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Abstract

The success of MaxSAT (maximum satisfiability) solving
in recent years has motivated researchers to apply MaxSAT
solvers in diverse discrete combinatorial optimization prob-
lems. Group testing has been studied as a combinatorial op-
timization problem, where the goal is to find defective items
among a set of items by performing sets of tests on items.
In this paper, we propose a MaxSAT-based framework, called
MGT, that solves group testing, in particular, the decoding
phase of non-adaptive group testing. We extend this approach
to the noisy variant of group testing, and propose a compact
MaxSAT-based encoding that guarantees an optimal solution.
Our extensive experimental results show that MGT can solve
group testing instances of 10000 items with 3% defectivity,
which no prior work can handle to the best of our knowledge.
Furthermore, MGT has better accuracy than the LP-based ap-
proach. We also discover an interesting phase transition be-
havior in the runtime, which reveals the easy-hard-easy na-
ture of group testing.

1 Introduction

Given a large set of items containing a subset of defective
items, the problem of group testing concerns the design and
evaluation of tests on pools of items (a pool is a selected
subset of all items) to identify the defective items. A test is
positive if the pool contains at least one defective items and
negative if it contains no defective item. Group testing can be
viewed as a sparse inference problem with a combinatorial
flavor with diverse applications, for example, clone screen-
ing (Balding and Torney 1997), multichannel access in high
speed computer networks (Bar-Noy et al. 1992), medical ex-
amination (Robert 1943), statistics (Hu, Hwang, and Wang
1981), compressed sensing and machine learning (Atia and
Saligrama 2012).

The group testing problem can be separated into two
parts: design and decoding (Aldridge, Johnson, and Scarlett
2019). The design part concerns how to choose the testing
strategy, that is, which items to place in which pools. The
decoding problem consists of determining which items are
defective given the set of tests and their outcomes, and can
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be formulated as a combinatorial optimization problem (Du,
Hwang, and Hwang 2000; Malioutov and Malyutov 2012;
Aldridge, Baldassini, and Johnson 2014). The design phase
can be modeled in two ways: adaptive and non-adaptive test-
ing (Aldridge, Johnson, and Scarlett 2019). In adaptive test-
ing, the test pools are designed sequentially, wherein each
test depends on the outcome of the previous ones. In the
case of non-adaptive testing, all test pools are designed in
advance, which allows parallel implementation. In a more
practical setting, a noisy variant to group testing is consid-
ered where tests are inverted/flipped according to some spe-
cific random model or in an adversarial manner (Aldridge,
Johnson, and Scarlett 2019). In this work, we pursue the di-
rection of solving the decoding phase in non-adaptive group
testing in both noiseless and noisy settings by introducing a
novel MaxSAT-based approach.

The primary contribution of this paper is a framework
MGT1 (MaxSAT-based framework for Group Testing),
which provides a novel and efficient MaxSAT-based encod-
ing to address the decoding phase of non-adaptive group
testing. We consider both noiseless and noisy testing to
make the proposed approach applicable in the realistic set-
tings. For the noisy setting, we propose a compact encod-
ing and prove its soundness. Our extensive experimental re-
sults show that MGT can solve group testing instances of
10000 items with 3% defectivity, which no prior work can
handle to the best of our knowledge. Moreover, the accuracy
of MGT is shown better than that of the existing state-of-
the-art approaches. In our experiments, we also observe a
phase transition between the unrecoverability-recoverability
of the input items in terms of computation time. This phase
transition in MGT shows a promising connection between
two sub fields: group testing and the MaxSAT problem, and
demonstrates the practical application of MaxSAT.

The rest of the paper is organized as follows. We discuss
related works in Section 2, define notations and preliminar-
ies in Section 3 and formulate the problem in Section 4. In
Section 5, we introduce our framework MGT, show the ex-
perimental results in Section 6 and conclude in Section 7.

1https://github.com/meelgroup/mgt
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2 Related Works

Robert Dorfman formalized group testing during World War
II with the purpose of creating a model to pool sick sol-
diers without direct testing of every single candidate (Robert
1943). Thus, group testing can be viewed as a pooling strate-
gic problem (Zhang et al. 2013) with the goal of design-
ing an optimal set of tests of items efficiently such that the
test results contain enough information to determine a small
subset of defective items. Another body of work focuses
on the decoding of the pooling results. In particular, Chan
et al. (Chan et al. 2011; 2014) find a similarity between
compressing sensing (Aksoylar, Atia, and Saligrama 2016;
Malyutov 2013) and group testing, and present the COMP
(combinatorial orthogonal matching pursuit) algorithm for
the decoding phase of non-adaptive group testing in both
noiseless and noisy settings. Aldridge et al. (Aldridge, Bal-
dassini, and Johnson 2014) consider non-adaptive noiseless
group testing and propose two algorithms: DD (definite de-
fectives) and SCOMP (sequential COMP), which require
stronger evidence to declare an item defective; and an es-
sentially optimal but computationally difficult SSS (small-
est satisfying set) algorithm. The recent works (Scarlett and
Cevher 2016; Coja-Oghlan et al. 2019) have established per-
formance guarantees for similar computationally expensive
algorithms. In addition, linear programming (LP) algorithms
have been proposed to approximate the SSS algorithm with
practical runtime (Malioutov and Malyutov 2012; Malyutov
and Sadaka 2009; Chan et al. 2014).

The maximum satisfiability (MaxSAT) problem is an op-
timization analogue to the SAT (satisfiability) problem. See
Section 3 for the detailed definition. MaxSAT is complete
for the class FPNP , which includes many practical op-
timization problems. The added scalability and improve-
ment of MaxSAT solvers in recent years have encouraged
researchers to reduce several optimization problems into
MaxSAT, for example, optimal planning (Robinson et al.
2010; Zhang and Bacchus 2012), interpretable rule-based
classifications in machine learning (Ghosh and Meel 2019;
Malioutov and Meel 2018), automotive configuration (Wal-
ter, Zengler, and Küchlin 2013), data analysis and machine
learning (Berg, Hyttinen, and Järvisalo 2015), automatic test
pattern generation for cancer therapy (Lin and Khatri 2012),
etc. However, to the best of our knowledge, there is no prior
work on group testing that takes benefit from MaxSAT-based
solution approach.

3 Notation and Preliminaries

We use capital boldface letters such as X to denote matrices,
while lower boldface letters x are reserved for vectors/sets.
For a matrix X, Xi represents the i-th row of X while for a
vector/set x, xi represents the i-th element of x. A Boolean
vector x ∈ {0, 1}n with dimension n is called a sparse vec-
tor if the number of non-zero elements

∑n
i=1 xi � n.

3.1 Boolean Logic and CNF

A propositional formula F in Conjunctive Normal Form
(CNF) with n boolean variables x = {x1, x2, . . . , xn} is
defined as a conjunction of clauses, where each clause is a

Figure 1: A simple group testing example. Black and white
cells represent 1s and 0s, respectively. The test matrix indi-
cates which items are included in the test, and the noiseless
test outcome is the bit-wise OR of the columns correspond-
ing to defective items. In the noisy setting, some of the out-
comes are flipped.

disjunction of literals. A literal can be either a variable xi

or its complement ¬xi. If σ is an assignment to variables
and xi ∈ x, we use σ(xi) to denote the value assigned to
xi in σ. The propositional satisfiability (SAT) problem finds
a satisfying assignment or witness σ∗ to variables in x that
makes F evaluate to 1 (true). Formally, given a CNF formula
F =

∧
i Ci, σ∗ |= F iff ∀i, σ∗ |= Ci, wherein σ∗ |= Ci iff

∃x ∈ Ci, σ
∗(x) = 1.

In this work, we focus on the weighted variant of CNF
wherein a weight function is defined over clauses. For a
clause Ci and weight function wt(·), we use wt(Ci) to de-
note the weight of clause Ci. We say that a clause Ci is
hard if wt(Ci) = ∞; otherwise, Ci is called a soft clause.
To avoid notational clutter, we overload wt(·) to denote the
weight of an assignment or clause, depending on the con-
text. We define the weight of an assignment σ as the sum of
weights of the clauses that σ satisfies. Let 1{true} = 1 and
1{false} = 0. Formally, wt(σ) =

∑
i wt(Ci) ·1{σ |= Ci}.

3.2 MaxSAT

Given a formula F and weight function wt(·), the problem of
MaxSAT is to find an assignment σ∗ that has the maximum
weight, i.e., σ∗ = MaxSAT(F,wt(·)) if ∀σ �= σ∗,wt(σ∗) ≥
wt(σ). Our formulation will have positive clause weights,
hence MaxSAT corresponds to satisfying as many clauses
as possible, and picking the strongest clauses among the un-
satisfied ones. Borrowing terminology from the community
focused on developing MaxSAT solvers, we are solving a
partial weighted MaxSAT instance wherein we mark all the
clauses with ∞ weight as hard, and clauses with other pos-
itive value less than ∞ weight as soft, and asking for a so-
lution that optimizes the partial weighted MaxSAT formula.
Knowledge of the inner workings of MaxSAT solvers and
the encoding of representations into weighted MaxSAT in-
stances are not required for this paper.

3.3 Group Testing Model

Let x ∈ {0, 1}n be a vector of n items, where xi = 1 de-
notes a defective item and xi = 0 denotes a non-defective
item. Let k(x) =

∑n
i=1 xi be the number of defective items

in x. We will use k instead of k(x) to denote the number of
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defective items when it is clear from the context. Consider
a matrix of pooled measurements A ∈ {0, 1}m×n with m
tests, where Ai,j denotes the j-th item of the i-th row (or
test) of A. Specifically, Ai,j = 1 if the j-th item belongs to
the i-th test, and Ai,j = 0 otherwise. Additionally, we con-
sider the Boolean vector y ∈ {0, 1}m, where yi represents
the outcome of the i-th test:

yi =

{
1 if ∃j ∈ {1, . . . , n}, Ai,j ∧ xj = 1

0 otherwise

In order to model a noisy setting, we allow tests to return
inverted/flipped outcomes. Hence, we consider a Boolean
vector ξ ∈ {0, 1}m such that the i-th test gives an inverted
outcome iff ξi = 1 and ξi = 0 otherwise. In the noisy set-
ting, we modify the definition of y as follows:

yi =

{
1 if ∃j ∈ {1, . . . , n}, (Ai,j ∧ xj)⊕ ξi = 1

0 otherwise

Here ⊕ represents the logical XOR operator. We illustrate
a simple example of the group testing problem in Figure 1
(see the caption for a description), showing both the noise-
less and noisy outcomes.

We consider Bernoulli trials (Aldridge, Johnson, and
Scarlett 2019) to model a stochastic group testing instance.
In particular, we consider three independent and identically
distributed (i.i.d.) Bernoulli processes: an item is defective
independently with probability p < 0.5, item i belongs to
test j independently with probability q, and in the noisy set-
ting, a test outcome is inverted independently with probabil-
ity d < 0.5.

4 Problem Formulation

Given the measurement matrix A ∈ {0, 1}m×n and test vec-
tor y ∈ {0, 1}m, we attempt to find the smallest set of de-
fective items in x, where each item in x is defective with
equal probability. Our assumption of defectivity being rare,
is motivated by compressed sensing2, which is also applied
in the SSS (smallest satisfying set) algorithm (Aldridge,
Baldassini, and Johnson 2014) and the LP-relaxation ap-
proach (Malioutov and Malyutov 2012). Formally, in the
noiseless setting, we minimize the following function sub-
ject to the constraints that there is at least one defective item
in a positive test and no defective item in a negative test.

min
n∑

j=1

xj (1)

In the noisy setting, each test may be inverted/flipped in
one of two ways: original test finds a defective item(s) but
the noisy output indicates that all items are non-defective,
and vice versa. In the noisy setting, we minimize noise vari-
able ξi while preferring x to be the sparsest (Malioutov and

2In compressed sensing, one typically seeks the sparsest sig-
nal x that fits some given measurements y = Ax (Aldridge, Bal-
dassini, and Johnson 2014).

Malyutov 2012) with i.i.d. prior on both x and ξ. In this
setting, the constraints are similar to the noiseless setting
except that now a test may be flipped.

min

n∑
j=1

xj + λ

m∑
i=1

ξi (2)

The objective function is formulated as to obtain the
sparsest and less noisy solution, where the parameter λ ∈
R

+ balances the trade-off between the amount of noise and
the sparsity of the solution. In Section 5.3, we discuss how
to set the value of λ.

5 MGT: A MaxSAT-based Framework for

Group Testing

In this section, we describe the primary contribution of this
paper, MGT, a MaxSAT-based framework for solving the
decoding phase of non-adaptive group testing. We first, in
Section 5.1, discuss the MaxSAT encoding for both noise-
less and noisy setting. Later, in Section 5.2, we propose a
compact MaxSAT encoding for the noisy setting and prove
its soundness. Finally, in Section 5.3, we discuss how to set
the value of λ.

5.1 MaxSAT Encoding

We first describe the MaxSAT encoding for the noiseless set-
ting and later extend the formulation to noisy setting.

Noiseless setting: We consider a unit soft clause that tries
to falsify each xj in the objective function. The weight of
the soft clause is 1, which is derived from the coefficient of
xj in the objective function in Eq. 1:

Sj := ¬xj ; wt(Sj) = 1.

To encode the constraints associated with the tests, we
construct hard clauses in the MaxSAT query. Recall that
Ai,j = 1 denotes the j-th item being included in the i-th
test. When the outcome of the i-th test is positive (yi = 1),
there must be at least one defective item included in that
test. Therefore, we construct the following hard clause when
yi = 1:

Ci :=
∨

j|Ai,j=1

xj ; wt(Ci) = ∞.

On the other hand, when yi = 0, all items included in the
i-th test must be non-defective. Therefore we construct the
following hard clause when yi = 0:

C̃i := ¬(
∨

j|Ai,j=1

xj); wt
(
C̃i

)
= ∞.

In this case, we apply de Morgan’s law on clause Ci to con-
vert it into CNF, C̃i =

∧
j|Ai,j=1 C̃ij , where C̃ij is defined

as follows:

C̃ij := ¬xj ; wt
(
C̃ij

)
= ∞.
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Finally, the MaxSAT formula F is the conjunction of all
clauses:

F :=
n∧

j=1

Sj ∧
m∧

i=1,yi=1

Ci ∧
m∧

i=1,yi=0

C̃i. (3)

Since all clauses Sj , Ci, C̃ij are in CNF, no further trans-
lation is required. Once the MaxSAT formula F is formu-
lated, an off-the-shelf MaxSAT solver takes formula F and
weight wt(·) as inputs and returns an optimal assignment to
the variable xj . We find the defective items according to the
optimal assignment as follows.
Construction 1. Consider the assignment σ∗ =
MaxSAT(F,wt(·)). Then item j is detected to be de-
fective if σ∗(xj) = 1.

Noisy Setting: In addition to Sj , we construct unit soft
clauses that try to falsify each noise variable ξi. The weight
of each soft clause is λ, which is equal to the coefficient of
ξi in Eq. 2:

Ni := ¬ξi; wt(Ni) = λ.

In the noisy setting, test yi is inverted when ξi = 1,
and otherwise yi remains same. Hence, we construct hard
clauses Ci for positive tests and C̃i for negative tests as fol-
lows:

Ci :=
( ∨

j|Ai,j=1

xj

)
⊕ ξi when yi = 1,

C̃i := (
∧

j|Ai,j=1

¬xj)⊕ ξi when yi = 0.

Here the hard clauses Ci and C̃i have XOR operators in
their definitions; that is, these clauses are not in CNF. We
first translate these clauses into CNF and then call an off-the-
shelf MaxSAT solver for the optimal solution. All translated
CNF clauses have weight ∞. Next, we discuss the transla-
tion in detail.

• For a positive test output (yi = 1), if there are ti lit-
erals in the clause

∨
j|Ai,j=1 xj , standard CNF transla-

tion generates (ti + 1) CNF clauses while translating
(
∨

j|Ai,j=1 xj) ⊕ ξi. For example, (x1 ∨ x2 ∨ x3) ⊕ ξ

is translated into 4-clause CNF as (¬ξ ∨ ¬x1) ∧ (¬ξ ∨
¬x2) ∧ (¬ξ ∨ ¬x3) ∧ (ξ ∨ x1 ∨ x2 ∨ x3).

• For a negative test output (yi = 0), if there are ti literals in∧
j|Ai,j=1 ¬xj , standard CNF translation generates (ti +

1) CNF clauses while translating (
∧

j|Ai,j=1 ¬xj) ⊕ ξi.
For example, (¬x1 ∧ ¬x2 ∧ ¬x3) ⊕ ξ is translated into
4-clause CNF as (¬x1 ∨ ξ) ∧ (¬x2 ∨ ξ) ∧ (¬x3 ∨ ξ) ∧
(¬ξ ∨ x1 ∨ x2 ∨ x3).

Once all clauses are translated into CNF, we formulate F
as follows.

F :=

n∧
j=1

Sj ∧
m∧
i=1

Ni ∧
m∧

i=1,yi=1

Ci ∧
m∧

i=1,yi=0

C̃i (4)

In the noisy setting, we find the defective items and noisy
tests from the optimal assignment to the variables of F as
follows.
Construction 2. Consider the assignment σ∗ =
MaxSAT(F,wt(·)). Then item j is detected to be de-
fective if σ∗(xj) = 1, and test i is declared inverted if
σ∗(ξi) = 1.

5.2 A Compact Encoding for Noisy Setting:

Since the MaxSAT query in the noisy setting has XOR oper-
ators in the definition, its translation to CNF generates addi-
tional clauses. We now discuss on how to reduce the number
of clauses in the encoding with the aim of reducing the run-
time. The improved encoding leverages the soft clauses in
Eq. 4. Formally, we propose a compact encoding, where we
replace XOR with OR in both Ci and C̃i and define relaxed
clauses C ′

i and C̃ ′
i respectively. We first define the relaxed

clauses C ′
i and C̃ ′

i, and then provide the theoretical guaran-
tee of the optimal solution of the compact encoding:

C ′
i :=

( ∨
j|Ai,j=1

xj

)
∨ ξi when yi = 1,

C̃ ′
i := (

∧
j|Ai,j=1

¬xj) ∨ ξi when yi = 0.

Let σ = MaxSAT(F,wt(·)) be the optimal assignment to
the variables in the MaxSAT formula F . Here we slightly
abuse notation and define σ |=

opt
F to represent that σ is the

optimal solution of a MaxSAT formula F .
Theorem 1. Let F be a MaxSAT formula in the noisy set-
ting, and F ′ be the compact encoded formula with the above
relaxation of XOR. Then σ is an optimal solution to F iff σ
is an optimal solution to F ′, i.e., although F �= F ′, it holds
that σ |=

opt
F ⇔ σ |=

opt
F ′.

The intuition behind Theorem 1 is that an optimal solu-
tion to F minimizes a weighted sum of the sparsity and the
number of tests flipped, and an optimal solution to F ′ mini-
mizes a weighted sum of the sparsity and the number of tests
whose constraints are ‘ignored’. By taking the tests marked
‘flipped’ in F and marking them as ‘ignored’ in F ′, we find
that any solution to F has a matching solution to F ′. More-
over, the optimal solution to F ′ does not label ‘ignored’ for
any test that is already consistent, since any solution doing
so could be improved by marking that test as ‘not ignored’.
Hence, in any optimal solution to F ′, replacing ‘ignored’ by
‘flipped’ gets us to a matching solution to F .

We proceed by formalizing this intuition.

Proof. Since F and F ′ differ only in the hard clauses Ci

and C ′
i (similarly C̃i and C̃ ′

i), and an optimal assignment
of a MaxSAT formula always satisfies all hard clauses, the
result σ |=

opt
F ′ ⇔ σ |=

opt
F will follow once we prove that

(σ |=
opt

F ′ ⇒ σ |= Ci) ∧ (σ |=
opt

F ⇒ σ |= C ′
i) (5)
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for all tests with positive outcomes, and

(σ |=
opt

F ′ ⇒ σ |= C̃i) ∧ (σ |=
opt

F ⇒ σ |= C̃ ′
i) (6)

for all tests with negative outcomes.
To prove (5), we first show that σ |=

opt
F ′ ⇒ σ |= Ci.

Expanding the definition of C ′
i := (

∨
j|Ai,j=1 xj) ∨ ξi, if

ξi is assigned false in the optimal solution, i.e., σ |= ¬ξi
and σ |= C ′

i, then σ |= Ci because σ |= ∨
j|Ai,j=1 xj . We

proceed by considering the other case, namely, σ |= ξi.
Recall that both F and F ′ have soft clauses Sj := ¬xj

and Ni := ¬ξi. When σ |= ξi and σ |= C ′
i, the optimal

assignment σ for F ′ cannot satisfy both ξi and
∨

j|Ai,j=1 xj

simultaneously: If both were satisfied, the same assignment
with ξi changed to zero would be feasible and attain a
smaller overall weight. Combining this observation with the
case σ |= ¬ξi above, we deduce that any test with yi = 1
must satisfy σ |= (

∨
j|Ai,j=1 xj)⊕ ξi, i.e., σ |= Ci.

To prove that σ |=
opt

F ⇒ σ |= C ′
i, observe that

the hard clause σ |= Ci implies that either σ |= ξi
or σ |= (

∨
j|Ai,j=1 xj). Combining these gives σ |=

(
∨

j|Ai,j=1 xj) ∨ ξi, i.e., σ |= C ′
i.

Similar reasoning applies to (6) (i.e., the negative tests),
and we deduce that σ |=

opt
F ′ ⇔ σ |=

opt
F .

5.3 Deciding the Value of λ

In the objective function for the noisy setting in Eq. 2, the
parameter λ decides the trade-off between the number of
defective items and the number of inverted tests. Since we
model both defectivity and noise using i.i.d. Bernoulli trials
in the stochastic model, we can set the appropriate value of
λ from the associated probabilities p and d.

Suppose each item is defective independently with proba-
bility p < 0.5 and each test gets inverted independently with
probability d < 0.5. Then for a candidate defective set x and
recovered set x̂, finding the optimal solution requires mini-
mizing Pr[x̂ �= x], which is equivalent to maximizing the
posterior probability Pr[x|A,y] (Aldridge, Baldassini, and
Johnson 2014). Now we derive Pr[x|A,y] as follows:

Pr[x|A,y] =
Pr[x,A,y]

Pr[A,y]
∝ Pr[x]Pr[y]

= pk(x)(1− p)n−k(x)dτ(x,A,y)(1− d)m−τ(x,A,y)

= (1− p)n
( p

1− p

)k(x)

(1− d)m
( d

1− d

)τ(x,A,y)

⇒ Pr[x|A,y] ∝
( p

1− p

)k(x)( d

1− d

)τ(x,A,y)

Here k(x) is the number of defective items, and
τ(x,A,y) is the Hamming distance between the output y
and the expected output that one would get if there were no
noise (that is, the number of inverted tests).

Taking the log of this posterior, then normalizing and
equating with Eq. 2, we find that λ = (log d

1−d )/(log
p

1−p )

is the optimal choice.

6 Experimental Results

We have developed a prototype implementation of MGT to
solve the decoding phase of non-adaptive group testing in
both the noiseless and noisy settings. In our implementation,
we employ MaxHS (Davies and Bacchus 2011) as the un-
derlying MaxSAT solver. We compare MGT with a state-of-
the-art approach namely, the approximated linear program-
ming relaxation approach (LP) that also solves the decoding
phase of non-adaptive group testing (Malioutov and Malyu-
tov 2012). In the LP approach, we use CPLEX as the un-
derlying LP solver3. We set the cut-off time of both the LP
and MaxHS solvers to be 100 seconds. If an optimal solu-
tion is not found within the cut-off time, both solvers return
the current best solution. The experiment was conducted on
a machine with Intel core i7 (3.4 GHz) and 8 GB of RAM.

To model a group testing instance, we first choose the
number of defective items k for a fixed number of items
n (k ∈ [0.01n, 0.1n]). Then the item vector x is gener-
ated with k defective items. Once the number of defective
items is known, we consider a Bernoulli process with prob-
ability q = (log 2)/k to construct measurement matrix A,
which is motivated by Aldridge at el. (Aldridge, Johnson,
and Scarlett 2019). In the noisy setting, we consider another
Bernoulli process with probability d < 0.5 to generate the
noise vector ξ. We have used p = k

n to derive λ as described
in Section 5.3. We repeat each experiment for l = 100 trials
to ensure statistical consistency.

6.1 Evaluation Metrics

We evaluate MGT with LP based on the Hamming distance
and probability of success, which are defined below.
• Hamming Distance: Given an item vector x and the re-

covered solution x̂, the Hamming distance h(x, x̂) is the
number of items that are wrongly detected in either of the
two ways: a non-defective item detected as defective, or a
defective item detected as non-defective.

• Probability of Success s: The probability of success
is defined as the probability of attaining zero Ham-
ming distance in the recovered solution. Formally, s =∑l

i=1 1{h(xi,x̂i)=0}
l , where xi is the randomly generated

item vector at the i-th trial and x̂i is the associated recov-
ered solution.
The primary objective of our study is to seek answer to

the following questions:

1. How does MGT scale with respect to the number of items
n, the number of defective items k, and the number of
tests m?

2. How do the accuracy and runtime performance of MGT
compare to existing state-of-the-art approaches?
3When the LP solver returns a non-integer value in the solution,

we adopt the standard procedure to round to 1 when the value is
> 0.5 and 0 otherwise.
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Figure 2: Effect of the number of items n on the probability of success in both the noiseless (figures in the top row) and noisy
(figures in the bottom row) settings. In each graph k = 0.03n, and for the noisy setting, d = 0.05.

3. Do we observe any interesting behavior of the runtime of
MGT?

4. Does MGT follow known bounds on the number of tests
for recovery?

5. How efficient is the compact encoding compared to the
naive encoding in the noisy setting?

To summarize our empirical study, MGT shows impres-
sive scalability and can solve group testing instances with
at least n = 10000 and k = 0.03n in the noiseless setting,
which no prior work can handle to the best of our knowl-
edge. Moreover, the accuracy of MGT is better than the com-
pared approach. In addition, the runtime behavior of MGT
in the noiseless setting indicates a phase transition reveal-
ing the easy-hard-easy nature of group testing. We also find
that MGT follows known bounds on the number of tests for
recovery. Finally, in the noisy setting, the compact encod-
ing outperforms the naive encoding w.r.t. runtime by a large
margin, which highlights the practical applicability of the
compact encoding with added optimality guarantee. In the
following, we provide the details of our experiments.

6.2 Empirical Results:

Varying the Number of Items: We first observe whether
MGT follows the theoretical bound on the number of tests
m for non-zero probability of success (s > 0) in both the
noiseless and noisy settings. In Figure 2, we show graphs
where we vary m and plot the corresponding s for differ-
ent choices of the number of items n. For each choice of n,
we set the number of defective items to k = 0.03n. The
black line in each graph denotes the bound on m, which

is log2
(
n
k

)
for the noiseless setting (Baldassini, Johnson,

and Aldridge 2013; Aldridge, Johnson, and Scarlett 2019)
and log2

(
n
k

)
/(1− h(d)) for the noisy setting (Scarlett 2018;

Johnson 2017), where d is the probability on noisy tests, and
h(d) = −d log2 d−(1−d) log2(1−d) is the binary entropy
in bits. In all graphs, we find that empirically s becomes non-
zero after m exceeds the theoretical bound in both MGT and
LP.

Moreover, s increases and becomes closer to 1 as m
increases and becomes closer to n. As we observe more
closely, we find that in the noiseless setting, s quickly be-
comes 1, whereas more tests are required to reach the same
level of s when we consider the noisy setting. In terms
of accuracy, MGT and LP show a similar performance in
the noiseless setting. However, MGT outperforms LP in the
noisy setting, and the difference is greater for higher values
of n. This result suggests the effectiveness of MGT over LP
in terms of the quality of the recovered solutions.

Varying the Number of Defective Items: In Figure 3,
we vary the number of defective items k ∈ [0.01n, 0.1n]
and show its effect on the probability of success in both the
noiseless and the noisy settings. Empirically we find that for
a fixed number of items n, as we increase the number of de-
fective items k, more tests are required to reach the same
level of the probability of success in both MGT and LP.
In addition, when k is much higher (≈ 0.1n ), near-perfect
recovery often becomes unachievable for random Bernoulli
tests even if m = n, in both the noiseless and noisy settings.

Scalability Analysis: We experiment with higher values
of the number of items n to observe the scalability perfor-
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Figure 3: Effect of the number of defective items k on the probability of success in both the noiseless (figures in the top row)
and noisy (figures in the bottom row) settings. In each graph, n = 500 and for the noisy setting, d = 0.05.

mance of both MGT and LP in the noiseless setting, and
show the result in Figure 4. Both LP and MaxSAT solvers
are given equal computation resources, but LP shows a
memory limit when n > 2000. Interestingly, we find that
MGT shows impressive scalability for higher values of n.
In particular, we run MGT for n = 10000 and k = 0.03n
successfully, and it can potentially go further.

We have also experimented with higher defective items
for n = 10000, where the accuracy of MGT starts deterio-
rating even if we allow more tests. To conclude, this scala-

bility result shows the promise of applying MaxSAT solvers
in various practical combinatorial optimization problems.

Runtime Analysis and Phase Transition: We compute
the average runtime of all trials, and in Figure 5, we present
it while varying the number of tests m for both the noiseless
and the noisy settings. In all graphs, we find that both MGT
and LP require more runtime in the noisy setting than in
the noiseless setting, which points out the effect of noise on
the computation process. Moreover, LP takes less time than

Figure 4: Probability of success for increasing values of n in the noiseless setting.
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Figure 5: Computation time in the decoding phase of group
testing in both the noiseless (figures in the top row) and
noisy (figures in the bottom row) settings. In each graph,
k = 0.03n, and for the noisy setting d = 0.05.

MGT as m increases in both settings, and the difference is
greater in the noisy setting.

In this context, LP applies relaxation in the integer pro-
grams to achieve performance boost in terms of runtime and
finds an approximate solution. However, in this MaxSAT-
based formulation, the MaxSAT solver aims to find an opti-
mal solution while costing relatively higher runtime.

In the noiseless setting, we find a phase transition of
runtime in both MGT and LP. Specifically, the runtime in-
creases until reaching a peak near the theoretical bound on
m, then decreases quickly, and again increases as m in-
creases. This observation indicates the easy-hard-easy na-
ture of group testing, where the computational difficulty of
a problem instance changes due to changing the number of
tests m. Moreover, the theoretical bound on tests denotes
that the probability of success also goes from zero to non-
zero during this transition. This observation is similar to
the phase transition observed in the SAT problem of ran-
dom k-CNF formulas (Coja-Oghlan and Panagiotou 2013;
Chvátal and Reed 1992; Ding, Sly, and Sun 2015). A random
k-CNF formula (each clause in the formula has at most k lit-
erals) goes from SAT to UNSAT as the number of clauses in-
creases, and the computation time near the transition gives a
similar trend to what we have observed here. Although such
phase transition is known in SAT instances, in our study we
find that the decoding phase of noiseless non-adaptive group
testing shows similar characteristics. In particular, the num-
ber of tests in group testing can be related to the number
of clauses in k-CNF because each test constructs a clause
(when test is positive) or a set of clauses (when test is nega-
tive), and the SAT-UNSAT transition can be related to the
unrecoverability-recoverability of group testing. In future,
we will investigate more on the potential bridge between
group testing and MaxSAT and such study will be useful

Figure 6: Runtime performance of the compact encoding
and the naive encoding for the noisy setting of non-adaptive
group testing.

for the improvement of MaxSAT solving.

Efficiency of the Compact Encoding: In Figure 6, we
show the runtime performance of both the compact encoding
and the naive encoding (encoding with XORs) on the similar
choice of parameters. We empirically find that the runtime
of the naive encoding is significantly higher than that of the
compact encoding as we consider more tests. Moreover, for
higher values of n and k, the naive encoding often becomes
intractable.

This result suggests that the compact encoding not only
provides a theoretical guarantee of optimality, but is also ef-
ficient in practice than the naive encoding.

7 Conclusions

In this paper, we presented MGT: a novel MaxSAT-based
formulation for solving the decoding phase of non-adaptive
group testing in both the noiseless and the noisy settings.
For the noisy setting, we proposed a compact encoding with
a proof of soundness and empirically showed its efficiency
w.r.t. runtime. Our extensive experimental results suggest
that MGT shows better accuracy than the compared ap-
proach. In addition, MGT shows impressive scalability and
solves group testing instances with 10000 items and 3%
defective items and possibly beyond. We also observed a
phase transition in the runtime of noiseless group testing,
which exposes a potential bridge between group testing and
MaxSAT. An interesting direction of future work would be
to extend our techniques to adaptive setting.
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