KL) divergence, entropy, and mutual
information, respectively (Cover and Thomas 2012). We
consider both, discrete and continuous random variables;∑∫ stands for the sum or integral, accordingly; P (W ) for the
distribution of a variable W , and p(w) for the density at value
W = w. If not stated otherwise, we assume that distributions
have full support2 and densities.

Causal models: According to Pearl’s definition (Pearl
2009), a causal model is an ordered triple (U, V,E), where
U denotes a set of exogenous variables whose values are
determined by factors outside the model (not observable); V
is a set of endogenous variables whose values are determined
within the model; and E is a set of structural equations that
express, for each endogenous variable W ∈ V , the mecha-
nism of how W is generated by certain other endogenous and
exogenous variables. Namely, for all W ∈ V , we have

W = fW (PAW , UW ),

where fW (·, ·) is a function and PAW denotes the parent set
of variable W . W is called a child of PAW . This induces a
joint distribution over the endogenous variables, which can
be factorized as follows:

P (V ) =
∏

W∈V

P (W |PAW ).

This factorization is usually expressed using a directed
acyclic graph (DAG), in which nodes represent the endoge-
nous variables and arrows are from parents to their children.
It is also possible that a sub-set of V is hidden. In this case,
we denote the hidden variable with circles in the DAG.

2Full support is a commonly made (Pearl 2009) but non-trivial
assumption, important for identifiability.
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Figure 2: Causal DAGs. Left: source domain. Right: target domain. Circle means hidden to us.

The post-interventional distribution is defined by replac-
ing a subset of structural equations without generating cy-
cles in the DAG (Pearl 2009). More specifically, the post-
intervention distribution after (atomic) intervening on vari-
able W is defined by replacing fW (PAW , UW ) with value
w and it is denoted by P

(
V |do(W = w)

)
.

4 Setting and problem formulation

4.1 General model of our setting

Causal models of source and target domain. There are
two domains, the source domain where the demonstrator
(agent) observes and acts, and the target domain where the
target agent, which we design, observes and acts. (By domain
we mean the complete causal model of environment, sensors,
and agent.) The two domains, including what is hidden and
what is observed by us, are depicted by the two causal DAGs
in Figure 2 over the following variables: X is the state of the
system, A is the action of the agent, Z stands for the outcome
(an abstract variable that could be, as in Example 1, the state
of cars in the the next time instance). Regarding observations,
we assume that in the source domain we have YD, the demon-
strator’s input, generated by the demonstrator’s sensors, YS ,
the spectator’s – i.e., our – observation of the state of the
source system, and in the target domain we have YT , the
input to the target agent from the target agent’s sensors. We
often denote distributions over variables (e.g. P (Z)) in the
source and target domain by subscript S and T , respectively
(e.g., PS(Z) and PT (Z)). Let πD(A|YD) denote the policy
of the demonstrator, and πT (A|YT ) denote the policy of the
target agent.

Relationship between source and target domain, and
what is known to us. We assume that the two domains
are related by sharing the same invariant mechanism for out-
come given state and action, i.e.,

PT (Z|A,X) = PS(Z|A,X),

so that we can drop the subscript and just write P (Z|A,X).
We assume we are given PS(Z,A, YS) (or a sample of
it), as well as the sensor characteristics3 PS(YS |X) and
PT (YT |X).

3This may be based on performing an experimental system iden-
tification of the sensors or using physical knowledge.

4.2 Problem formulation

The overarching goal is to design the target agent that ob-
serves and successfully acts in the target domain, based on
what we know from the source domain and its relation to the
target domain. We consider two specific tasks that serve this
overarching goal:
Task 1 (Action-effect transfer learning task). Infer
PT (Z|do(A), YT ), the effect of action A on outcome Z con-
ditional on observation YT in the target domain.4

Task 2 (Imitation transfer learning task). Learn a policy
πT (A|YT ) for the target agent (also called imitator in this
task) such that it behaves as similarly as possible to the
demonstrator (details follow).

5 Basic step addressing both tasks: equations

and algorithm

In this section, we make general derivations about our model
(Section 4.1), which serve as steps towards both, the imitation
and the action-effect transfer learning tasks.

Basic equation: Our model (Section 4.1) implies the fol-
lowing equations, for all z, a, y:

pS(z, a, yS) =
∑∫
x

pS(yS |x)pS(z, a, x) (1)

=
∑∫
x,yD

pS(yS |x)p(z|a, x)πD(a|yD)pS(yD, x). (2)

These are the basic equations that relates what is known –
pS(z, a, yS) (l.h.s. of (1)) – to what we would like to know
(r.h.s. of (2)): πD(a|yD) for Task 2 and p(z|a, x) for Task
1. More specifically, these equations constrain the unknown
quantities to a set of possibilities. This is exactly the set up
to which we can identify (Pearl 2009) them.

Finite linear equation system in discrete case: Solving
(1) for pS(z, a, x) is an important intermediate step to ad-
dresses Task 1 and 2 simultaneously, since pS(z, a, x) con-
tains all the information that pS(z, a, yS) contains about
πD(a|yD) and p(z|a, yT ). (In particular, in the classical case

4Once the effect PT (Z|YT , do(A)) is inferred, what remains to
be done for designing the target agent is to fix a utility function u(Z)
on the outcome, and then pick the optimal a by, say, maximizing
ET (u(Z)|do(a), yT ) w.r.t. a.
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of YS = YT = YD = X , pS(z, a, x) uniquely determines
the latter two quantities via marginalization/conditioning.) So
let us for a moment focus on (1). In the discrete case, it can
be rewritten as the following collection of matrix equations.
Let {x1, . . . , x�} and {y1, . . . , ym} be the range of X and
YS , respectively. Then, for all z, a,⎡
⎢⎣
P (z, a, y1)

...
P (z, a, ym)

⎤
⎥⎦

︸ ︷︷ ︸
P (z,a,YS)∈Rm

=

⎡
⎢⎣
P (y1|x1) · · ·P (y1|x�)

...
...

P (ym|x1) · · ·P (ym|x�)

⎤
⎥⎦

︸ ︷︷ ︸
[P (yi|xj)]m,�

i,j=1∈Rm×�

⎡
⎢⎣
P (z, a, x1)

...
P (z, a, x�)

⎤
⎥⎦

︸ ︷︷ ︸
P (z,a,X)∈R�

.

(3)

Algorithm for solution set in discrete case: Algorithm 1
yields a parametrization of the set of all possible solutions
P (z, a,X) ∈ R

� to (3), for any z, a. Specifically, it outputs
the finite set of corner vectors whose convex combinations
parametrize the solution set.

It uses singular-value decomposition (SVD) to cope with
non-invertibility, and then a routine inspired by the simplex
algorithm to account for the constraint that the output has to
be a proper probability distributions.5

For the algorithm, w.l.o.g., we assume m ≤ � and that
[P (yi|xj)]m,�

i,j=1 has full rank (otherwise one removes linearly
dependent rows). Note that if m = � and [P (yi|xj)]m,�

i,j=1 is
non-singular, then (3) determines P (z, a,X) uniquely, via
a simple matrix inversion. Therefore, for this algorithm, the
interesting scenario is m < �. This is the case, e.g., in Exam-
ple 1 – the highway drone data where indicator lights are not
recorded.

6 Approach to the action-effect transfer

learning task

Let us now address Task 1 – inferring the target domain’s
action-effect PT (Z|do(A), YT ).

Example 2. To illustrate what can go wrong when naively
addressing this task, let us get back to the highway drone
data (Example 1). There, in the source domain, the indicator
light is not observed by us, and for simplicity we assumed
that there are no other variables, i.e., YS is empty/constant.
Our informal argument in that example can now be stated
formally based on causal models (Section 3): Observe that
in the causal DAG (Figure 2), X,YD are hidden confounders
that introduce “spurious correlations” between A and Z.
Therefore, in the generic case, the naive guess PS(Z|a)
does not coincide with the actual action-effect PS(Z|do(A))
(= PT (Z|do(A))).
Assumption 1. In this section, we assume the target agent
observes the full state, i.e., YT=X .6

5Since the left hand side of (3) is a probability vector, it is not
necessary to bound P (z, a, xi) by one.

6Observability of X , similar as in Markov decision processes
(MDPs), seems to be a good approximation to many real-world
situations while at the same time keeping the analysis instructive.
We make no assumption w.r.t. YD .

Algorithm 1: Finding solution set for (3)

Input: P (z, a, YS) (l.h.s. of (3)), [P (yi|xj)]m,�
i,j=1

Output: ζ1, . . . , ζk ∈ R
�, such that their convex hull is

the solution set to (3)
1 Rearrange columns of [P (yi|xj)]m,�

i,j=1 such that
[P (yi|xj)]m,�

i,j=1 = [D E] and D ∈ R
m×m is

non-singular;
2 UΣV T ← SVD of [P (yi|xj)]m,�

i,j=1 ;
3 for i = 1 to �−m do
4 ei ← zero vector of length �−m whose ith entry is

one;

5 M ← V

[
0 · · · 0
e1 · · · e�−m

]
, b←

[
D−1P (z, a, YS)

0

]
;

6 i← 1;
7 for any sub-matrix R of M with dimension

(�−m)× (�−m) do

8 b̂← the sub-vector of b of length �−m that
corresponds to the selected rows of M ;

9 if R−1 exists and −MR−1b̂+ b ≥ 0 then

10 ζi ← −MR−1b̂+ b;
11 i← i+ 1;

Under Assumption 1, we have

PT (Z|do(A), YT ) = PT (Z|do(A), X) = P (Z|A,X).

So Task 1 means inferring P (Z|A,X) (which could also
be referred to as the (target domain’s) “dynamics”). We now
propose three methods, which differ w.r.t. the setting in which
they are applicable and/or w.r.t. yielding exact or approximate
solutions.

6.1 Exact solution set in the discrete case

In the case of all variables being discrete, we can build on our
basic step in Section 5 to analytically find the set of possible
action-effects P (Z|X,A) as follows: first we deploy Algo-
rithm 1 to get all possible P (Z,X,A), and then from this
(simply by dividing by the marginals), we get P (Z|X,A).

6.2 Exact solution in the linear invertible
continuous case

In the continuous case, the general identification analysis
– the analysis of the solution set of (2) – is very difficult
because the vectors space is infinite-dimensional. Therefore
let us here consider the special case of linear relationships.
Assumption 2. In this Section 6.2, assume all relationships
are linear, in particular, for matrices D,E, F ,

YS = FX +N, (4)

Z = [D E]

[
A
X

]
+O (5)

with N,O the usual noise terms that are independent of all
other (non-descendant) variables.
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Algorithm 2: Exact linear action-effect transfer method
(sample-level)

Input: sample (z1, a1, y1), . . . , (z�, a�, y�) from
P (Z,A, YS); prior knowledge F , ΣNN (see (4));
regularization parameter λ

Output: Estimates D̂, Ê for the regression matrices
D,E (see (5))

1 Calculate the empirical covariance matrices
Σ̂ZA, Σ̂ZYS

, Σ̂AYS
, Σ̂YSYS

from the sample
2 Add a regularization term λ1 to Σ̂AA and Σ̂YSYS

3 Calculate the Schur complements
S1 := Σ̂AA − Σ̂AYS

(ΣYSYS
− ΣNN )−1Σ̂YSA,

S2 := Σ̂YSYS
− ΣNN − Σ̂YSAΣ̂

−1
AAΣ̂AYS

.
4 Calculate the estimates

D̂ := Σ̂ZAS
−1
1 − Σ̂ZYS

(Σ̂YSYS
− ΣNN )−1Σ̂YSAS

−1
1 ,

and Ê :=
−Σ̂ZAS

−1
1 Σ̂AYS

(Σ̂YSYS
− ΣNN )−1 + Σ̂ZYS

S−1
2 )F

We propose Algorithm 2 as (sample-level) method in this
setting.

Proposition 1. Assume all variables have mean zero (other-
wise center them). Furthermore, assume that X and YS have
the same dimension, and that F (in (4)) is invertible. Then
Algorithm 2 is sound in the following sense: when replacing
the empirical covariance matrices

Σ̂ZA, Σ̂ZYS
, Σ̂AYS

, Σ̂YSYS

in Line 1 by their population-level counterparts, and setting
the regularization term λ = 0, the output will be the true
D,E (in (5)).

6.3 Average-based action-effect proxy in the
general case

The exact general solution can be difficult to handle in
terms of computation, estimation and analysis, and the linear
case (Section 6.2) is of course restrictive. Let us define the
following average-based action-effect proxy of the density
p(z|x, a), for all z, x, a, defined only based on things we do
know (from the source domain):

p̃(z|x, a) :=∑∫
yS

pS(z|yS , a)p(yS |x), (6)

and let P̃ (Z|X,A) be the corresponding distribution. The
deviation between the average-based proxy and the ground
truth it approximates can be bounded as follows:

Proposition 2. We have7

D(PS(Z|X,A)‖P̃ (Z|X,A)) ≤ IS(X;Z|A, YS).

7In fact we bound the KL divergence between proxy and
p(Z|X,A), but the expectation over X,A is w.r.t. the source do-
main, and therefore we have to write pS(Z|X,A) on the l.h.s. of
D(·‖·). See also the proof.

In particular, if YS = fYS
(X) with fYS

injective, then
P̃ (Z|X,A) = P (Z|X,A). Note that in the discrete case,
the r.h.s. in turn can be bounded by an expression that is
solely based on quantities, which we assumed to know:
maxP ′(X) HX∼P ′(X)(X|YS).

7 Approach to the imitation learning task

In this section, we address Task 2. To do so, we propose an im-
itator (the target agent) that selects a policy πT (A|YT ) such
that its behavior8 is as close as possible to the demonstrator.

Recall that, for the design of the imitator, what is available
about the demonstrator is (a sample from) PS(YS , Z,A).
However, the challenge is that the observation set of the
demonstrator and the imitator may not be the same. Therefore,
we propose an imitator that behaves as close as possible to
the demonstrator in case of perfect observation, i.e.,

argmin
πT

D
(
PT (A,Z|X)||PS(A,Z|X)

)
. (7)

It is worth noting that the imitator can also introduce addi-
tional constraints to this optimization problem according to
its environment. Next, we give a simple example to illustrate
what can go wrong when naively addressing the imitation
task under sensor-shift. Then we propose methods for the
problem in (7) for several settings.

Example 3. Let us come back to Example 1 and Figure 1,
where the indicator light perfectly correlates deceleration and
lane changing. Let us add some modifications: Assume we
have the same sensors to observe the demonstrator as we have
on board of the imitator’s car, i.e., spectator’s and imitator’s
sensors coincide, P (YT |X) = P (YS |X). And assume these
sensors (similar to the drone) are missing the indicator light
of the lead car (unlike the demonstrator’s observation YD).
Now, for the imitation task at hands, assume we naively take
πT (a|yT ) := pS(a|YS = yT ) as the imitator’s policy.

This means that the imitator will accelerate and decelerate
randomly, instead of, as the demonstrator, perfectly adapt-
ing these actions to the indicator light of the lead car (the
indicator light is the actual source of variation in A given
YD, but the imitator just takes PS(A|YS) for a randomized
policy). This will necessarily lead to crashes in the target
domain – whenever the lead car indicates and the imitator
randomly decides to accelerate. This issue can also be seen
formally, based on the causal DAG (Figure 2): there is a
back-door path (Pearl 2009) between action A and outcome
Z that is not blocked by YS , and therefore, in the generic
case, PS(Z|do(A), YS) �= PS(Z|A, YS).

7.1 Exact solution set in the discrete case

Assumption 3. Here we assume that both the demonstrator
and the imitator have the same sensors9, i.e.,

PS(YD|X) = PT (YT |X).

8Our notion of behavior is the conditional distribution of the
action-outcome pair given the observation.

9However, we relax this assumption in the next section.
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Proposition 3. Given Assumption 3, the solution of (7) is

πT (a|YT = y) := πD(a|YD = y).

Although this result introduces the optimal policy for
the imitator, it is practical only if the imitator can infer
πD(a|YD = y) using its observation from the source do-
main. In case of all variables being discrete, the imitator is
able to do so using a set of finite linear equations similar to
Section 5. More precisely, (2) leads to

PS(a, yS)=
∑
y

PS(yS |YD = y)PS(a, YD = y). (8)

Assumption 4. For the rest of Section 7, we assume that
PS(A, YS), PS(YS |YD) are known to the imitator.

This forms a set of equation similar to (3). Algorithm 1
(with input P (a, YS), [P (yiS |yjD)]m,�′

i,j=1, with �′ denoting the
size of the range of YD) obtains the set of possible PS(a, YD)
and consequently

πD(a|YD) =
PS(a, YD)∑
a′ PS(a′, YD)

.

Remark 1. Generally, it is important to mention that such
assumptions can be weakened. But it will significantly in-
crease the complexity of the problem by essentially adding
another layer of non-unique-identifiability of the joint from
the conditional, e.g., PS(X,YS) from PS(YS |X).

7.2 Average-based proxy in the general case

Here, we propose proxy methods, which have the advantage
that they can also be applied to the continuous case and may
be easier to estimate/compute. We do so for three different
cases of sensor-shift.

First case: In this case, the imitator and the demonstrator
have the same sensors in their domains, but the other sensors
can be different, i.e., PT (YT |X) = PS(YD|X). Based on
Proposition 3, the optimal policy for the imitator is indeed
πD. Thus, we propose the following policy: π̃(1)

T (a|YT =
y) := π̃D(a|YD = y), where the latter is defined by

∑∫
y′

pS(a|YS = y′)pS(YS = y′|YD = y). (9)

Proposition 4. We have

D(πD||π̃(1)
T ) ≤ IS(A;YD|YS).

In the discrete case, additionally, the r.h.s. can be bounded by

IS(A;YD|YS) ≤ H(YD|YS).

The above result implies that the proposed proxy and the
demonstrator’s policy are the same, when there exist deter-
ministic relationship between the observation sets. Next result
goes beyond the policies and looks at the overall behavior of
the system induced by this policy.
Proposition 5. The proposed proxy in (9) implies that the
KL-divergence in (7) is bounded by D(π̃

(1)
T ||πD).

Second case: In this case, the spectator and the demonstra-
tor have the same set of sensors in the source domain, i.e.,
PS(YS |X) = PS(YD|X) but the imitator can have different
sensors in the target domain. Optimizing an upper bound of
(7) that is described in the Supplement gives the following
policy to the imitator,

π̃
(2)
T (a|yT ) ∝ exp

⎛
⎝∑∫

yS

p(yS |yT ) log pS(a|yS)
⎞
⎠ .

Proposition 6. The proposed policy in this case will lead to
the following upper bound for (7),

∑
a,yT ,yS

p(yS |yT )pT (yT )π̃(2)
T (a|yT ) log π̃

(2)
T (a|yT )
pS(a|yS) .

Note that in an extreme setting when YS is determined
uniquely from YT , it is straightforward to show that the upper
bound in Proposition 6 becomes zero. Thus, the proposed
proxy leads to the demonstrator’s behavior.

Third case: This is the general case where all sensors can
be different. Note that Example 3 belongs to this case. Here,
we propose the following policy for the imitator

π̃
(3)
T (a|yT ) ∝ exp

⎛
⎝∑∫

x

p(x|yT ) log p̃(a|x)
⎞
⎠ ,

where

p̃(a|x) := ∑∫
y

pS(a|YS = y)pS(YS = y|x).

We introduced the other two cases since they occur frequently
in different applications and we can derive theoretical bounds
for them.

8 Experiments

In this section we perform experiments for some of the meth-
ods proposed in Sections 5, 6 and 7.

8.1 Action-effect learning task

Setup: In this experiment, we test two of our methods for
the action-effect transfer learning task: Algorithm 2 and the
proxy in (6) (more specifically: a sample-level version of it
for the linear case). We use the real-world data set “highD”
(Krajewski et al. 2018) that consists of recordings by drones
that flew over several highway sections in Germany (men-
tioned in Example 1). From this data set, we selected all
situations, where there is a lead car – the demonstrator (this
is a different setup than Example 110) – and a following car
on the same lane (which are less than 50m from each other,
and have speed at least 80km/h). Here X is distance, veloci-
ties, and acceleration of the follower; A is the acceleration of

10While this is the data set mentioned in Example 1, here we do
not consider the indicator lights, since for them we would not have
the ground truth.
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Figure 3: Left: Outcome for the action-effect learning experiment. Our exact linear transfer method (Algorithm 2) has higher
variance, but outperforms the average-based proxy method (sample-level version of (6) for linear case), which can be seen
as a baseline, for long enough samples. We also plot what could be achieved if X was fully observed in the source domain,
as a lower bound. Right: Learned policies for the imitation learning experiment: the true policy πD, the policy from the
method in Section 7.1, π̂T , and the corresponding proxy π̃

(1)
T . The three policies are evaluated at three different points

(a|Vo, bo) ∈ {(1|50, 0), (1|50, 1), (−1|50, 1)}.

the demonstrator; and Z is the acceleration of the follower,
1.5 seconds later.

Furthermore, the source domain’s YS is generated by
a randomly drawn matrix F applied to X plus Gaussian
noise (as in (4)). This semi-real approach allows us to have
ground truth samples from P (Z,A,X) = PT (Z,A, YT ),
i.e., the target domain (recall our Assumption 1). We apply
the two methods on training samples from the source do-
main PS(Z,A, YS) up to length 20000, and calculate the
means (over 20 different data and synthetic noise samples)
squared error on separate test samples of length 1000 from
P (Z,A,X).

Outcome: The outcome for this experiment is depicted and
discussed in Figure 3.

8.2 Imitation learning task

Setup: In this experiment we simulated the driving scene
illustrated in Figure 1. The observation set of the demonstra-
tor YD contains the speed vo ∈ {40, 45, ..., 60} km/h and the
indicator light bo ∈ {0, 1} of the lead vehicle. The imitator
only gets to see a noisy observation of the demonstrator’s
speed, i.e., YS = vd + N , where N ∼ N (0, 1/4). Actions
are −1,+1, 0 denoting speed reduction by 5km/h, increasing
it by 5km/h, and keep the same speed, respectively. In this
experiment, we assumed YD = YT .

We defined the demonstrator’s policy to reduce the speed
when the indicator of the other vehicle is on bo = 1 and
increase its speed or keep the same speed when bo = 0. Note
that the classical imitation learning approach will fail in this
setting since YT �= YS .

We applied Algorithm 1 plus a criterion to obtain the policy
π̃
(1)
T for the imitator This criterion (that is described in the

supplement) ensures that the imitator neither increases its

speed when bo = 1 nor decreases its speed with the same
probability when bo = 0. We formulated this as a linear
programming.

Outcome: Figure 3 compares the true policy πD, the policy
from the method in Section 7.1, π̂T , and the corresponding
proxy π̃

(1)
T for different sample sizes.

9 Conclusions

Sensor-shift is a significant problem in learning from demon-
strations. In this work, we proposed a principled and gen-
eral framework to address it, based on causal modeling. We
developed novel algorithms that uniquely identify or con-
strain/approximate the relevant causal effects, and established
theoretical guarantees. The take away message is that the rel-
evant causal relationships may still be identifiable, even if
the demonstrator, spectator and target agent have different
sensors.
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