
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

The Choice Function Framework for Online Policy Improvement

Murugeswari Issakkimuthu, Alan Fern, Prasad Tadepalli
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331, USA

Abstract

There are notable examples of online search improving over
hand-coded or learned policies (e.g. AlphaZero) for sequen-
tial decision making. It is not clear, however, whether or
not policy improvement is guaranteed for many of these ap-
proaches, even when given a perfect leaf evaluation function
and transition model. Indeed, simple counterexamples show
that seemingly reasonable online search procedures can hurt
performance compared to the original policy. To address this
issue, we introduce the choice function framework for ana-
lyzing online search procedures for policy improvement. A
choice function specifies the actions to be considered at every
node of a search tree, with all other actions being pruned. Our
main contribution is to give sufficient conditions for station-
ary and non-stationary choice functions to guarantee that the
value achieved by online search is no worse than the original
policy. In addition, we describe a general parametric class of
choice functions that satisfy those conditions and present an
illustrative use case of the empirical utility of the framework.

1 Introduction

For many applications of sequential decision making, it is
possible to learn or hand-code a reactive policy for online
operation, e.g. (Hussein et al. 2017; Kober, Bagnell, and Pe-
ters 2013; Schatzmann et al. 2006). While such policies are
computationally cheap to apply, they will generally be sub-
optimal in some or many states. This motivates using addi-
tional computation during online operation to improve upon
such base policies. The focus of this paper is on approaches
that use online lookahead search for this purpose, which we
refer to as Online Search for Policy Improvement (OSPI).

At each state encountered during online operation, OSPI
approaches use an environment simulator or model to con-
struct a search tree that includes the base-policy action
choices along with a subset of other action choices. The ac-
tion values at the root can then be used to select an action.
Well-known examples of OSPI include the policy-rollout al-
gorithm (Tesauro and Galperin 1997), which was first shown
to improve Backgammon policies, and AlphaZero (Silver et
al. 2017), which improves over an underlying greedy policy
via Monte-Carlo Tree Search.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ideally, due to the additional online computation, we
would like an OSPI procedure to yield improved perfor-
mance compared to the base policy. Perhaps more impor-
tantly, we would at least like to guarantee that an OSPI pro-
cedure is “safe” in the sense that it does not perform worse
than just using the base policy. For example, the policy roll-
out algorithm is guaranteed to be safe in this sense. How-
ever, as we show in Section 3, many OSPI procedures are
not safe, even when 1) using a perfect transition model, 2)
using the exact policy value function for leaf evaluation, and
3) the base policy action is expanded at each tree node.

Our primary goal is to derive safety conditions for OSPI.
For this purpose, we introduce the choice-function frame-
work for analyzing OSPI procedures. The key idea is to no-
tice that OSPI procedures primarily differ in their choice of
which actions other than the base policy action to expand at
each tree node. Thus, each procedure can be characterized
by a choice function, which specifies the actions to consider
at each node of the search tree. Thus, we can characterize
properties of an OSPI procedure, such as safety, via proper-
ties of the corresponding choice function.

Our main contribution is to give sufficient conditions on
choice functions that guarantee safety. This is done for both
stationary and non-stationary choice functions. In addition,
we describe a parametric class of safe choice functions, that
captures a number of existing approaches. This allows for
hyperparameter search over a safe space of OSPI procedures
in order to optimize online performance. Using this class
we provide illustrative empirical results that demonstrate the
practical potential of the framework.

2 Related Work

An early approach for OSPI is the policy-rollout algo-
rithm (Bertsekas and Tsitsiklis 1996; Tesauro and Galperin
1997), which has been shown to significantly improve poli-
cies in a variety of applications, e.g. Backgammon (Tesauro
and Galperin 1997), combinatorial optimization (Bertsekas,
Tsitsiklis, and Wu 1997) and stochastic scheduling (Bert-
sekas and Castanon 1999). Nested rollout (Yan et al. 2005;
Cazenave 2009) allows for leveraging additional computa-
tion time to further improve a policy by approximating mul-
tiple steps of policy iteration. Policy Switching (Chang, Gi-

10178

van, and Chong 2004) allows rolling out multiple policies
instead of just one and improves over all the base policies.

Monte-Carlo Tree Search (MCTS) has commonly used
policies as a form of knowledge to guide and prune the
search, often as part of the rollout policy applied at the
leaves (Browne et al. 2012). Recent, high-profile exam-
ples include AlphaGo and AlphaZero (Silver et al. 2016;
2017), which combine a learned base policy and value func-
tion to guide MCTS. One view of the search approach of Al-
phaZero is as OSPI, where the search aims to improve over
the learned greedy base policy. Indeed, the basis for learning
is to use search to generate training data from a (hopefully)
improved policy. A related approach (Pinto and Fern 2017)
uses a learned policy to prune actions from consideration at
each tree node that are not highly ranked by the policy. An-
other example of combining MCTS with policies (Nguyen et
al. 2014) allows the base policy to be treated as a temporally
extended action at each node in the search tree.

The idea of searching around a base policy has also been
considered in the area of deterministic heuristic search. Lim-
ited Discrepancy Search (LDS) (Harvey and Ginsberg 1995)
uses a heuristic to define a greedy policy for guiding search.
LDS generates all paths in the search tree that disagree
with at most K choices of the base policy and returns the
best solution uncovered by the search. LDS has been used
effectively in a variety of search problems ranging from
standard benchmarks to structured prediction (Doppa, Fern,
and Tadepalli 2014) and non-deterministic AND/OR search
graphs (Larrosa Bondia, Rollón Rico, and Dechter 2016).

3 Problem Setup

We formulate sequential decision making in the formalism
of Markov Decision Processes (MDPs). An MDP is a 4-tuple
〈S,A, P,R〉, where S is a finite set of states, A is a finite set
of actions, P : S×A×S → [0, 1] is the state-transition func-
tion and R : S ×A→ R is the reward function. Pss′(a) de-
notes the probability of reaching state s′ from state s taking
action a and R(s, a) denotes the immediate reward for tak-
ing action a in state s. We focus on the discounted infinite-
horizon setting with discount factor γ. A policy, π : S → A,
is a mapping from states to actions with value function V π
given by

V π(s) = R(s, π(s)) + γ
∑

s′∈S
Pss′(π(s)) · V π(s′)

for all s ∈ S. Offline computation of an optimal policy can
be computationally expensive and impractical for applica-
tions with large state spaces. In such cases, online search is
a practical alternative to offline solutions.

Online Search for MDPs. In online search, actions are
selected only for the states actually encountered during on-
line operation. At each decision point, online search con-
structs a finite-horizon search tree rooted at the current state.
A search tree alternates between layers of state and action
nodes. The leaf nodes of a search tree are state nodes and
are often evaluated via a state evaluation function. The tree
is used to estimate action values at the root and the action
with the highest estimate is executed in the environment.

Figure 1: Figure shows a search tree constructed by an un-
specified search procedure for the shown deterministic MDP.
The base policy is shown and the leaf nodes are assigned the
value of the base policy and every internal state node in-
cludes the base-policy action. The grayed out part of the tree
is the part not expanded by the search procedure. The values
of the internal state nodes have been computed via Bellman
backup using a discount factor of 0.9. The best action at the
root is a since it leads to the depth 1 state with the highest
value. The text describes how this choice is not π-safe.

When a model of the MDP is available, an expectimax
tree can be built that assigns exact probabilities to child
states of actions. For large enough search depths or accu-
rate leaf evaluations, near-optimal actions can be selected.
In some applications, only a simulator of the MDP is avail-
able, which allows for sampling state transitions and re-
wards. Monte-Carlo sampling can then be used to construct
an approximation to the exact tree by sampling a number
of child states for each action node. The Sparse Sampling
algorithm (Kearns, Mansour, and Ng 2002) follows this ap-
proach and guarantees near optimal action selection in time
independent of the size of the state space. Monte-Carlo Tree
Search algorithms also use simulators for online search, typ-
ically producing search trees of non-uniform depth.

Online Search for Policy Improvement. In practice, on-
line computational constraints can limit the search tree size,
which can lead to poor performance of online search. To ad-
dress this issue, it is common to learn or provide different
types of prior knowledge into the search process. For ex-
ample, the search depth can be reduced by utilizing higher-
quality leaf evaluation functions, or the search breadth can
be reduced via action pruning functions.

While such knowledge sources can reduce computational
cost, there are typically no guarantees on the value achieved
by the online search procedure. Most theoretical results aim
to guarantee near optimal performance (e.g. (Kearns, Man-
sour, and Ng 2002)), but require impractical computational
costs. Rather, it is desirable to develop approaches that sup-
port performance guarantees within practical computational
limits. This motivates the framework of OSPI.

An OSPI procedure takes a policy, an environment simu-
lator, an optional leaf evaluation function and a state as in-
put and produces an action as output. OSPI aims for perfor-
mance guarantees relative to a base policy π. The policy may
be learned or hand-coded, but is assumed to be computation-

10179

ally cheap to apply. While π could be directly used for online
action selection, this may not fully use the computational re-
sources. OSPI aims to leverage those resources to improve
over π via online search to explore the decision space around
π. An OSPI procedure is π-safe when its online performance
is guaranteed to be as good or better than that of π. That is, if
π′ is the online policy computed by an OSPI procedure, then
the procedure is π-safe if V π

′
(s) ≥ V π(s) for all states s.

While safety is a less powerful guarantee compared to near
optimality, in practice, it is more attainable and still useful.

It can be difficult to determine, in general, whether a given
OSPI procedure is π-safe. For example, one might expect
that an OSPI procedure that considers the actions of π at
every tree node and uses V π for leaf evaluation might be
π-safe when combined with a perfect environment model.
However, this is not the case as the following counterexam-
ple shows. The next section develops a framework for as-
sessing the safety of OSPI procedures.

Counterexample. Figure 1 shows a deterministic MDP, a
base policy π, and the search tree constructed for state A by
an unspecified deterministic search procedure, which pro-
duces the same tree every time state A is encountered. The
tree respects the exact MDP model and the leaf evaluation
function is exactly V π . Further, each node of the search tree
includes the action corresponding to the choice of π.

The action choice of the search procedure (i.e. the highest
valued root actions) will be denoted by the policy π′. Given
the tree properties relative to π, we might expect that the
value of π′ would be at least as good as π. For state A, the
base policy selects π(A) = b and the corresponding value of
state A under π is V π(A) = 10. However, the online search
suggests the alternative action π′(A) = a, which results in a
lower value of V π

′
(A) = 0. Thus, the online search proce-

dure is not π-safe, at least for state A.
To understand the failure to be π-safe at state A, consider

using the search tree to make a decision at state A at time
step t. The reason action a looks best is that the state-action
sequenceA→ a→ A→ c→ C → c→ C achieves a high
value due to the 600 reward of the final transition. However,
after actually taking action a and ending up in state A again
at time step t + 1 the tree does not include the promising
path of A→ c→ C → c→ C, due to pruning of the lower
levels of the search tree. Thus, at time step t + 1 the search
procedure does not recognize the value of taking action c in
A and takes a again. This is just one of several failure-mode
types of OSPI procedures, even when their trees satisfy the
assumptions of this example relative to π.

4 The Choice Function Framework

Search trees encode the future trajectories to be considered
when evaluating actions at a state. Search algorithms vary in
how they expand the paths, which results in different search
trees and hence different action values. Thus, one way to
characterize online search approaches is by describing the
trees they construct. In our framework, this is done using
choice functions, which allows for properties, such as safety
of search, to be analyzed via choice-function properties.

4.1 Choice Functions for General Online Search

Search trees have two sources of branching: 1) action
branching and 2) state branching. Choice functions describe
the action branching by specifying the subset of possible ac-
tion choices to be considered at each state node. Leaf nodes
are assigned the empty set of choices. For state branching,
we assume an exact MDP model so that all non-zero proba-
bility child states of an action node are included in the tree.
When a model is not available, but a simulator is, sparse
sampling can be used to approximate the dynamics.

State and action nodes in a tree are identified by paths that
list the alternating sequence of states and actions starting at
the root state. The path of a state node labeled with state s
will be denoted by p; s where p is the path starting at the
root leading to the parent action node of the state node. Ac-
tion nodes will often similarly be denoted by p; s; a, where
p; s designates the parent state node. The length of any path
denoted by |p| is the number of actions that it contains. Thus,
a path corresponding to a single state s has length zero. The
set of all paths that end with a state is denoted by SP and a
choice function is a mapping ψ : SP → 2A from paths that
end with a state to action subsets.

In order to define the trees associated with a choice func-
tion, several definitions are needed. A path is ψ-satisfying if
all of its actions are “allowed” by ψ. That is, for each prefix
p′; s′; a′ of the path, we have a′ ∈ ψ(p′; s′). A state path
p; s is a leaf path of ψ if it is ψ-satisfying and ψ(p; s) = ∅.
A leaf path of ψ cannot be extended to a ψ-satisfying path.
A choice function ψ is finite horizon if there is a finite up-
per bound on the length of any ψ-satisfying state path. For
finite-horizon ψ, the horizon H(ψ) is the maximum length
of any ψ-satisfying path, or equivalently, of any leaf path.

Given a current, or root state, s0, the tree corresponding
to ψ, denoted Tψ(s0), is the tree containing exactly the ψ-
satisfying state paths that begin with s0. Thus, the leaf nodes
of Tψ(s0) correspond to leaf paths of ψ. The tree will be fi-
nite when ψ is finite horizon, withH(ψ) bounding the depth
of any leaf node. In this paper, we will restrict attention to
finite-horizon choice functions and hence finite trees.

To use the tree Tψ(s0) for action selection at state s0, it
is necessary to specify a leaf evaluation function u, which is
a function of states u : S → R. Often u will be a learned
or hand-coded function that provides an estimate of a state’s
optimal value or value under a policy. Alternatively, u may
be uninformative and return a constant value. Together, a
choice function ψ and leaf evaluation function u allow us to
define the value of each state node p; s in Tψ(s0), denoted
V ψu (p; s), and each action node p; s; a, denotedQψu (p; s; a).

V ψu (p; s) =

{
u(s), ψ(p; s) = ∅
max

a∈ψ(p;s)
Qψu (p; s; a), otherwise

Qψu (p; s; a) = R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψu (p; s; a; s′)

The online-search action policy, denoted Πψu , returns a max-
imum valued action at state s allowed by ψ, with ties broken
arbitrarily: Πψu (s) = arg max

a∈ψ(s)
Qψu (s; a).

10180

4.2 Choice Functions for OSPI

Given a base policy π we would like to define choice func-
tions and corresponding leaf-evaluation functions that re-
sult in (approximately) π-safe OSPI procedures. That is, we
would like to guarantee that Πψu is π-safe. Section 5 devel-
ops sufficient conditions on choice functions to give such
a guarantee. First, however, we provide examples of choice
functions for several existing OSPI procedures whose safety
will later be assessed according to the conditions.

Policy Rollout. This simple OSPI procedure (Tesauro and
Galperin 1997) returns the action at state s that maximizes
a Monte-Carlo estimate of Qπ(s, a). This estimate can be
viewed as evaluating a tree that considers all actions at the
root s and then only contains the actions of π thereafter until
some horizon H . Policy rollout can thus be characterized by
the following choice function.

ψro(p; s) =

⎧⎨
⎩

A, |p| = 0
π(s), 0 < |p| < H
∅, otherwise

Policy rollout can be proven to be π-safe as it corresponds
to the policy improvement step of the policy iteration algo-
rithm. Our π-safe conditions will imply this for ψro.

Limited Discrepancy Search (LDS). This procedure was
originally introduced for deterministic offline search prob-
lems (Harvey and Ginsberg 1995). LDS searches around
π by limiting the number of discrepancies (off-policy ac-
tions) along every root-to-leaf path to K up to some maxi-
mum horizon H . The idea was later extended to offline non-
deterministic AND/OR tree/graph search (Larrosa Bondia,
Rollón Rico, and Dechter 2016) using a similar limit on dis-
crepancies. LDS for MDPs is easily captured via the fol-
lowing choice function, where #[p �= π] is the number of
off-policy actions in path p.

ψlds(p; s) =

⎧⎨
⎩

A, |p| < H and #[p �= π] < K
π(s), |p| < H and #[p �= π] = K
∅, |p| = H

Our conditions will imply that ψlds is π-safe.
Pruned Online Search with Learned Policies. Rein-

forcement Learning (RL) algorithms typically learn policies
that select actions by maximizing an action ranking func-
tion, such as a Q-function or probability distribution over
actions. Such action rankings can be used for action prun-
ing in online tree search. Let q(p; s, a) be the learned action
ranking function, which may depend on the full path p; s
(e.g. when q is a recurrent neural network) or depend only
on s. A simple pruning approach such as the one studied in
(Pinto and Fern 2017), allows only the set of top k actions at
each search node, denoted TOPq,k(p; s), as captured by the
following choice function.

ψq,k(p; s) =

{
TOPq,k(p; s), |p| < H
∅, |p| = H

As discussed in Section 6, our results will help clarify con-
ditions on q that ensure safety.

5 Performance Guarantee
Our goal is to identify properties of a choice function ψ that
guarantee that the online-search action policy Πψu is approx-
imately π-safe. That is, we seek to bound V π(s)− V Πψu (s).

A natural property to suggest is that ψ be consistent with π.
A choice function ψ is π-consistent if π(s) ∈ ψ(p; s) for
each path p; s that ends with a state. Our counterexample in
section 3, however, is based on a π-consistent choice func-
tion, since all tree nodes include π. Thus, π-consistency of
ψ is not sufficient for π-safety, requiring the introduction of
additional concepts and notation.

We will often treat value functions as vectors, indexed by
states, with arithmetic and comparison operators being ap-
plied element-wise. The max-norm of a vector ‖V ‖∞ re-
turns the maximum absolute value of the elements. The min-
horizon of ψ, denoted h(ψ), is the minimum depth of any
leaf node in Tψ(s0) for any state s0. Given a path p; s we
let �p; s denote the path obtained by removing the leftmost
state-action pair of p; s. We say that ψ is monotonic if the set
of actions returned by ψ for state s when reached via path p
is a subset of the set of actions returned for s when reached
via the path with the leftmost state-action pair of p removed,
i.e., ψ(p; s) ⊆ ψ(�p; s) for all p; s ∈ SP . We can now give
our main result.
Theorem 1. For any MDP, discount factor γ, and policy π,
if ψ is π-consistent and monotonic and ‖u − V π‖∞ ≤ ε,
then for π′ = Πψu ,

V π − V π
′ ≤ 2εγh(ψ)

1− γ
.

This bound implies that in the ideal case when u = V π ,
monotonicity and π-consistency together are sufficient for
safety. It also shows that the impact of inaccuracy in u with
respect to V π decreases exponentially with the min-horizon
due to discounting of future returns.

From the theorem we get an immediate corollary that ap-
plies to the set of all policies ψ is consistent with, denoted
Cψ , where ε(u, π) = ‖u− V π‖∞.
Corollary 1. For any MDP, discount factor γ, leaf evalua-
tion function u, π-consistent and monotonic choice function
ψ, the policy π′ = Πψu satisfies

V π
′ ≥ max

π∈Cψ

[
V π − 2ε(u, π)γh(ψ)

1− γ

]
.

This implies that for a large min-horizon the online policy
is guaranteed to be safe with respect to the best policy that
ψ is consistent with. In general, this shows the performance
trade-off between larger min-horizons (i.e., minimum search
depth) and the closeness of u to a good policy.

5.1 Proof of Theorem 1

All proofs not in the main text are in the supplementary ma-
terial. The high-level idea of our proof is inspired by the
analysis of offline multi-step policy improvement (Bertsekas
and Tsitsiklis 1996). This procedure starts with the value
function V0 = V π and then performs m applications of the
Bellman Backup operator B to get a sequence of value func-
tions Vi = B[Vi−1], where B is defined as follows.

B[V](s) = max
a∈A

R(s, a) + γ
∑

s′∈S
Pss′(a) V (s′)

10181

The greedy policy πm with respect to the final value func-
tion Vm is then returned as the improved policy over π. The
monotonicity ofB can be used to guarantee that V πm ≥ V π .

An OSPI procedure for computing πm(s) is to evalu-
ate a depth m + 1 tree with root s using V π for leaf val-
ues. This computes the greedy action with respect to Vm,
but without synchronously updating all states from the bot-
tom up. Thus, the offline guarantee carries over to OSPI.
OSPI with choice functions can be viewed similarly but with
backups restricted to actions allowed by the choice function.
Our analysis below generalizes these ideas to path-sensitive
choice functions and approximate leaf values.

To prove the main result we start by introducing a number
of lemmas. It will be useful to introduce the policy-restricted
Bellman Backup operator Bπ[V], which restricts backups to
only consider the actions of π.

Bπ[V](s) = R(s, π(s)) + γ
∑

s′∈S
Pss′(π(s)) V (s′).

Lemma 1 gives a lower bound on V π in terms of a value
vector V and how much Bπ decreases the value of V .
Lemma 1. For any policy π and value vector V , if

V −Bπ[V] ≤ δ, then V − V π ≤ δ

1− γ
.

Next, Lemma 2 generalizes the conditions that guarantee
policy improvement in the offline multi-step lookahead pol-
icy improvement procedure to OSPI with choice functions.
Proposition 1 follows from lemma 2.
Lemma 2. If a stationary choice function ψ is π-consistent
and monotonic and u = V π then for any path p; s such that
1 ≤ |p; s| ≤ H(ψ), V ψu (�p; s) ≥ V ψu (p; s).
Proposition 1. If a stationary choice function ψ is π-
consistent and monotonic and u = V π , then V ψu (s) ≥
V π(s).

Lemma 3 below bounds the values of paths of length less
than or equal to h(ψ) for two different leaf evaluation func-
tions u and u′ satisfying ‖u− u′‖∞ ≤ ε. This will be useful
for quantifying the impact of the leaf evaluation function be-
ing an approximation to the base policy value function.
Lemma 3. If ψ is a stationary choice function and ‖u −
u′‖∞ ≤ ε then for any path p; s with |p; s| ≤ h(ψ),∣∣∣V ψu (p; s)− V ψu′ (p; s)

∣∣∣ ≤ εγh(ψ)−|p;s|.

For the following we use the notation V ψu,k to denote the
vector consisting of the elements of V ψu for |p; s| = k. In
particular, V ψu,0 is the vector of the values of all root nodes,
i.e., |p; s| = 0. Lemma 4 and proposition 2 below are key
results that combine to bound the difference between V ψu,0
and the value of Πψu .
Lemma 4. If a stationary choice function ψ is π-consistent
and monotonic and ‖u − V π‖∞ ≤ επ , then for π′ = Πψu ,
V ψu,0 −Bπ′ [V ψu,0] ≤ επγ

h(ψ)(1 + γ).
Proposition 2. If a stationary choice function ψ is π-
consistent and monotonic and ‖u − V π‖∞ ≤ επ , then for

π′ = Πψu , V ψu,0 − V π
′ ≤ επγ

h(ψ)(1 + γ)

1− γ
.

Proof. Directly combine lemmas 4 and 1.

Using the above lemmas we can now prove the main result.
Theorem 1. If a stationary choice function ψ is π-consistent
and monotonic and ‖u− V π‖∞ = επ , then for π′ = Πψu ,

V π − V π
′ ≤ 2επγ

h(ψ)

1− γ
.

Proof. In the proof, V π is denoted as ū to simplify notation.

V π(s)− V π
′
(s) = V π(s)− V ψu,0(s) + V ψu,0(s)− V π

′
(s),

≤ V π(s)− (V ψū,0(s)− επγ
h(ψ)) + V ψu,0(s)− V π

′
(s),

by lemma 3

≤ επγ
h(ψ) + V ψu,0(s)− V π

′
(s), since V ψū,0(s) ≥ V π(s)

by proposition 1

≤ επγ
h(ψ) +

επγ
h(ψ)(1 + γ)

1− γ
, by proposition 2

=
2επγ

h(ψ)

1− γ
.

5.2 Non-Stationary Choice Functions

We have assumed that choice functions are stationary, i.e.,
the same choice function is used across online decision
steps. Some OSPI approaches, however, correspond to a
non-stationary choice function which vary across steps. For
example, some search algorithms use a sub-tree produced at
time step t as a starting point for search at time step t+ 1 or
randomized OSPI approaches are non-stationary due to dif-
ferent random seeds across steps. Here, we extend our anal-
ysis to the non-stationary case.

A non-stationary choice function Ψ = (ψ1, ψ2, ψ3, . . .) is
a sequence of time-step indexed stationary choice functions
ψt. To relate two different stationary choice functions ψ and
ψ′ we say that ψ subsumes ψ′, denoted ψ ⊇ ψ′, if for every
path p; s, ψ(p; s) ⊇ ψ′(p; s). We can extend the bound in
Theorem 1 to a non-stationary choice function Ψ when each
ψt satisfies the conditions of that theorem, each ψt has the
same set of leaf paths, and ψt+1 ⊇ ψt for each time-step t.
Theorem 2. Let Ψ = (ψ1, ψ2, . . .) be a non-stationary
choice function such that each component choice function
ψt is monotonic and π-consistent and ‖u − V π‖∞ = επ . If
all ψt have the same set of leaf paths and for each time-step
t, ψt+1 ⊇ ψt, then for π′ = Πψu and all s ∈ S,

V π(s)− V π
′
(s) ≤ 2επγ

h(ψ1)

1− γ
.

The proof is in the supplementary material. This result
has implications on the design of OSPI procedures that cor-
respond to non-stationary choice functions. For example,
many MCTS-based approaches, such as that used by Alp-
haZero, do not appear to correspond to non-stationary choice
functions that satisfy these conditions. This does not mean
that they will not perform well in a particular application,
but suggests that for some applications they can have funda-
mental issues that degrade the performance of a base policy,

10182

even ignoring inaccuracies due to Monte-Carlo sampling.
One way to adjust some of these and other algorithms to
achieve the subsumption property is to build upon the rele-
vant subtrees constructed at time t at time step t + 1. The
practical impact of such a change is an empirical question
worth investigating.

6 Limited Discrepancy Choice Functions

We do not expect a single type of choice function to per-
form best across all problems. Rather, in practice, the se-
lection of a choice function can be similar to the selection
of other application-dependent hyperparameters. This moti-
vates defining parametric families of choice functions that
span different trade-offs between decision time and qual-
ity. In particular, given an application’s decision-time con-
straints, offline optimization can be used to select a high-
performing choice function that satisfies the constraints.

To support this vision, we introduce the parametric fam-
ily of Limited Discrepancy Choice Functions (LDCFs). We
show that all LDCFs are monotonic and π-consistent for any
π and hence satisfy our safety conditions. We then analyze
how the parameters of the LDCF family relate to the com-
putational complexity of online action selection. Finally we
relate LDCFs to previously introduced examples.

LDCF Definition and Safety. An LDCF ψ defines a
uniform-horizon tree, which limits the discrepancies w.r.t.
a base policy along root-to-leaf paths by their number and
depth. In cases where a base policy only makes occasional
errors the discrepancy limit makes intuitive sense. Indeed,
search can improve the policy by “correcting” the rare errors
along paths by introducing discrepancies. This suggests that
there can be a computational advantage to bounding search
by discrepancies in applications of OSPI to learned policies
that already perform well but can still be improved.

A discrepancy w.r.t. π in path p is a consecutive state-
action pair (s, a) in p such that a �= π(s). LDCFs are pa-
rameterized by the tuple (π,H,K,D,Δ), where π is the
base policy, H is the uniform horizon bound, K ≤ H is a
bound on the number of discrepancies in a path, andD < H
is a bound on the maximum depth that a discrepancy may
appear in a path. Finally, the discrepancy proposal function
Δ : S × {0, . . . , D} → 2A maps pairs of states and depths
to action subsets. Intuitively Δ returns the discrepancies that
can be considered at a state node p; s at depth |p| which has
not yet reached the discrepancy limit imposed by K and D.
We allow Δ to depend on depth, since it is often useful to
allow for more discrepancies at shallower depths. Given pa-
rameters θ = (π,H,K,D,Δ) the corresponding LDCF is
defined as follows.

ψθ(p; s) =

{
Δ(s, |p|) ∪ {π(s)},|p| ≤ D and #[p �= π] < K
π(s), D < |p| < H or #[p �= π] = K
∅, |p| = H

All members of the LDCF family are π-consistent by con-
struction. However, monotonicity of an LDCF requires con-
straining Δ. We say that Δ is depth monotonic if Δ(s, d) ⊇
Δ(s, d+ 1) for all s ∈ S and d.

Theorem 3. For LDCF parameters θ = (π,H,K,D,Δ), if
Δ is depth monotonic, then ψθ is monotonic.

The proof is in the supplementary material. A straightfor-
ward way to obtain a depth monotonic Δ is to use a learned
action-ranking function over states and return the top ranked
actions at a state, where the number of returned actions is
non-increasing with tree depth.

Application to Special Cases. The choice function ψlds
is a restricted LDCF with Δ(s, d) = A, which trivially sat-
isfies our safety conditions. The LDCF space provides more
flexibility on how to better control the introduction of dis-
crepancies compared to traditional LDS.

The policy rollout choice function ψro is a special case of
an LDCF with D = 0 and Δ(s, 0) = A, which allows all
choices at the root and only the base policy’s choices there-
after. Since Δ is trivially depth monotonic, our safety result
applies. This can be generalized to multi-step look-ahead
rollout (Bertsekas and Tsitsiklis 1996), where the top M
levels of the tree are fully expanded followed by restricting
actions to those of the base policy until the horizon. Specif-
ically, D = M and Δ(s, d) = A, which again satisfies our
safety conditions. Note that when D = H − 1 this degener-
ates to value iteration with horizon H .

Finally, the pruned-search choice function ψq,k is an
LDCF with a specific choice of discrepancy function
TOPq,k. Our safety conditions specify sufficient constraints
that the action ranking function q should satisfy. When q
is history independent, TOPq,k is depth monotonic. Other-
wise, if q is history-dependent, e.g. a recurrent neural net-
work, no such guarantee can be made. However, it is rela-
tively straightforward to put a wrapper around such a q to
ensure depth monotonicity.

Computational Complexity. Increasing H , K, and D,
and the size of sets returned by Δ can be expected to im-
prove Πψθu for reasonable u. This comes at the cost of higher
computational complexity typically dominated by the num-
ber of leaves in Tψθ . In addition to the LDCF parameters,
the number of leaf nodes depends on the state branching
factor C, which is the maximum number of state nodes un-
der an action node. When an exact model is used, this is the
maximum number of non-zero probability successor states.
For Monte-Carlo algorithms, this is the number of successor
states sampled for each action node. Given the state branch-
ing factor and an upper bound on the number of actions re-
turned by Δ we get the following bound on tree size.

Proposition 3. Let ψθ be an LDCF with θ =
(π,H,K,D,Δ), such that Δ(s) ≤ W for any s ∈ S. The
number of leaf nodes in Tψθ with state branching factor
C is upper bounded by 2CH for (D + 1)W = 1 and by
((D+1)W)K+1−1

(D+1)W−1 CH = O
(
(DW)KCH

)
for (D + 1)W �=

1.

Ignoring the impact of C, which is controlled by the search
algorithm, the complexity is dominated by K. We also see
that for deterministic domains where C = 1, there is no
exponential dependence on H .

7 Illustrative Empirical Results

Our primary contribution is theoretical, however, here we il-
lustrate the potential practical utility of our framework using

10183

����

����

����

����

����

����

����

����� ��	�� ����� ��	�� ����� ��	��
����
�	�� �����

��
�

���
��

��
��

�
��

��
��

���
��

��
��

�
��

 �
��

��
��

��
��

!

"���������#������ ��#����!

$�����%�&�%����� '��������#(��!

����

����

����

����

����

����

����� ����� ����� ����� ����� ������

��
�

���
��

��
��

�
��

��
��

���
��

��
��

�
��

 �
��

��
��

��
��

!

"���������#������ ��#����!

$�����%�&�%����� '��������#(��!

Figure 2: Performance vs time-per-step for LCDF choice functions applied to linear (left) and non-linear (right) base policies.

the LDCF family. The experiments are intended to illustrate
the viewpoint of a choice function being a hyperparameter
to be tuned offline.

We implemented a variant of Forward Search Sparse
Sampling (FSSS) (Walsh, Goschin, and Littman 2010) for
approximately computing the online policy Πψu for any
LDCF ψ and leaf-evaluation function u using an MDP sim-
ulator. The key parameter, other than the choice-function, is
the sampling widthC, which controls how many state transi-
tions are sampled for each action node. The supplementary
material contains a summary of the algorithm. Our imple-
mentation is generally applicable and will be released upon
publication with information to reproduce our experiments.

Experiments Setup. A full image of our experimental en-
vironment will be available upon publication. We run exper-
iments in the domain Game-of-Life, a benchmark domain
from the International Probabilistic Planning Competition.
This is a grid-based domain with each grid-cell either being
alive with some probability depending on its neighbors. Ac-
tions allow for selecting one cell at each time step (or none)
to set to be alive in the next time step. The reward is based
on the number of alive cells at each step. There are 10 prob-
lems of grid sizes 3× 3, 4× 4, 5× 5 and 10× 3. Problems
have different levels of stochasticity in the dynamics.

We used supervised learning via imitation of a planner to
train two base policies represented as neural networks, using
the same approach as in (Issakkimuthu, Fern, and Tadepalli
2018). Each network outputs a probability distribution over
actions. Policies 1 and 2 are base policies. Policy 1 is a lin-
ear network, while Policy 2 is a non-linear network with 3
hidden layers. For each base policy, we consider four leaf
evaluation functions. The first is the constant zero function.
The remaining three are neural networks with different con-
figurations trained on a dataset of 5000 state-value pairs ob-
tained via Monte-Carlo simulation of each policy. All the
networks have been trained using Tensorflow to minimize
the mean squared error.

We experiment with 11 choice functions in the LDCF
family with parameters H in {3, 4, 5} and (D,K) in
{(0, 1), (1, 1), (1, 2), (2, 1)}. The combination (2, 1) is not
applicable for H = 3. The number of discrepancies consid-
ered at the root node is 9 and other internal nodes is 1. The

LDCF Policy 1 LDCF Policy 2

Prob. # Normalized Decision Normalized Decision
Avg. Reward Time (s) Reward Time (s)

1 2.57 ± 0.07 0.081 1.08 ± 0.04 0.491
2 1.27 ± 0.10 0.345 0.95 ± 0.06 0.631
3 1.11 ± 0.05 0.129 0.92 ± 0.03 0.374
4 1.51 ± 0.03 0.523 1.03 ± 0.02 0.830
5 1.14 ± 0.03 1.084 1.00 ± 0.03 6.298
6 1.05 ± 0.02 1.223 0.96 ± 0.02 9.163
7 1.54 ± 0.02 0.523 1.05 ± 0.01 1.957
8 1.21 ± 0.02 4.488 1.02 ± 0.02 10.463
9 1.13 ± 0.02 3.262 0.96 ± 0.01 3.749
10 2.11 ± 0.04 2.493 1.23 ± 0.02 4.746

Table 1: Game-of-Life - Best Normalized reward.

discrepancies are determined from the action probabilities
given by the base policy. We use C = 3 for FSSS.

Given one of these policies and a problem, we would like
to identify the best combination of LDCF parameters and
leaf evaluation function given a constraint on the time-per-
step. In practice, this could be done in an offline tuning phase
where different configurations are evaluated. Figure 2 shows
a scatter plot of the normalized reward versus time-per-step
for each of the 44 configurations (11 LDCF settings and 4
leaf evaluation functions). The normalized reward is the av-
erage reward per episode divided by the average reward per
episode of the base policy. Values greater than one perform
better than the base policy. For both base policies all LDCF
configurations perform better. There is also a larger improve-
ment for base policy 1, which makes sense due to the fact
that policy 2 is a much higher-quality policy and hence more
difficult to improve over. We also see that the LDCF space
shows considerable coverage of the performance vs. time
space, which shows the utility of offline tuning. There is a
general trend toward better performance for larger times,
but this is not uniformly true. There are complex interac-
tions between the LDCF parameters and a particular prob-
lem, which makes it unlikely that a single feature such as
time-per-decision is always the best indicator.

Table 1 gives results for each of the 10 problems, which
includes the normalized rewards with confidence intervals
for the best performing LDCF configuration for each of the

10184

policies. We see that for the linear policy, the best LDCF
configuration is never significantly worse (lower interval is
greater than 1) and often significantly better. For the second
non-linear policy, we see that for most problems the LDCF
performance is not significantly worse than the policy (con-
fidence interval contains 1) and sometimes significantly bet-
ter. For three problems, the upper confidence bound is less
than one, indicating a significant decrease in performance.
These problems happen to be among the most stochastic
problems in the benchmark set. This suggests that a likely
reason for the decrease in performance is due to the rela-
tively small sampling width used for FSSS (C = 3), which
provides a poor approximation for such problems.

8 Summary

We have introduced a framework for analyzing online search
procedures for policy improvement guarantees. The key idea
is to separate the action specification part of search from the
search process and create an abstract concept called choice
functions. A choice function instance will then be a param-
eter of search. We identify properties of choice functions
to provide sufficient conditions for guaranteed online pol-
icy improvement when the leaf evaluation function is per-
fect. Our main result is a bound on the performance of the
online policy relative to the base policy for any leaf evalua-
tion function. We have also introduced a parameterized class
of choice functions called LDCF. Our next directions are to
explore the practical application of the framework across a
wide range of problems and to integrate notions of state ab-
straction into the framework.

9 Acknowledgements

This work was supported by NSF grants IIS-1619433,
IIS-1724360, and DARPA contract N66001-19-2-4035. We
thank Intel for compute support.

References

Bertsekas, D. P., and Castanon, D. A. 1999. Rollout Al-
gorithms for Stochastic Scheduling Problems. Journal of
Heuristics 5(1):89–108.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Bertsekas, D. P.; Tsitsiklis, J. N.; and Wu, C. 1997. Roll-
out Algorithms for Combinatorial Optimization. Journal of
Heuristics 3(3):245–262.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in games 4(1):1–43.
Cazenave, T. 2009. Nested Monte-Carlo Search. In Twenty-
First IJCAI.
Chang, H. S.; Givan, R.; and Chong, E. K. P. 2004. Par-
allel Rollout for Online Solution of Partially Observable
Markov Decision Processes. Discrete Event Dynamic Sys-
tems 14(3):309–341.

Doppa, J. R.; Fern, A.; and Tadepalli, P. 2014. Structured
Prediction via Output Space Search. JMLR 15(1):1317–
1350.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited Discrep-
ancy Search. In IJCAI (1), 607–615.
Hussein, A.; Gaber, M. M.; Elyan, E.; and Jayne, C. 2017.
Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR) 50(2):21.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
deep reactive policies for probabilistic planning problems.
In Twenty-Eighth ICAPS.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A
Sparse Sampling Algorithm for near-optimal Planning in
Large Markov Decision Processes. Machine Learning 49(2-
3):193–208.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research 32(11):1238–1274.
Larrosa Bondia, F. J.; Rollón Rico, E.; and Dechter, R. 2016.
Limited Discrepancy AND/OR Search and its Application to
Optimization Tasks in Graphical Models. In Proceedings of
the Twenty-Fifth IJCAI, 617–623.
Nguyen, T.-H. D.; Silander, T.; Lee, W.-S.; and Leong, T.-
Y. 2014. Bootstrapping Simulation-based Algorithms with
a Suboptimal Policy. In Twenty-Fourth ICAPS.
Pinto, J., and Fern, A. 2017. Learning Partial Policies to
Speedup MDP Tree Search via Reduction to IID Learning.
JMLR 18(1):2179–2213.
Schatzmann, J.; Weilhammer, K.; Stuttle, M.; and Young, S.
2006. A survey of statistical user simulation techniques for
reinforcement-learning of dialogue management strategies.
The knowledge engineering review 21(2):97–126.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
Nature 529(7587):484.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the Game of Go without Human
Knowledge. Nature 550(7676):354.
Tesauro, G., and Galperin, G. R. 1997. On-line Policy Im-
provement using Monte-Carlo Search. In Advances in Neu-
ral Information Processing Systems.
Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. Integrat-
ing sample-based planning and model-based reinforcement
learning. In AAAI’10, 612–617. AAAI Press.
Yan, X.; Diaconis, P.; Rusmevichientong, P.; and Roy, B. V.
2005. Solitaire: Man versus Machine. In Advances in Neural
Information Processing Systems, 1553–1560.

10185

