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Abstract

We propose a formalization of the three-tier causal hierarchy
of association, intervention, and counterfactuals as a series of
probabilistic logical languages. Our languages are of strictly
increasing expressivity, the first capable of expressing quan-
titative probabilistic reasoning—including conditional inde-
pendence and Bayesian inference—the second encoding do-
calculus reasoning for causal effects, and the third captur-
ing a fully expressive do-calculus for arbitrary counterfactual
queries. We give a corresponding series of finitary axiomati-
zations complete over both structural causal models and prob-
abilistic programs, and show that satisfiability and validity for
each language are decidable in polynomial space.

Introduction and Summary

Intelligence commonly involves prediction, anticipating fu-
ture events on the basis of past observations (e.g., “Will the
water pipes freeze again this winter?”). Intelligent planning
and decision-making additionally require predicting what
would happen under a hypothetical action (“Will the pipes
freeze if we keep the heat on?”). An even more sophisti-
cated ability—critical for tasks like explanation—is to rea-
son counterfactually about what would have happened given
knowledge about what in fact happened (“Would the pipes
have frozen if we had left the heat on, given that the heat
was off and the pipes in fact froze?”). These three modes of
reasoning constitute a causal hierarchy (Shpitser and Pearl
2008; Pearl 2009), highlighting the significance of structural
causal knowledge for flexible thought and action.

The aim of the present article is to gain conceptual as
well as technical insight into this hierarchy by employing
tools from logic. Loosely following earlier work (Shpitser
and Pearl 2008), we propose a characterization of its levels
in terms of logical syntax. Semantically, all three languages
are interpreted over the same class of models, namely struc-
tural causal models (and later probabilistic programs). The
languages differ in how much they can express about these
models. L1, the language of association, expresses only
“pure” probabilistic facts and relationships; L2, the language
of probabilistic intervention, allows expressing probabilities
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of basic conditional “if. . . then. . . ” statements; L3, the lan-
guage of probabilistic counterfactuals, encodes probabilities
for arbitrary boolean combinations of such conditional state-
ments. Using standard ideas from logic and existing results,
we can address questions about definability and expressive-
ness. For instance, it is easy to prove in our framework that
each language is strictly more expressive than those below
it in the hierarchy (Prop. 1, 2 below). We can also interpret
well-known insights from the graphical models and causal
learning literatures as graph definability results for appro-
priate probabilistic logical languages, analogously to corre-
spondence theory in modal logic (van Benthem 2001).

In possession of a precise syntax and semantics for prob-
abilistic causal reasoning, questions of axiomatization natu-
rally arise. That is, we would like to identify a perspicuous
set of basic principles that underly all such reasoning. One of
our main technical contributions is a series of finitary (sound
and complete) axiomatizations for each level of the causal
hierarchy (Thm. 5), relying on methods from semialgebraic
geometry. As a corollary to these completeness results, we
also reveal a “small-model property” with the consequence
that satisfiability and validity for L1, L2, and L3 can be de-
cided in polynomial space (Thm. 11).

Finally, in the last part of the paper we consider an alter-
native interpretation for our three logical languages. Proba-
bilistic programs, with an appropriate notion of causal in-
tervention, provide a procedural semantics for probabilistic
counterfactual claims and queries. We establish an equiva-
lence between these models and a natural subclass of com-
putable structural causal models (Thm. 12). The equivalence
in turn implies soundness and completeness of our axioma-
tizations with respect to this interpretation as well.

Relation to Previous Work

While deterministic causal counterfactuals and probabilistic
logics have both received extensive treatment independently,
the present contribution appears to be the first systematic
study of probabilistic counterfactuals. Our work thus syn-
thesizes and improves upon a long line of previous work.
Axioms for causal conditionals interpreted over structural
causal models are well understood (Galles and Pearl 1998;
Halpern 2000; Pearl 2009; Zhang 2013; Ibeling and Icard
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2019) and play a distinct role in causal reasoning tasks such
as identification (Shpitser and Pearl 2008; Pearl and Barein-
boim 2012). Indeed, some prominent approaches to causal
learning and identification even employ algorithmic logic-
based techniques (Hyttinen, Eberhardt, and Järvisalo 2014;
2015; Triantafillou and Tsamardinos 2015).

Meanwhile, much is known about formalized probability
calculi. (Fagin, Halpern, and Megiddo 1990) considered a
probability logic built over a language of polynomials suf-
ficiently expressive to encompass essentially all ordinary
probabilistic reasoning about propositional facts, including
Bayesian inference, conditional independence, and so on.
However they left open the problem of explicit axiomatiza-
tion. A complete axiomatization was later provided by (Per-
ović et al. 2008) using an infinitary proof rule. Whereas our
main interest is causal reasoning beyond the first level of the
hierarchy, Thm. 5 incidentally establishes the first (weakly)
complete finitary axiomatization for “pure” probability logic
over a language of polynomials. Moving to the second and
third levels of the hierarchy, Thm. 5 also presents the first
combined axiomatization for probabilistic reasoning about
causal counterfactuals.

(Fagin, Halpern, and Megiddo 1990) established a com-
plexity upper-bound (PSPACE) for their satisfiability prob-
lem. On all three levels of the hierarchy, we obtain the same
upper bound for our decision problem (Thm. 11). Both argu-
ments rely crucially on the procedure given by (Canny 1988)
to decide the existential theory of a real closed field. It has
been previously suggested to apply cylindrical algebraic de-
composition (which decides the full first-order theory of real
closed fields) to causal questions (Geiger and Meek 1999).

Encoding causal knowledge in an implicit way via a gen-
erative probabilistic program has been explored recently by
a number of research groups (Lake et al. 2017; Bingham
et al. 2019; Tavares et al. 2019). Deterministic conditionals
over “simulation programs” have been axiomatized (Ibeling
and Icard 2018), showing that in general such an interpreta-
tion validates strictly fewer principles than structural causal
models. This weaker axiomatic system was also embedded
in a probability logic with linear inequalities (Ibeling 2018).
It is possible, however, to restrict the class of probabilistic
programs so as to ensure equivalence with (an appropriate
class of) structural causal models (Ibeling and Icard 2019).
We draw on all of this work in what follows.

Causal Models

We are interested in structural causal models (Spirtes, Gly-
mour, and Scheines 2000; Pearl 2009) defined over a set X
of endogenous variables and a set U of exogenous variables;
let the combined variable set be V = X ∪ U . Every vari-
able V ∈ V takes on a value from an admissible set Val(V ).
While X and U may be infinite, we assume Val(X) is finite
for all X ∈ X .

Definition 1 (Structural Causal Model). We define a SCM
to be a pair M = (F , P ), where P is a probability measure
on a σ-algebra Σ of settings u of U , and F = {fX}X∈X is
a set of functions, one for each endogenous variable.

Given a set of variables V ′ ⊆ V , we call an assignment of

each variable V ∈ V ′ to a value in Val(V ) a setting. Thus
every fX is a function from settings x of endogenous vari-
ables X and settings u of exogenous variables U to a value
fX(x, u) ∈ Val(X). P (U) and F thus define the obvious
joint probability distribution PM(X ).

Definition 2 (Intervention). An intervention is a partial
function i : X �→ Val(X). It specifies variables dom(i) ⊆
X to be held fixed, and the values to which they are fixed.
Intervention i induces a mapping of SCMs, also denoted i,
so that i(M) is identical to M, but with fX replaced by the
constant function fX(·) = i(X) for each X ∈ dom(i). We
say i is finite whenever dom(i) is finite.

Using this definition we introduce a relation of direct
causal influence (Halpern and Pearl 2005). We say X � Y
when there are endogenous settings x1, x2 differing only in
their assignment to X , and an exogenous setting u such
that fY (x1, u) �= fY (x2, u). This in turn induces a dag
GM = (X ,�). Throughout we restrict attention to SCMs
M such that GM is well-founded, generalizing the common
acyclicity condition. This is also equivalent to the require-
ment for infinite SCMs from (Ibeling and Icard 2019).

We say M is Markov if each variable is PM-independent
of its non-descendants (in GM) conditional on its parents.
The Markov condition is guaranteed provided the exogenous
variables U are jointly independent (Pearl 2009, Thm. 1.4.1).
We define d-separation on a dag G standardly, and write(
(X ⊥⊥ Y)|Z

)
G to say that the variables X are d-separated

from Y given Z. In Markov structures d-separation guaran-
tees conditional independence.

In order to establish a correspondence (Thm. 12) with
probabilistic programs, we introduce a further restriction on
SCMs, following previous work on computable causal mod-
els (Janzing and Schölkopf 2010; Ibeling and Icard 2019).
Def. 3 below assumes a very simple “coin-flip” probability
space; we leave it as an exercise to show that there is no loss
of generality compared to using any computable probability
space as in, e.g., (Ackerman, Freer, and Roy 2019), includ-
ing any standard continuous probability distributions.

Definition 3. M = (F , P ) is computable if (1) its exoge-
nous variables consist of infinitely many binary U1, U2, . . . ,
each uniformly distributed by P , and (2) the collection F =
{fX}X∈X is uniformly computable (Weihrauch 2000).

Call a model M = (F , P ) measurable if under every fi-
nite intervention i, the joint distribution Pi(M)(X ) is well-
defined. The next Fact is straightforward.

Fact 1. A computable SCM is both Markov and measurable.

Proof. A computable M = ({fX}X∈X , P ) is Markov sim-
ply because all exogenous variables are jointly independent.
Let x be an endogenous setting and let u =

⋂
X∈X uX where

uX = {u : fX(x, u) = x(X)}. Letting Σ be our σ-algebra,
Pi(M)(x) is well-defined if u ∈ Σ. It suffices to show that
uX ∈ Σ for all X since Σ closes under countable inter-
section. There is a machine that halts outputting the value
fX(x, u) for any u ∈ uX . By then it has seen only finitely
many exogenous bits, whose values we write in a finite vec-
tor �u(u). Thus the cylinder set C(�u(u)) of u′ that agree with
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�u(u) wherever the latter is defined is contained in uX . So let-
ting u′X =

⋃
u∈uX C(�u(u)), u

′
X ⊆ uX . Every cylinder is in

Σ and there are only countably many cylinders, so u′X ∈ Σ;
obviously uX ⊆ u′X so uX ∈ Σ as desired.

Let M be the class of all measurable SCMs that have a
well-founded causal influence graph. Further, let M∗ be the
subclass of computable models in M.

Probabilistic Conditionals

Syntax

We define a succession of language fragments as follows,
where X ∈ X and x ∈ Val(X):

Lint ::= 	 | X = x | Lint ∧ Lint

Lprop ::= X = x | ¬Lprop | Lprop ∧ Lprop

Lcond ::= [Lint]Lprop

Lfull ::= Lcond | ¬Lfull | Lfull ∧ Lfull

Based on these fragments we define a sequence of three
increasingly expressive probabilistic languages {Li}i=1,2,3.
Each language Li speaks about probabilities over the base
language Lbase

i . The base languages are

Lbase
1 = Lprop, Lbase

2 = Lcond, Lbase
3 = Lfull.

Our languages describe facts about the probabilities that
base language formulas hold. As our formulas are finitary,
such facts correspond to polynomials in these probabilities.
Let us make this precise. Fixing a set V , define the polyno-
mial terms in the variables V to be the t generated by this
grammar (where V generates any element of V ):

t ::= V | t+ t | t · t | − t.

Then the terms of Li are polynomials over probabilities
of base formulas, i.e., polynomial terms in the variables
{P(ϕ) : ϕ ∈ Lbase

i }. The language Li, i = 1, 2, 3, is then
a propositional language of term inequalities:

Li ::= t � t | ¬Li | Li ∧ Li
where t is a term of Li. We employ the following abbrevia-
tions. For Lprop and Lfull we take ⊥ to stand for any propo-
sitional contradiction, and 	 for any propositional tautol-
ogy. For terms: 0 for P(⊥), 1 for P(	). For Li formulas, we
write t1 ≡ t2 for (t1 � t2) ∧ (t2 � t1), and t1 > t2 for
(t1 � t2) ∧ ¬(t2 � t1). Note that we may use any rational
number as a term via representing its numerator as a sum of
1s and clearing its denominator through an inequality t � t,
and we write q for a rational q thus considered as a term.

Strictly speaking, P(β) for β ∈ Lprop is not a well-formed
term in L2 or L3. We will nonetheless use this notation with
the understanding that P(β) is a shorthand for P([	]β). L2

and L3 thus extend L1 in this sense.
L1, L2, and L3 correspond to the three levels of the

causal hierarchy as proposed by (Shpitser and Pearl 2008;
Pearl 2009); see also (Bareinboim et al. 2020). L1 is sim-
ply the language of probability, capturing statements like
P(Y = y|X = x) � 1/2, which is shorthand for expres-
sion

(
P(	)+P(	)

)
·P(X = x ∧ Y = y) � P(X = x). L2

encompasses assertions about so-called causal effects, e.g.,
statements like P([X = x]Y = y) � q.

Semantics

A model is simply a measurable SCM M = (F , P ). Since
M is well-founded, each u determines the values of all en-
dogenous variables. Thus, for ϕ ∈ Lprop we will write
F , u |= ϕ, defined in the obvious way. For α ∈ Lint we
define the intervention operation iα so that iα(F) is the re-
sult of applying the interventions specified by α to F (Def.
2). Then we say F , u |= [α]β just in case iα(F), u |= β. We
have thus defined F , u |= ϕ for all ϕ ∈ Lfull.

Finally, for any ϕ ∈ L and model M define the set
SM(ϕ) = {u : F , u |= ϕ}. Measurability of M guaran-
tees that SM(ϕ) is always measurable. Toward specifying
the semantics of Li we define [[t]]M recursively, with the cru-
cial clause given by [[P(ϕ)]]M = P (SM(ϕ)). Satisfaction of
ϕ ∈ Li is as expected: M � t1 � t2 iff [[t1]]M ≥ [[t2]]M,
M � ¬ϕ iff M � ϕ, and M � ϕ ∧ ψ iff M � ϕ and
M � ψ. As in previous work, it is easy to see that none of
the languages L1,L2,L3 is compact (Perović et al. 2008;
Ibeling and Icard 2018; 2019); consequently Thm. 5 shows
weak completeness only.

Comparing Expressivity

With a precise semantic interpretation of our three languages
in hand, we can now show rigorously that they form a strict
hierarchy, in the sense that models may be distinguishable
only by moving up to higher levels of the hierarchy.

Proposition 1. L2 is strictly more expressive than L1.

Proof. Consider M1 with U ∼ Bernoulli(0.5) and X := U
while Y := X; in M2 we have Y := U and X :=
Y . It is easy to see by an induction on terms in L1 that
[[t]]M1

= [[t]]M2
, and thus M1 and M2 validate the same

L1 formulas. Yet, M1 � P([X = 1]Y = 1) ≡ 1, while
M2 � P([X = 1]Y = 1) ≡ 1. In particular the schema
P(β|α) ≡ P([α]β) is also falsified by M2, a reflection of
the distinction between observation and intervention.

Proposition 2. L3 is strictly more expressive than L2.

Proof. Consider an example adapted from (Avin, Shpitser,
and Pearl 2005) with two endogenous and two exogenous
variables X,UX , Y, UY , where UX ∼ Bernoulli(0.5) and
X = UX , whileUY ∼ Unif(0, 1, 2). The difference between
models M1 and M2 is the equation for binary variable Y . In
M1 we have Y equal to (X ↔ UY = 0), and in M2 we
have Y given by (X → UY = 0) ∧ (UY = 2 → X). It is
then easy to check (by induction) that M1 and M2 validate
all the same L2 formulas, whereas, e.g., [[p]]M1 �= [[p]]M2 ,
with p the term denoting the probability of necessity and
sufficiency P([X = 0]Y = 0 ∧ [X = 1]Y = 1).

Note also that [[P([	]Y = 1 ∧ [X = 1]Y = 1)]]M1
�=

[[P([	]Y = 1 ∧ [X = 1]Y = 1)]]M2
in this second example,

showing that even allowing simple conjunctions of the form
γ ∧ [α]β would increase the expressive power of L2. It is
thus not possible in general to reason in L2 about conditional
expressions such as P([α]β|γ). On the other hand L2 does
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handle conditional effects, since, e.g., P([α]β|[α]γ) � t can
be rewritten as P

(
[α](β ∧ γ)

)
� t · P([α]γ).1

In a companion manuscript (Bareinboim et al. 2020) we
improve upon Props. 1 and 2 by showing that for i < j
the Li-theory of a model almost-never determines its Lj-
theory, in the sense that the proportion of models where such
collapse occurs goes asymptotically to zero.

Graph Definability and Do-Calculus

Given the languages and interpretation considered so far, we
mention as an aside that it may be enlightening to consider
a notion of graph validity, analogous to “frame validity” in
modal logic (van Benthem 2001). Let us say G � ϕ just in
case M � ϕ for all Markov structures M such that G = GM.

For any dag G there is a probability distribution P whose
conditional independencies are exactly those implied by d-
separation in G (Geiger and Pearl 1990). It is then easy to
construct an SCM M with G = GM and P = PM, which
immediately gives:2

Proposition 3. G � P(X ∧Y|Z) ≡ P(X|Z)P(Y|Z) if and
only if

(
(X ⊥⊥ Y)|Z

)
G . In other words, the graph property

of d-separation is definable in L1.

One of the most intriguing components of structural
causal reasoning is the do-calculus (Pearl 1995; 2009;
Zhang 2008), allowing the derivation of causal effects from
observational data. This calculus can also be seen as involv-
ing graph validity. The next proposition is a slight extension
of what was already proved in (Pearl 1995), combined with
the result of (Geiger and Pearl 1990) mentioned above.

Proposition 4. Let G be a dag over variables X .3 Then
(1) G � P

(
[X]Y|[X](Z ∧ W)

)
≡ P([X]Y|[X]W) iff(

(Y ⊥⊥ Z)|X,W
)
GX

; (2) G � P([X ∧ Z]Y|[X ∧ Z]W) ≡
P
(
[X]Y|[X](Z ∧ W)

)
iff

(
(Y ⊥⊥ Z)|X,W

)
GXZ

; and

(3) G � P([X ∧ Z]Y|[X ∧ Z]W) ≡ P([X]Y|[X]W) iff(
(Y ⊥⊥ Z)|X,W

)
G
X,Z(W)

. All formulas here are in L2.

We leave further exploration of questions about graph de-
finability in these languages for a future occasion.

Axiomatizations

We now give systems AXi each of which axiomatizes the
validities of Li over both M and M∗. These probabilistic
logics build on the base (deterministic) logics, as any equiv-
alent base formulas must be assigned the same probability.
We call ϕ ∈ Lbase

i an Lbase
i -validity, and write |=Lbase

i
ϕ, if for

all F and u we have F , u |= ϕ. For ϕ ∈ Lprop, write |= ϕ if
ϕ is a propositional tautology. The validities of Lbase

3 = Lfull

1In the notation of do-calculus (Pearl 1995; 2009), the expres-
sion P([α]β|[α]γ) would be written as P(β | do(α), γ).

2P(X∧Y|Z) ≡ P(X|Z)P(Y|Z) represents a conjunction over
all instances of this schema with all combinations of values X = x,
Y = y, Z = z. Here X,Y,Z are lists of variables and x,y, z are
corresponding lists of values in the respective ranges.

3GXZ is G minus any edges into X or out of Z, and Z(W) is
the set of all Z-nodes that are not ancestors of any W-node in GX.

have been axiomatized in (Ibeling and Icard 2019). Suppose
ϕ = [α]β ∈ Lbase

2 = Lcond. It is easy to see that |=Lbase
2

ϕ

just in case |= α → β. It is even easier to see that for
ϕ ∈ Lbase

1 = Lprop, |=Lbase
1

ϕ just in case |= ϕ. Satisfia-
bility for every base language is NP-complete. We need to
add one more axiom schema,4 for all X ∈ X :

Def.
∧

x,x′∈Val(X)
x �=x′

¬ (X = x ∧X = x′) ∧
∨

x∈Val(X)

X = x.

The system AXi for i = 1, 3 is then as follows.

MP. Inference rule: ϕ,ϕ→ ψ � ψ
Bool. Boolean tautologies over Li

NonNeg. P(ϕ) � 0

Add. P(ϕ ∧ ψ) + P(ϕ ∧ ¬ψ) ≡ P(ϕ)

Dist. P(ϕ) = P(ψ) whenever |=Lbase
i
ϕ↔ ψ

Poly. The polynomial schemata below.

The following 15 axioms constitute Poly.

OrdTot. t1 � t2 ∨ t2 � t1

OrdTrans. t1 � t2 ∧ t2 � t3 → t1 � t3

NonDegen. ¬ (0 ≡ 1)

AddComm. t1 + t2 ≡ t2 + t1

AddAssoc. (t1 + t2) + t3 ≡ t1 + (t2 + t3)

Zero. t+ 0 ≡ t

AddOrd. t1 � t2 → t1 + t3 � t2 + t3
MulComm. t1 · t2 ≡ t2 · t1
MulAssoc. (t1 · t2) · t3 ≡ t1 · (t2 · t3)

One. t · 1 ≡ t

MulDist. t1 · (t2 + t3) ≡ t1 · t2 + t1 · t3
MulNonNeg. t1 � 0 ∧ t2 � 0 → t1 · t2 � 0

ZeroMul. t · 0 ≡ 0

NoZeroDiv. t1 · t2 ≡ 0 → t1 ≡ 0 ∨ t2 ≡ 0

Neg. t+ (−t) ≡ 0

As for AX2, Add turns out to be too weak—it only cap-
tures consequents of the trivial antecedent (	) since a purely
propositional ϕ in the base language is interpreted as [	]ϕ.
Thus to obtain AX2, we form the axiomatization as above,
but add the following axiom Add2:

Add2. P ([α](ϕ ∧ ψ)) + P ([α](ϕ ∧ ¬ψ)) ≡ P([α]ϕ).

Sample Derivation

Before proving completeness (Thm. 5) we illustrate the
power of AX2 (and AX3) through a representative deriva-
tion. Our goal is to derive the example in (Pearl 1995, §3.2):

P([x∗]y∗) ≡
∑

z

P(z|x∗)
∑

x

P(y∗|x ∧ z)P(x) (1)

4In (Ibeling and Icard 2019), Def merely amounts to the law of
excluded middle since Val(X) = {0, 1} for all X ∈ X ; here we
assume only that every Val(X) is finite.
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X Z Y

W

Figure 1: A graph over which (2)-(6) are all valid.

for any specific values x∗ and y∗. (Rather than writing, e.g.,
X = x, we are simply writing x.) This formula (in L2) is
not in general valid. But it does follow from further assump-
tions easily statable in L2. Formulas (2)-(4) below are in-
stances of the second do-calculus schema, while (5) and (6)
are instances of the third schema (recall Prop. 4).

P([X]Z) ≡ P(Z|X) (2)
P([X]Y |[X]Z) ≡ P([X ∧ Z]Y ) (3)
P([Z]Y |[Z]X) ≡ P(Y |X ∧ Z) (4)
P([X ∧ Z]Y ) ≡ P([Z]Y ) (5)

P([Z]X) ≡ P(X) (6)

Prop. 4 provides the graphical assumptions needed to jus-
tify each of these assertions. For example, they are all valid
over the graph in Fig. 1 (Pearl 1995; 2009). We now argue
that

(
(2) ∧ (3) ∧ (4) ∧ (5) ∧ (6)

)
→ (1) is derivable in

our calculus.5 Notably, this can be done in L2 using only
AX2. First, by appeal to MP, Bool, and Dist, we have that
P([x∗]y∗) ≡ P

(∨
z([x

∗]y∗ ∧ [x∗]z)
)
, which in turn using

Add2 is equal to
∑
z P([x

∗]y∗ ∧ [x∗]z). By Poly this can
be shown equal to

∑
z P([x

∗]z)P([x∗]y∗|[x∗]z). By (2) and
(3) this is equal to

∑
z P(z|x∗)P([x∗ ∧ z]y∗), and by (5) to∑

z P(z|x∗)P([z]y∗). Employing a similar argument to that
above (using MP, Bool, Add2, and Dist), this is equal to∑
z P(z|x∗)

∑
x P([z]y

∗|[z]x)P([z]x). By (4) and (6) we fi-
nally obtain

∑
z P(z|x∗)

∑
x P(y

∗|x ∧ z)P(x).

Completeness Theorems

Theorem 5. Each AXi is sound and complete for the validi-
ties of Li with respect to both M and M∗.

Proof. Soundness is straightforward. For completeness, we
show any consistent ϕ ∈ Li is satisfiable. There is a consis-
tent clause in its disjunctive normal form so we may assume
that ϕ is a conjunction of literals (using MP, Bool). We can
now obtain a normal form for ϕ as in (Fagin, Halpern, and
Megiddo 1990). Lem. 6 below gives this for the i = 1, 3
case. We will show later how to modify it (Lem. 9) for AX2.

Lemma 6. Suppose ϕ ∈ Li is a conjunction of literals. Let
a1, . . . , an ∈ Lbase

i be the base atoms appearing in ϕ. Let
Δ = {	1 ∧ · · · ∧ 	n : 	i ∈ {ai,¬ai} for all 1 ≤ i ≤ n}. Let
Δ⊥ = {δ : |=Lbase

i
δ ↔ ⊥}. Then there are polynomial terms

5It is worth observing that this derivation would go through
even if we considered the weaker logic for Lfull studied in (Ibeling
and Icard 2018). That is, deriving

(
(2)∧(3)∧(4)∧(5)∧(6)) → (1)

does not depend on any of the causal axioms that characterize struc-
tural causal models (Halpern 2000; Pearl 2009). However, slightly
weaker assumptions—e.g., P([X]Z) ≡ P([X]Z|X) in place of
(2)—would require the additional axioms.

t1, . . . , tm, t
′
1, . . . , t

′
m′ in the variables {P(δ)}δ∈Δ such that

ϕ is provably-in-AXi equivalent to a conjunction
∧

δ∈Δ⊥

P(δ) ≡ 0 ∧
∧

δ∈Δ\Δ⊥

P(δ) � 0 ∧
∑

δ∈Δ

P (δ) ≡ 1

∧
∧

1≤i≤m
ti � 0 ∧

∧

1≤i≤m′
t′i > 0.

(7)

Proof. The first part of (7) comes from Dist, the second
from NonNeg, and the remainder from Add and Poly.
This is most clearly illustrated by example. Consider ϕ =
P([X]Y ) + 2P([Y ]Z) ≡ 1/2 so that Δ = {δ1 = [X]Y ∧
[Y ]Z, δ2 = [X]Y ∧ ¬[Y ]Z, δ3 = ¬[X]Y ∧ [Y ]Z, δ4 =
¬[X]Y ∧ ¬[Y ]Z} and Δ⊥ = ∅. Let pi abbreviate P(δi).
By NonNeg, � (p1 � 0) ∧ · · · ∧ (p4 � 0) and by Add,
� p1 + · · · + p4 ≡ 1. Now, we may compute the {ti, t′i} in
(7). Using Poly and Add:

� ϕ↔ 2P([X]Y ) + 4P([Y ]Z)− 1 ≡ 0

� ϕ↔ 2P([X]Y ∧ [Y ]Z) + 2P([X]Y ∧ ¬[Y ]Z)

+ 4P([X]Y ∧ [Y ]Z) + 4P(¬[X]Y ∧ [Y ]Z)− 1 ≡ 0

� ϕ↔ 6p1 + 2p2 + 4p3 − 1 ≡ 0

� ϕ↔ 6p1 + 2p2 + 4p3 − 1 � 0

∧ −6p1 − 2p2 − 4p3 + 1 � 0

so that m = 2,m′ = 0 in (7), and t1 is 6p1 +2p2 +4p3 − 1
while t2 is −t1. We can carry out this process for any ϕ,
with m′ �= 0 if ϕ contains negations.

(7) is a system of polynomial inequalities in the unknowns
{P(δ)}δ∈Δ. We now demonstrate this system has a solution
provided (7) is consistent. Our primary tool is the following
semialgebraic result (Stengle 1974).

Theorem 7 (Positivstellensatz). Let R = Q[x1, . . . , xn]
and suppose f1, . . . , fs, g1, . . . , gt, h1, . . . , hm ∈ R. Let
cone(g1, . . . , gt) ⊆ R be the closure of {g1, . . . , gt} ∪
{s2 : s ∈ R} under addition and multiplication, and let
ideal(h1, . . . , hm) = {

∑m
i=1 aihi : a1, . . . , am ∈ R}. Then

either the system {fi �= 0, gj ≥ 0, hk = 0 : 1 ≤ i ≤ s, 1 ≤
j ≤ t, 1 ≤ k ≤ m} has a solution over Rn, or there exist
g ∈ cone(g1, . . . , gt), h ∈ ideal(h1, . . . , hm), n ∈ N with

g + h+ F 2n = 0 (8)

where F =
∏

1≤i≤s fi.

Each clause in (7) easily translates to a polynomial in
Thm. 7; a clause t′i > 0 becomes two constraints: t′i ≥ 0
and t′i �= 0. If there’s no solution, let t = (g + h) + f2n for
some g,h, f as in (8), where f2n is an iterated multiplica-
tion. We claim ϕ � t ≡ 0 ∧ t > 0 so that ϕ is inconsistent,
a contradiction. We use the principles below, all derivable
from Poly:

AddPos. t1 � 0 ∧ t2 > 0 → t1 + t2 > 0

MulPos. t1 > 0 ∧ t2 > 0 → t1 · t2 > 0

NegAdd. −(t1 + t2) ≡ (−t1) + (−t2)

NegNeg. −(−t) ≡ t

OrdSq. t · t � 0
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First, we show ϕ � t > 0. Note that ϕ � g � 0 by
OrdSq and ϕ � h ≡ 0 by ZeroMul given Thm. 7 and
the clauses of (7). Also, ϕ � f > 0 by NonDegen if
m′ = 0 in (7) or n = 0 in (8) and by MulPos otherwise.
So ϕ � (g + h) + f2n > 0 by AddPos. Now we show
ϕ � t ≡ 0. In fact, we don’t need ϕ. We show that Poly
is powerful enough to simplify polynomials; then by sound-
ness and since (8) holds identically, � t ≡ 0. Using MulDist,
NegAdd, � t ≡ m where m is a sum of non-0 monomi-
als, each of which is either 1 itself or contains no factors
of 1 (One), and contains at most one − sign (NegNeg).
By MulComm,MulAssoc group the factors in each left-
associatively and in increasing (lexicographic) order of their
variables. Then with AddComm, AddAssoc, Neg group
and cancel out to 0 equal but opposite monomials. Adding
all the 0s, we have � m ≡ 0.

The {P(δ)}δ∈Δ can be assumed computable, as there is an
algebraic (Tarski 1949) and a fortiori computable solution to
(7). Now, this implies there is a M ∈ M∗ ⊂ M that satisfies
each δ ∈ Δ \Δ⊥ with probability P(δ), so that M |= ϕ:

Lemma 8. Let {ϕi}1≤i≤N be satisfiable Lfull-formulas no
pair of which is jointly satisfiable, and let {pi}1≤i≤N be
nonnegative computable reals summing to unity. Then there
is a M ∈ M∗ such that [[P(ϕi)]]M = pi for all 1 ≤ i ≤ N .

Proof. (Ibeling and Icard 2019) give semantics of Lfull over
deterministic SCMs, i.e., those in which U = ∅. Thus there
are determinstic Mi = ({fX,i}X∈X , ·) such that Mi |= ϕi
for all i. Consider M = (F , P ) with one exogenous variable
U = {U} such that Val(U) = {1, . . . , N}, where for all i
the probability that U = i is pi. Define F = {fX}X∈X
as fX(x, i) = fX,i(x) for any endogenous setting x. When
U = i, the structural equations of M and Mi coincide, so
F , i |= ϕi. Conversely, if F , i |= ϕj , then j = i: otherwise
Mi |= ϕi ∧ϕj . Thus SM(ϕi) = {i} and [[P(ϕi)]]M = pi for
all i. Clearly M can be made to satisfy Def. 3.

As for the AX2 case, Lem. 6 must be modified, but the
proof is the same (no elements of Δ are jointly satisfiable):

Lemma 9. Suppose ϕ ∈ L2 is a conjunction of literals. Let
a1, . . . , an ∈ Lprop be the Lprop-atoms appearing in ϕ (i.e. its
subformulas of the form X = x) and let α1, . . . , αl ∈ Lint
be the antecedents of any conditionals appearing in ϕ. Let
Δprop = {	1 ∧ · · · ∧ 	n : 	i ∈ {ai,¬ai} for all 1 ≤ i ≤ n}
and let Δ = {[αi]δprop : 1 ≤ i ≤ l, δprop ∈ Δprop}. Let
Δ⊥ = {δ : |=L2

δ ↔ ⊥}. Then there are polynomial terms
t1, . . . , tm, t

′
1, . . . , t

′
m′ in the variables {P(δ)}δ∈Δ such that

ϕ is provably-in-AX2 equivalent to a conjunction
∧

δ∈Δ⊥

P(δ) ≡ 0 ∧
∧

δ∈Δ\Δ⊥

P(δ) � 0 ∧

∧

1≤i≤l

∑

δprop∈Δprop

P ([αi]δprop) ≡ 1

∧
∧

1≤i≤m
ti � 0 ∧

∧

1≤i≤m′
t′i > 0.

(9)

Proof. Use Add2 in place of Add in proving Lem. 6.

Complexity

Let PROB-CAUSAL-SATi be the problem of deciding if a
given formula ϕ ∈ Li, encoded standardly, is satisfiable.
The completeness proof above delivers no obvious com-
plexity bound, but we will now obtain a polynomial space
bound by extending an argument of (Fagin, Halpern, and
Megiddo 1990). As PSPACE closes under complement, this
also shows the validity problem for our languages is in
PSPACE. The crux is a small-model property:
Lemma 10. Any satisfiable ϕ has a small model M in the
sense that |{δ ∈ Δ : [[δ]]M > 0}| ≤ |ϕ| where Δ is defined
as in Lem. 6, 9.

Proof. Let Ψ be the Lbase
i -formulas appearing inside ϕ; we

have |Ψ| < |ϕ|. For ψ ∈ Ψ let Δψ = {δ ∈ Δ : |=Lbase
i

δ →
ψ}; the proof of Lem. 6 or 9 show that

∑
δ∈Δψ

P(δ) = P(ψ)

is valid. Now let M′ be such that M′ |= ϕ and consider the
system S in the unknowns {P(δ)}δ∈Δ: S = {

∑
δ∈Δ P(δ) =

1} ∪ {
∑
δ∈Δψ

P(δ) = [[ψ]]M′}ψ∈Ψ. By a fact of linear alge-
bra (Fagin, Halpern, and Megiddo 1990, Lem. 2.5), since S
has |Ψ|+ 1 equations, it has a nonnegative solution s where
at most |Ψ| + 1 variables are nonzero. Apply Lem. 8 to s,
giving a small M such that [[ψ]]M = [[ψ]]M′ for all ψ ∈ Ψ,
so that M |= ϕ.

Theorem 11. Each PROB-CAUSAL-SATi ∈ PSPACE.

Proof. Algorithm: for each subset Δ′ ⊆ Δ of size |Δ′| ≤
|ϕ|, form a formula ϕΔ′ in the existential theory of the re-
als (∃R), over variables {pδ}δ∈Δ′ as follows. Conjoin the
equations

∑
δ∈Δ′ pδ = 1 and

∧
δ∈Δ′ pδ ≥ 0 to the result

of replacing any P(ψ) appearing in ϕ with
∑
δ∈Δϕ

pδ . Then
check satisfiability of ϕΔ′ via the PSPACE decision proce-
dure for ∃R of (Canny 1988). Declare ϕ sat if any ϕΔ′ is
satisfiable, and unsat if not. Why does it work? If ϕ is satis-
fiable, we have a model with a small Δ′ by Lem. 10, and the
corresponding {pδ}δ∈Δ′ are a witness for ϕΔ′ . Conversely,
if ϕΔ′ is satisfiable in ∃R for some Δ′, then apply Lem. 8 to
the reals {pδ}δ∈Δ′ , giving a model satisfying ϕ.

Probabilistic Programs

Thm. 5 establishes soundness and completeness for both the
class of measurable SCMs, and also for the more restricted
class of computable SCMs. The latter result is especially
useful for establishing a link to an alternative perspective
on causal modeling, emphasizing a procedural rather than
declarative aspect (Icard 2017). We take a probabilistic pro-
gram to be any generative algorithm:
Definition 4 (Probabilistic simulation model). A probabilis-
tic simulation is a probabilistic Turing machine with a read-
only random bit tape, a work tape, and a write-only variable
tape encoding the variables X .

A probabilistic simulation outputs values for endogenous
variables, eventually establishing a complete endogenous
setting x on the variable tape. Thus, like a SCM, a prob-
abilistic simulation model T gives a probability distribu-
tion PT(X ). The following definition of intervention endows
these models with a genuine causal interpretation:
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Definition 5. Given a computable intervention i (as in Def.
2) and a corresponding oracle for i, the simulation i(T) em-
ulates T but acts as if the square for any X ∈ i is fixed to
the value i(X); it dovetails this emulation with a procedure
that writes i(X) to X for all X ∈ dom(i).

In (Ibeling and Icard 2019) a subclass T ∗ of simulation
programs is studied, namely those (1) that satisfy a strong
“functionality” property for interventions, (2) that produce
a solution under every intervention, and (3) for which the
direct causal influence relation is well-founded (analogously
to the requirement above for SCMs). We can then obtain:

Theorem 12. For every M ∈ M∗ there is a T ∈ T ∗
such that, for every computable intervention i, we have
Pi(M)(X ) = Pi(T)(X ), and vice versa.

Proof. The only difference between the present setting and
the one in (Ibeling and Icard 2019) is the presence of an
infinite sequence of random bits (recall Def. 3 for SCMs).
Thus, the same construction as in (Ibeling and Icard 2019,
Thm. 1) gives a model for which, when a random bit string
is fixed, we have equivalence under any interventions of the
endogenous variables.

With the obvious interpretation of Li formulas over sim-
ulation models in T ∗, we thus have:

Corollary 13. Each AXi is sound and complete for the va-
lidities of Li with respect to T ∗.

Conclusion

We have introduced a series of increasingly expressive lan-
guages encoding levels of the “ladder of causation” (Shpitser
and Pearl 2008; Pearl 2009), interpreted over both standard
structural causal models and probabilistic simulation pro-
grams. We moreover established some fundamental theoret-
ical results about these languages, including finitary axiom-
atizations and PSPACE complexity upper bounds for satisfi-
ability and validity. This marks the first systematic study of
a probabilistic logic of causal counterfactuals.

Along the way we also noted how logical languages might
help to illuminate aspects of probabilistic causal reasoning.
As a final illustration, let us return again to the do-calculus.
We noted two seminal formula schemas from L2 that feature
centrally in the do-calculus:

P([X ∧ Z]Y|[X ∧ Z]W) ≡ P
(
[X]Y|[X](Z ∧W)

)
(10)

P([X ∧ Z]Y|[X ∧ Z]W) ≡ P([X]Y|[X]W) (11)

Where Γ is a set of L3 formulas, let Γdo be all instances of
(10) and (11) that can be inferred from Γ using the rules and
axioms of AX3 (equiv. are entailed by Γ). As usual, we say
Γ � ϕ to mean that Γ semantically entails ϕ, while Γ � ϕ
means there is a proof in AX3 of ϕ from assumptions in
Γ. The completeness results of (Huang and Valtorta 2006;
Shpitser and Pearl 2008), together with Thm. 5, establish
the following combined completeness result:

Corollary 14. Let p be a term of L1 and χ ∈ Lbase
2 = Lcond.

Then Γ � P(χ) ≡ p implies Γdo � P(χ) ≡ p.

In other words, to know whether a causal effect P(χ) can
be reduced to a pure probabilistic expression p, given some
set of assumptions Γ, it suffices to take as premises only
instances of (10) and (11) (which by Prop. 4 can all be in-
ferred from specific graphical properties), and apply the cal-
culus AX3 (or simply AX2). The derivation of (1) from (2)-
(6) above is a concrete illustration of this Corollary.

More generally, we submit that the formalization of causal
languages offered in this paper helps to clarify what exactly
the levels of the causal hierarchy come to, and how we might
gain a better understanding of how they relate to each other
and to tasks that an intelligent agent might need to solve. For
a start on such exploration, see (Bareinboim et al. 2020).

Future Work

Our work opens up a number of possibilities for further in-
vestigation. We mention several here.

Although the complexity of decision problems for the lan-
guages considered here is relatively low compared to many
expressive logical systems, it may be desirable to consider
yet smaller fragments of probability logic. For example, the
language of probability statements with linear inequalities
remains in NP (Fagin, Halpern, and Megiddo 1990). While
this fragment is too impoverished to express general asser-
tions about conditional probability, one could extend the lan-
guage only minimally; cf. (Ivanovska and Giese 2010).

It is also natural to consider more expressive languages.
For instance, (Ibeling and Icard 2019) included a (deter-
ministic) causal influence relation � explicitly in the log-
ical language, showing, e.g., that transitivity of this relation
characterizes exactly the “local” SCMs (Pearl 2009). Would
this characterization extend to the probabilistic interpreta-
tion of causal influence? Indeed, from the perspective of
causal learning and reasoning it would be natural to include
explicit statements about the underlying graph in the logi-
cal syntax (Geiger and Pearl 1990; Hyttinen, Eberhardt, and
Järvisalo 2014; 2015; Triantafillou and Tsamardinos 2015).

On the other hand, leaving graph properties merely im-
plicit as we have done here raises numerous theoretical ques-
tions about graph definability, as briefly explored above.
Analogous to the case of modal logic, we can ask for the
class of graphical properties that can be defined by L1, L2,
or L3. Considering different types of causal graphs may
lead to variations of this question, e.g., with mixed ances-
tral graphs (Spirtes, Glymour, and Scheines 2000) which
we know reveal a different version of Prop. 4 (Zhang 2008).

Finally, while Props. 1 and 2 report known results estab-
lishing basic strictness of the hierarchy, it would of course
be desirable to develop a much more comprehensive and
systematic theory of expressiveness for the three languages,
again akin to what we have for many other logical languages.
What kinds of invariance properties do these languages im-
ply? We leave these open questions for future work.

Acknowledgments
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE-1656518, and by the Center for the
Study of Language and Information.

10176



References

Ackerman, N. L.; Freer, C. E.; and Roy, D. M. 2019. On
the computability of conditional probability. Journal of the
ACM 66(3).
Avin, C.; Shpitser, I.; and Pearl, J. 2005. Identifiability of
path-specific effects. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI).
Bareinboim, E.; Correa, J.; Ibeling, D.; and Icard, T. 2020.
Foundations of causal inference and the emergence of
Pearl’s hierarchy. manuscript.
van Benthem, J. 2001. Correspondence theory. In Gabbay,
D. M., and Guenthner, F., eds., Handbook of Philosophical
Logic, volume 3. Springer.
Bingham, E.; Chen, J. P.; Jankowiak, M.; Obermeter, F.;
Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall,
P.; and Goodman, N. D. 2019. Pyro: Deep universal prob-
abilistic programming. Journal of Machine Learning Re-
search 28:1–6.
Canny, J. 1988. Some algebraic and geometric computations
in PSPACE. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, 460–467.
New York, NY, USA: ACM.
Fagin, R.; Halpern, J. Y.; and Megiddo, N. 1990. A logic for
reasoning about probabilities. Information and Computation
87:78–128.
Galles, D., and Pearl, J. 1998. An axiomatic characterization
of causal counterfactuals. Foundations of Science 3(1):151–
182.
Geiger, D., and Meek, C. 1999. Quantifier elimination for
statistical problems. In Proceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence, UAI’99, 226–
235. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc.
Geiger, D., and Pearl, J. 1990. On the logic of causal models.
Machine Intelligence and Pattern Recognition 9:3–14.
Halpern, J. Y., and Pearl, J. 2005. Causes and Explanations:
A Structural-Model Approach. Part I: Causes. The British
Journal for the Philosophy of Science 56(4):843–887.
Halpern, J. Y. 2000. Axiomatizing causal reasoning. Journal
of Artificial Intelligence Research 12:317–337.
Huang, Y., and Valtorta, M. 2006. Pearl’s calculus of inter-
vention is complete. In Proceedings of the 22nd Conference
on Uncertainty in Artificial Intelligence (UAI).
Hyttinen, A.; Eberhardt, F.; and Järvisalo, M. 2014.
Constraint-based causal discovery: Conflict resolution with
answer set programming. In Proceedings of the Thirtieth
Conference on Uncertainty in Artificial Intelligence (UAI).
Hyttinen, A.; Eberhardt, F.; and Järvisalo, M. 2015. Do-
calculus when the true graph is unknown. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial
Intelligence (UAI).
Ibeling, D., and Icard, T. 2018. On the conditional logic of
simulation models. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018).

Ibeling, D., and Icard, T. 2019. On open-universe causal
reasoning. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI).
Ibeling, D. 2018. Causal modeling with probabilistic simu-
lation models. In Proceedings of the 5th International Work-
shop on Probabilistic Logic Programming (PLP), 36–48.
Icard, T. F. 2017. From programs to causal models. In
Cremers, A.; van Gessel, T.; and Roelofsen, F., eds., Pro-
ceedings of the 21st Amsterdam Colloquium, 35–44.
Ivanovska, M., and Giese, M. 2010. Probabilistic logics
with conditional independence formulae. In 19th European
Conference on Artificial Intelligence (ECAI).
Janzing, D., and Schölkopf, B. 2010. Causal inference using
the algorithmic Markov condition. IEEE Transactions on
Information Theory 56(10):5168–5194.
Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gersh-
man, S. J. 2017. Building machines that learn and think like
people. Behavioral and Brain Sciences 40.
Pearl, J., and Bareinboim, E. 2012. External validity: From
do-calculus to transportability across populations. Statistical
Science 29(4):579–595.
Pearl, J. 1995. Causal diagrams for empirical research.
Biometrika 82(4):669–710.
Pearl, J. 2009. Causality. CUP.
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