
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Error-Correcting and Verifiable Parallel Inference in Graphical Models

Negin Karimi
Department of Computer Science

Aalto University
negin.karimi@aalto.fi

Petteri Kaski
Department of Computer Science

Aalto University
petteri.kaski@aalto.fi

Mikko Koivisto
Department of Computer Science

University of Helsinki
mikko.koivisto@helsinki.fi

Abstract

We present a novel framework for parallel exact inference in
graphical models. Our framework supports error-correction
during inference and enables fast verification that the re-
sult of inference is correct, with probabilistic soundness. The
computational complexity of inference essentially matches
the cost of w-cutset conditioning, a known generalization of
Pearl’s classical loop-cutset conditioning for inference. Ver-
ifying the result for correctness can be done with as little as
essentially the square root of the cost of inference. Our main
technical contribution amounts to designing a low-degree
polynomial extension of the cutset approach, and then reduc-
ing to a univariate polynomial employing techniques recently
developed for noninteractive probabilistic proof systems.

Introduction

Graphical Models and Inference. Probabilistic graphi-
cal models, Bayesian networks in particular (Pearl 1988),
have become the main tool for representation and reasoning
under uncertainty. They provide a compact way to specify
multivariate probability distributions via conditional inde-
pendences, along with relatively efficient means for proba-
bilistic inference, or belief updating; that is, the task of com-
puting the conditional marginal distribution of some query
variables, given a configuration of some other variables.

Inference in graphical models is NP-hard, even if one al-
lows approximations to within a given relative error (Dagum
and Luby 1993). While polynomial-time algorithms are
known for special cases, most notably for models where
the underlying graph has bounded treewidth (Lauritzen and
Spiegelhalter 1988; Zhang and Poole 1994; Dechter 1999),
problem instances of larger treewidth remain a major com-
putational challenge both in theory and in practice.

A Quest for Fast, Robust, and Verifiable Inference. In
this paper, we present a new approach for exact inference in
graphical models, motivated by two trends. First, the result
of inference must admit fast verification so that the com-
putational cost of verification is substantially less than the
cost of inference—in essence, we want a proof that the result

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the inference is correct so that the proof can be verified
with less resources than it takes to execute inference—this
is to enable both safety considerations as well as delega-
tion of the inference task to a counterparty that need not be
trusted. Second, computing architectures and platforms that
enable massively parallel execution, from individual GPUs
to service-providers with vast infrastructure, are becoming
more widely available. This setting calls for inference algo-
rithms that not only support fast verifiability of the result,
but also support massive, efficient parallelization of infer-
ence that is robust against sporadic errors in computations
and communications, which may be rare yet inevitable given
large and increasing numbers of computing units.1

Error-Correcting Probabilistic Proof Systems. To meet
the desiderata of parallelization, robustness, and fast verifi-
ability for probabilistic inference, we adopt the framework
of noninteractive probabilistic proof systems (Williams
2016). Specifically, we instantiate the “Camelot template”
(Björklund and Kaski 2016), which has been applied to other
fundamental graph problems such as graph coloring and
counting small subgraphs (Kaski 2018). The key idea is to
reduce the problem at hand to the task of computing values
of a univariate polynomial

ĥ(Z) = λ0 + λ1Z + λ2Z
2 + . . .+ λdZ

d (1)

at distinct points, so that the solution of the original problem
(in our case, the result of inference) is immediate once this
polynomial (“the proof”) is available.

Accordingly, the process of preparing the proof is intrin-
sically parallelizable and amounts to computing sufficiently
many point evaluations

(ζ1, ĥ(ζ1)) , (ζ2, ĥ(ζ2)) , . . . , (ζe, ĥ(ζe)) (2)

at distinct values ζ1, ζ2, . . . , ζe so that the polynomial ĥ be-
comes uniquely determined, a task that also admits natu-
ral error-correction by over-provisioning the evaluations.2
Once a polynomial is available—for example, when it is

1For a study of hardware reliability and errors in a leadership
supercomputing context, cf. Tiwari et al. (2015).

2Indeed, we recall from elementary algebra that a polynomial of
degree at most d is uniquely determined from evaluations at any e

10194



supplied to us by a counterparty to whom the task of preprar-
ing the proof was delegated—it can be verified probabilisti-
cally by point evaluations at one or more randomly drawn
points, which will always accept the correct polynomial
and detect an incorrect polynomial with high probability. In
essence, verification can be performed with one evaluation,
whereas preparation takes at least d+1 evaluations, making
proof verification substantially faster than proof preparation.

Our Contribution: A Proof System for Inference. When
designing such a proof system for inference on graphical
models, we need to solve a number of technical issues spe-
cific to the inference problem. While we defer a detailed
technical development to later sections, an overview is ap-
propriate here. Throughout the paper we work with the
factor graph representation of probabilistic graphical mod-
els (Kschischang, Frey, and Loeliger 2001). Given a factor
graph G as input, the inference problem asks us to marginal-
ize over all but the designated query variables Xi, with
i ∈ B ⊆ {1, 2, . . . , n}, to obtain the joint distribution g.

Our technical contribution amounts to designing

1. a proof polynomial ĥ that extends g so that each point
probability g(Xi = vi : i ∈ B) in g is available as a
point evaluation ĥ(ζ) of ĥ at a specific point ζ, and

2. an evaluation algorithm that, given the factor graph G and
a point ζ as input, computes the value ĥ(ζ).

The key idea underlying the evaluation algorithm is to trans-
form G for a given ζ by means of fast local transforma-
tions to a factor graph GZ=ζ that marginalizes to the single
value ĥ(ζ). This structure in the evaluation algorithm en-
ables us to relate the total resources invested in proof prepa-
ration to resources used by fundamental techniques for exact
inference on G, namely Pearl’s (1986) cutset conditioning
and its generalization to w-cutsets (Shachter, Andersen, and
Szolovits 1994; Rish and Dechter 2000; Bidyuk and Dechter
2007); a w-cutset is a set of variables which, when removed
from G leave a graph of treewidth w.3

For a concise statement of our main result, denote by m
the number of factors, by D the largest number of states per
variable, and by ‖G‖ the total size of the factor graph. Re-
call that a treewidth-w graph admits an elimination ordering
of its vertices that enables solving the inference problem in
O(Dw+1m) arithmetic operations. Also, let us write Õ(t) to
hide factors polylogarithmic in t.

Theorem 1 Given a factor graph G, a w-cutset of size k,
and a corresponding elimination ordering, the inference
problem can be solved with Õ(Dk+1m) evaluations of a
proof polynomial, each requiring Õ(Dw+1m+Dk+‖G‖k)
arithmetic operations, and one interpolation that requires
Õ(Dk+1m) arithmetic operations.

distinct points when e ≥ d+1; furthermore, any up to (e−d−1)/2
of these e evaluations may be in error and the polynomial is still
uniquely determined.

3The treewidth of a factor graph is the treewidth of the graph
whose vertices are the variables and two variables are adjacent if
and only if they have a factor in common.

The total complexity in Theorem 1 is similar to the com-
plexity of w-cutset conditioning, O(DkDw+1m). Indeed,
supposing the first term in the evaluation complexity domi-
nates the other two—an assumption we will discuss soon—
the total time complexity is about Dm times the complexity
of w-cutset conditioning. Furthermore, like w-cutset condi-
tioning, our algorithm can be parallelized to about Dk pro-
cessors (fewer if not every variable in the cutset takes ex-
actly D states), each doing Õ(Dw+1m + Dk + ‖G‖k) in-
dependent operations without communicating with the other
processors.

Unlike w-cutset conditioning, Theorem 1 enables fast ver-
ification of the result. Indeed, once the result is ready, it can
be verified with Õ(Dw+1m + Dk + ‖G‖k) operations us-
ing one processor—essentially, the larger the parameter Dk,
the easier it is to verify the result compared with the cost of
preparing the result. In essence, the result is a roughly factor-
Dk-compressed algebraic digest (the proof polynomial) of
the inference process, which enables the detection of an in-
correct result with high probability.

The total complexity of the present framework compared
with that of cutset conditioning depends on the choice of the
cutset. From the previous bounds it follows that our frame-
work is comparable to cutset conditioning essentially when
Dw+1m ≥ Dk. This is the case precisely in an applica-
tion scenario of hard inference, where the factor graph does
not have a near-tree-like topology that would enable a small
cutset (a small value of k) to yield a near-tree-like residual
(a small value of w) after its removal. Rather, our present
framework targets the hard inference cases when no choice
of a small cutset reduces w considerably below k. In the ex-
treme, this is the case, for example, when the original factor
graph has the maximum treewidth n− 1. In this case the to-
tal complexity is O(Dnm) and, by taking k = w = �n/2�,
we obtain cost Õ(D�n/2�+1m+ ‖G‖n) to verify the proof,
which is essentially the square root of the total complexity.
As such, our present contribution can be seen as an exten-
sion of Williams’s (2016) celebrated noninteractive Merlin–
Arthur proof system for #CNFSAT—the task of counting the
number of satisfying assignments to a propositional formula
in conjunctive normal form—to the setting of factor graphs
and inference by contraction.

Finding a minimum-size w-cutset is an NP-hard problem
(Bidyuk and Dechter 2004). Several heuristic algorithms
have been proposed for the problem and its weighted variant
that takes the exact domain sizes of the cutset variables into
account (Larrosa and Dechter 2003; Fishelson and Geiger
2004; Bidyuk and Dechter 2003; 2004; 2007). One can em-
ploy any of these algorithms to select an appropriate cutset
for the present algorithm (cf. Theorem 1).

To summarize, our contribution is a novel framework for
exact inference in graphical models that is highly paralleliz-
able, can withstand silent errors in underlying hardware dur-
ing proof preparation, and enables safety and delegatabil-
ity through fast verifiability with probabilistic soundness.
Furthermore, the resource overhead for proof preparation is
small compared with existing techniques that only perform
inference with neither verifiability nor tolerance for errors.

10195



Related Work. Darwiche (2003) proposed a direct repre-
sentation of the probability distribution of a Bayesian net-
work as a multivariate polynomial where each monomial
corresponds to a distinct value assignment to the variables.
The representation enables answering inference queries in
the “treewidth time” by evaluating and differentiating the
polynomial. The work extends previous algorithms of sim-
ilar complexity characteristics (Bertelè and Brioschi 1972;
Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990;
Zhang and Poole 1994; Dechter 1999). Unlike the polyno-
mial we introduce in the present work, Darwiche’s repre-
sentation supports neither (embarrassingly) parallel compu-
tations, error-correction, nor verification.

From the perspective of modern proof systems, the
“Camelot template” (Björklund and Kaski 2016) in the
present work can be traced back to earlier work on interac-
tive proof systems (e.g., Shamir 1992; Goldwasser, Kalai,
and Rothblum 2015; Goldreich 2018) as well as recent
work on noninteractive proof systems in fine-grained com-
plexity theory (e.g., Carmosino et al. 2016; Nederlof 2017;
Williams 2016). For pointers on recent work in delegat-
ing general computation, we refer to Holmgren and Roth-
blum (2018) and Walfish and Blumberg (2015).

The key algorithmic enabler of the present framework
is the fast algorithmic toolbox for computing with univari-
ate polynomials (e.g., von zur Gathen and Gerhard 2013),
as well as the possibility to interpolate a low-degree poly-
nomial from partially erroneous evaluations in near-linear
time in the size of the input (Gao 2003). The fundamen-
tal algorithmic building block in each case is the opera-
tion of fast polynomial multiplication, a task which in it-
self is easily parallelizable both in distributed-memory and
shared-memory settings due to the FFT-like structure of
the algorithms (Schönhage and Strassen 1971; Fürer 2009;
Harvey and van der Hoeven 2019).

Factor Graphs and Inference
This section gives a concise development of the formalism
of factor graphs and inference on factor graphs based on the
operation of contracting factors.

Mathematical Preliminaries. In what follows we will
assume some standard terminology in algebra (e.g.,
Lang 2002), and will work with the standard fast algorithmic
toolbox for computing with univariate polynomials (e.g.,
von zur Gathen and Gerhard 2013).

Factor Graphs. Let X1, X2, . . . , Xn be variables and let
f1, f2, . . . , fm be factors. Associated with each variable Xi

there is a finite nonempty set Di, the domain of Xi. Each
factor fk is incident to a subset Sk ⊆ U = {1, 2, . . . , n}
of the variables. For a set S ⊆ U , let us write

∏
i∈S Di,

or simply DS , for the Cartesian product of the sets Di with
i ranging over S in the natural order of U . The Cartesian
product over the empty set is assumed to be the set consist-
ing of the empty set. Let B ⊆ U be a set that indicates the
boundary or query variables.

To avoid degenerate cases, we assume each variable is in-
cident to at least one factor, each variable not in the boundary
is incident to at least two factors, and |Di| ≥ 2 for all i ∈ U .

Let F be a field, such as the field of rational numbers.
Associate with each factor fk a map DSk

→ F. For a point
v ∈ DSk

, we write fk(Xi = vi : i ∈ Sk), or simply fk(v),
for the value of the map at v.

The variables and their domains, the boundary, and the
factors and their associated maps together constitute a factor
graph G. Let us write ‖G‖ for the total size of G, given by∑m

k=1 |DSk
|.

Example. Below we illustrate a small factor graph;
the variables are drawn as circles and the fac-
tors as boxes, with edges indicating the inci-
dence relation between variables and factors.

f1 X2 = c X2 = d

X1 = a 0.90 0.10
X1 = b 0.40 0.60

X3X1 X2

f2 X3 = e X3 = f

X2 = c 0.30 0.70
X2 = d 0.80 0.20

Assuming the boundary B = {1, 3} above, the factor graph
represents the product of the 2 × 2 matrices given in the
factors f1 and f2; let us next define this precisely.

The Inference Problem for Factor Graphs. Here and in
what follows all arithmetic will take place in the field F.
Associated with a factor graph G is a map g : DB → F,
the map represented by G, defined for all v ∈ DB by

g(v) =
∑

w∈DU\B

m∏
k=1

fk(v, w) , (3)

where for conciseness we have abbreviated

g(v) = g
(
Xi = vi : i ∈ B

)
and

fk(v, w) = fk
(
Xi = vi, Xj = wj : i ∈ Sk∩B, j ∈ Sk\B

)
.

In what follows we will tacitly use such abbreviations.
Example. Below we illustrate the product matrix g = f12
represented by the factor graph in our example above. The
factor graph below also serves to illustrate the contraction
of f1 and f2 to obtain f12, discussed in the next section.

f12 X3 = e X3 = f

X1 = a 0.35 0.65
X1 = b 0.60 0.40

X3X1

For a factor graph G given as input, the inference problem
is to compute a complete table of values for the map g. We
observe that the map g evaluates to a single scalar value if
the boundary B is empty.

Contraction for Inference. Let G be a factor graph and
let 1 ≤ a �= b ≤ m. The operation of contracting the factors
fa and fb in G is as follows. For each i ∈ U , let Ti = {1 ≤
k ≤ m : i ∈ Sk}. We say that i is internal to the contraction
if i /∈ B and Ti ⊆ {a, b}. Let the set Iab ⊆ U consist
of all i that are internal to the contraction and observe that
Iab ⊆ Sa ∪ Sb by our assumption on nondegeneracy. Delete
fa and fb from G and introduce the factor fab that is incident
to (Sa ∪ Sb) \ Iab and defined for all v ∈ D(Sa∪Sb)\Iab

by

fab(v) =

{∑
w∈DIab

fa(v, w)fb(v, w) if Iab �= ∅;
fa(v)fb(v) if Iab = ∅.

(4)

10196



Finally, delete the variables Xi with i ∈ Iab from the fac-
tor graph to obtain Gab, the factor graph obtained from the
factor graph G by contracting fa and fb.

The cost of the contraction is |DSa∪Sb
|. The cost of a se-

quence of contractions on a factor graph is the sum of the
costs of the contractions in the sequence. The cost of G is
the minimum cost of a sequence of contractions that starts
from G and results in a factor graph with a single factor.
This single factor is associated with the map g in (3) in-
dependently of the sequence of contractions performed. In-
deed, this property is an immediate consequence of (3), (4),
and our assumption on nondegeneracy.
Remark. The contraction operation captures the key step
of essentially all standard approaches to exact inference.
In variable elimination (Bertelè and Brioschi 1972; Zhang
and Poole 1994), for instance, eliminating a variable Xi

by summing over its values corresponds to contracting, in
a sequential manner, all factors fk that include the vari-
able in their arguments, i.e., i ∈ Sk; in bucket elimina-
tion (Dechter 1999), the set {fk : i ∈ Sk} is called a
bucket. Message-passing algorithms (Lauritzen and Spiegel-
halter 1988; Shafer and Shenoy 1990) also perform elimina-
tion operations, just twice as many: while the basic elimina-
tion algorithm induces a clique tree, in which it eliminates
variables from leaf nodes towards a fixed root node, message
passing algorithms do the computations in both directions
for each edge of the tree; this allows answering multiple in-
ference queries without repeating computations.

A Proof System with Error Correction

This section starts the development of our novel probabilis-
tic proof system for inference on factor graphs that can cor-
rect errors in proof preparation. This section defines the
proof polynomial and develops its key properties, with the
algorithms for preparation and verification of the proof post-
poned to subsequent sections.

We begin with a first reduction that enables us to subse-
quently work over finite fields, in particular with modular
arithmetic modulo word-bit-length prime moduli.

First Reduction: Chinese Remaindering. Let us first re-
call a standard reduction via the Chinese Remainder Theo-
rem from inference on rational-valued factor graphs to infer-
ence on multiple factor graphs over prime fields; that is, fac-
tor graphs where the arithmetic is over the integers modulo
a prime. Here we assume that the rational numbers are rep-
resented in a radix-point number system with radix R for an
integer R ≥ 2. This is the case, for example, when the fac-
tors are represented with standard floating-point numbers.

More precisely, we say that a rational number ρ ad-
mits representation using d digits in radix R if there ex-
ists an integer e, a sign σ ∈ {−1, 1}, and s1, s2, . . . , sd ∈
{0, 1, . . . , R− 1} such that

ρ = σRe
(
s1R

−1 + s2R
−2 + . . .+ sdR

−d
)
.

Let G be a factor graph over the rational numbers such
that every value ρ in every factor admits representation using
d digits in radix R. Suppose furthermore that the exponent e
of every value is in the range � ≤ e ≤ u. (For example, when

the values of the factors are probabilities, we have 0 ≤ e ≤
1.) Since 0 ≤ ∑d

j=1 sjR
−j ≤ 1−R−d, we have that Rd−�ρ

is an integer with |Rd−�ρ| ≤ Rd+u−�. Accordingly, let us
transform G into a new factor graph GZ by multiplying ev-
ery value of every factor of G by Rd−�. Then, every factor of
GZ is integer-valued and by (3) we have that GZ represents
the map gZ with gZ = R(d−�)mg. Furthermore, from (3) we
have that every value of gZ is an integer with absolute value
at most M = R(d+u−�)m

∏
j∈U |Dj |. Let p1, p2, . . . , pk be

distinct prime numbers with p1p2 · · · pk ≥ 2M + 1, and
let us write GZpj

for the factor graph obtained from GZ by
working modulo pj in the arithmetic. By the Chinese Re-
mainder Theorem, we can reconstruct gZ and hence g if we
have solved GZpj

to obtain gZpj
for each j = 1, 2, . . . , k.

In what follows we can thus without loss of generality as-
sume that F is a finite field, implemented in practice with
word-bit-length primes and modular arithmetic using, for
example, Montgomery multiplication (Montgomery 1985).

The Proof Polynomial. We now proceed with the detailed
technical definition of the proof polynomial ĥ, and then de-
velop its key properties. Let G be a factor graph and let C
be a set with B ⊆ C ⊆ U . Intuitively, C indicates the cut-
set of variables in G that will be Vandermonde-conditioned
for polynomial extension and removed from the factor graph
when later evaluating the proof polynomial; we postpone
a technical discussion of the precise relationship to the w-
cutset conditioning algorithm until later sections.

Next, introduce a new polynomial indeterminate Yi for
each i ∈ C. For each i ∈ C, select an arbitrary injective
map ηi : Di → F. Associate with each factor fk and each
w ∈ DSk\C the multivariate polynomial

f̂k
(
Yi, Xj = wj : i ∈ Sk ∩C, j ∈ Sk \C

) ∈ F
[
Yi : i ∈ C

]
that (i) satisfies for each v ∈ DSk∩C the evaluation identity

f̂k
(
Yi = ηi(vi), Xj = wj : i ∈ Sk ∩ C, j ∈ Sk\C

)
= fk

(
Xi = vi, Xj = wj : i ∈ Sk ∩ C, j ∈ Sk\C

) (5)

and (ii) for all i ∈ C we have

degYi
f̂k ≤

{|Di| − 1 if i ∈ Sk ∩ C;

0 if i ∈ C \ Sk .
(6)

The polynomials f̂k are unique and can be constructed, for
example, by Lagrange interpolation from (5).

Let us extend (3) into a polynomial ĝ ∈ F
[
Yi : i ∈ C

]
by

defining

ĝ(Yi : i ∈ C) =
∑

w∈DU\C

m∏
k=1

f̂k(Y,w) . (7)

Select an arbitrary injective map τ : DC → F and let Z be
a polynomial indeterminate. For each i ∈ C, let �̂i ∈ F[Z]
be the unique polynomial that satisfies (i) for all v ∈ DC the
evaluation identity

�̂i
(
Z = τ(v)

)
= ηi(vi) (8)

10197



and (ii) degZ �̂i ≤ |DC | − 1. This polynomial can be found,
for example, by applying Lagrange interpolation to (8).

Finally, let ĥ ∈ F[Z] be the polynomial defined by the
substitution

ĥ(Z) = ĝ
(
Yi = �̂i(Z) : i ∈ C

)
. (9)

We say that ĥ is the proof polynomial associated with G and
our choices for C, τ , and ηi for i ∈ C.

Properties of the Proof Polynomial. Let us now establish
that the proof polynomial ĥ enables us to access g, the map
represented by G, through point evaluations. From (9), (8),
(7), (6), and (5), we immediately conclude that for all v ∈
DC we have

ĥ
(
Z = τ(v)

)
=

∑
w∈DU\C

m∏
k=1

fk(v, w) . (10)

Accordingly, if we split v ∈ DC into v = (s, t) with s ∈ DB

and t ∈ DC\B , we have for each s ∈ DB the evaluation
identity

g(s) =
∑

t∈DC\B

ĥ
(
Z = τ(s, t)

)
. (11)

That is, access to ĥ in (9) enables us to access the map g thus
solve the inference problem on G.

Let us conclude this section by deriving an upper bound
for the degree of ĥ. From (9), (8), and (6), we observe that

degZ ĥ ≤ (|DC | − 1
) m∑
k=1

∑
j∈Sk∩C

(|Dj | − 1
)
. (12)

Evaluating the Proof Polynomial

Next we proceed to develop a fast evaluation algorithm for
computing values of ĥ. The following two subsections de-
velop technical preliminaries towards this end, after which
we proceed with the development of the algorithm.

Fast Algorithms for Univariate Polynomials. Let us re-
call the basic toolkit for computing with univariate poly-
nomials (von zur Gathen and Gerhard 2013). Two uni-
variate polynomials of degree at most d with coefficients
over F can be multiplied in O

(
M(d)

)
arithmetic operations

in F, with M(d) = d log d log log d. A similar arithmetic
bound holds for polynomial quotient and remainder. Inter-
polation from d given points and evaluation of a given de-
gree d polynomial at e given points run in O

(
M(d) log d

)
and O

(
M(d) + M(e) log e

)
operations in F, respectively.

Accordingly, decoding a Reed–Solomon code of degree d
from e given evaluations (with at most (e − d − 1)/2 er-
roneous evaluations for correct decoding) can be done in
O
(
M(e) log e

)
operations (Gao 2003).

Evaluation and Interpolation of Polynomials. We will
need the following basic facts about evaluation and interpo-
lation of polynomials. Recall that the Vandermonde matrix

for points ξ0, ξ1, . . . , ξd ∈ F is the (d+ 1)× (d+ 1) matrix

Vξ = Vξ0,ξ1,...,ξd =

⎡
⎢⎢⎢⎣

1 ξ0 · · · ξd0
1 ξ1 · · · ξd1
...

...
...

1 ξd · · · ξdd

⎤
⎥⎥⎥⎦ , (13)

which is invertible if and only if ξ0, ξ1, . . . , ξd are distinct.
Let π = [π0 π1 · · · πd]

� ∈ F
(d+1)×1 be the vector of

coefficients for a polynomial p(X) =
∑d

j=0 πjX
j ∈ F[X],

and let p(ξ) = [p(ξ0) p(ξ1) · · · p(ξd)]
� ∈ F

(d+1)×1 be
the corresponding vector of evaluations of p. Then we have
the evaluation–interpolation identities

p(ξ) = Vξπ and π = V −1
ξ p(ξ) . (14)

These identities extend to multivariate polynomials (evalu-
ated/interpolated on a set of points with the structure of a
Cartesian product) by taking a Kronecker product of Van-
dermonde matrices, with one matrix for each polynomial in-
determinate. This fundamental fact admits a crisp represen-
tation in the language of factor graphs, which will form the
crux of our evaluation algorithm, described next.

The Evaluation Algorithm. This section develops a fast
algorithm for the following problem. Suppose we are given
as input a factor graph G, a set C with B ⊆ C ⊆ U , the
injective maps ηi : Di → F for i ∈ C, the injective map
τ : DC → F, and a point ζ ∈ F. Our task is to compute the
value of the proof polynomial ĥ in (9) at Z = ζ.

Our algorithm for computing ĥ(Z = ζ) is as follows.
First, for each i ∈ C, we compute the value �̂i(ζ) = �̂i(Z =
ζ) ∈ F by applying a fast univariate polynomial interpola-
tion algorithm to the desired evaluations given by (8) to re-
cover �̂i(Z) in coefficient form, and the using Horner’s rule
to obtain the evaluation at Z = ζ. Since each �̂i(Z) has de-
gree at most |DC |, the total number of arithmetic operations
in F executed in this step is

O
(|C|M(|DC |) log |DC |

)
. (15)

Next, we transform the factor graph G into a factor graph
G′

Z=ζ whose corresponding map has value ĥ(Z = ζ). The
key idea is to implement the interpolation from fk to f̂k in
(5) by inserting (inverses of) Vandermonde matrices (13)
with points ηi(Di) as factors into the factor graph, and
then joining each such factor with a factor that represents
a Veronese vector

[
1 �̂i(ζ) · · · �̂i(ζ)

|Di|−1
]�

so that the
resulting factor graph represents evaluation of ĥ at Z = ζ.

The precise transformation starting from G will perform a
local modification on the factor neighborhood of each vari-
able Xi with i ∈ C in turn; for convenience we first illustrate
what happens in the neighborhood of Xi:

10198



ei,k Pi,k ui,k Qi,k fk

...

G′
Z=ζ

Xi

fk

...

G

Observe in particular that Xi itself gets removed from the
factor graph as a result of the transformation.

Now let us proceed with the detailed description of the
transformation. For each variable Xi with i ∈ C, we mod-
ify the factor graph as follows. For each factor fk with inci-
dence i ∈ Sk, introduce two new variables, Pi,k and Qi,k, as
well as two new factors, ei,k and ui,k, into the factor graph.
Let the variable Pi,k have domain {0, 1, . . . , |Di| − 1} and
the variable Qi,k have domain Di. Remove the incidence of
Xi with fk and replace it with the incidence of Qi,k with fk,
noting that this is a well-defined operation since both Xi and
Qi,k have domain Di. Let Qi,k be incident also to ui,k. Let
Pi,k be incident with ei,k and ui,k. Define the maps associ-
ated with ei,k and ui,k for all c ∈ {0, 1, . . . , |Di| − 1} and
vi ∈ Di by

ei,k(c) = �̂i(ζ)
c and ui,k(c, vi) =

[
V −1
ηi(Di)

]
vi,c

, (16)

where
[
V −1
ηi(Di)

]
vi,c

refers to the entry at row vi, column c of
the inverse of the Vandermonde matrix Vηi(Di) developed
over the points ηi(vi) ∈ F with vi ranging over Di. We
observe that the inverse of Vηi(Di) exists because ηi is in-
jective. Once all the incidences of Xi with a factor fk are
transformed in this way, we remove the variable Xi from
the factor graph. Indeed, at this point Xi is incident to no
factor, so we can safely remove Xi and proceed to consider
the next i, if any. When all i have been considered, set the
boundary B to the empty set. The resulting factor graph is
G′

Z=ζ and its associated map has the value ĥ(Z = ζ), which
follows by (16), (14), (9), (7), and (5).

Let us next preprocess the factor graph G′
Z=ζ by contrac-

tions to obtain the factor graph GZ=ζ . Again a local illustra-
tion of the preprocessing transformation is convenient:

ei,k Pi,k ui,k Qi,k fk

G′
Z=ζ

f̄k

...
...

GZ=ζ

In precise terms, starting with the factor graph G′
Z=ζ , for

each i ∈ C and each 1 ≤ k ≤ m with i ∈ Sk, first contract
the factors ei,k and ui,k, then contract the result of the first
contraction with the factor fk to obtain the factor f̄k. The
cost of the first contraction is |Di|2 and the cost of the second
contraction is at most |DSk

|. Thus, the entire preprocessing
sequence of contractions has cost at most∑

i∈C

∑
1≤k≤m:i∈Sk

(|Di|2 + |DSk
|) , (17)

which can be further lowered to Õ
(|C| · ‖G‖) arithmetic

operations by using repeatedly fast univariate polynomial in-
terpolation in place of explicitly constructing the factors ui,k

and contracting them; in what follows, we will assume that
this faster design is used.

Once the preprocessing is complete, each factor f̄k has
domain DSk\C . Let us write GZ=ζ for the factor graph re-
sulting from these contractions.

Finally, the evaluation algorithm proceeds to contract fac-
tors in GZ=ζ so that only a single factor with value ĥ(Z =
ζ) remains. This concludes our description of the algorithm.

We observe that the computational cost of the evaluation
algorithm is governed by the cost of its three parts: (i) the
cost of preparing the new factors in G′

Z=ζ , bounded by (15);
(ii) the cost preprocessing G′

Z=ζ to GZ=ζ , bounded by (17);
and (iii) the cost of contracting GZ=ζ . Our goal next is to
control the cost (iii) in terms of the cost of the w-cutset con-
ditioning algorithm.

The Cutset Conditioning Algorithm Recalled. At this
point it will be convenient to briefly review the operation
of the cutset conditioning algorithm. Let G be a factor graph
and let C indicate the cutset of variables with B ⊆ C ⊆ U .
For each r = rC ∈ DC in turn, start with the factor graph G,
and execute the following local transformation. For each fac-
tor fk in G such that Sk ∩C is nonempty, replace the factor
fk with the factor

¯
fk incident to Sk \ C and defined for all

v ∈ DSk\C by the rule

¯
fk(v) = fk(v, r) . (18)

Finally, delete the variable Xi for each i ∈ C from the fac-
tor graph and set the boundary to the empty set. Let us write
GXC=rC for the resulting factor graph. Writing g for the
map represented by G, from (3) and (18) we observe that
GXC=rC contracts to the value g(rC). That is, by iterating
over all the possible choices of rC ∈ DC , a task which can
be executed in parallel on multiple processors, and contract-
ing each GXC=rC to a single factor, we recover g.

We observe that the total cost of the cutset conditioning
algorithm is essentially |DC | times the cost of contracting
the factor graph GXC=rC , where this contraction cost is in-
dependent of the choice of rC .

The Cost of the Evaluation Algorithm. An immediate
but significant observation is now that, for an identical
choice of the cutset C in the evaluation algorithm and in the
cutset conditioning algorithm, respectively, the factor graphs
GZ=ζ and GXC=rC have identical contraction cost. Indeed,

10199



the two factor graphs are otherwise identical expect in terms
of the values of the maps associated with the factors.

It follows that an analysis of the cost (iii) in the evaluation
algorithm reduces to an analysis of the cost of the cutset
conditioning algorithm.

We can now establish the coarse-grained upper bound
for the cost of the evaluation algorithm in Theorem 1. Let
D = maxi∈U |Di| and k = |C|. We observe that (15), which
controls the cost of part (i) of the algorithm, is bounded
by Õ(Dk). The cost of part (ii) is controlled by (17) and
bounded by Õ

(|C|·‖G‖). Finally, the cost of part (iii) agrees
with the cost of contraction in the w-cutset conditioning al-
gorithm, which is bounded by Õ(Dw+1m). This establishes
the bound Õ

(
Dw+1m+Dk + |C| · ‖G‖) in Theorem 1.

Proof Preparation and Verification

Now that we have developed the evaluation algorithm for
computing values of the proof polynomial, let us analyse
proof preparation and proof verification in more detail, in-
cluding completing the proof of Theorem 1.

Preparing and Error-Correcting the Proof. From (12)
and (2) we have that independent parallel runs of the evalu-
ation algorithm at e distinct points with e ≥ d+ 1 for

d =
(|DC | − 1

) m∑
k=1

∑
j∈Sk∩C

(|Dj | − 1
)

(19)

suffice to uniquely determine the proof polynomial ĥ, even
in the presence of at most (e − d − 1)/2 erroneous evalu-
ations. Furthermore, from such evaluations we can recover
the coefficient form (1) of the polynomial as well as iden-
tify the erroneous evaluations in O

(
M(e) log e

)
operations

in F (Gao 2003).
From (19) we have the more coarse-grained upper bound

d ≤ |DC | ·m|C|max
j∈C

|Dj | ,

whose right-hand-side can in turn can be bounded by
Õ(D|C|+1m) with D = maxi∈U |Di|. In particular, we have
that Õ(D|C|+1m) evaluations of the proof polynomial suf-
fice to reconstruct the coefficient form (1). This establishes
the claim on the number of evaluations in Theorem 1. The
proof of Theorem 1 is now almost complete; what remains is
to develop the procedure for verifying the proof polynomial.

Verifying the Proof. Let us now review how the proof can
be verified with probabilistic soundness using randomized
polynomial identity testing, which is a well-known tech-
nique and presented here for completeness of exposition
only. Suppose that we are given as input a factor graph G, a
cutset C with B ⊆ C ⊆ U , the injective maps ηi : Di → F

for i ∈ C, the injective map τ : DC → F, and a polynomial
ĥ′ ∈ F[Z] of degree at most d in coefficient form

ĥ′(Z) = λ′
0 + λ′

1Z + λ′
2Z

2 + . . .+ λ′
dZ

d . (20)

We seek to verify whether ĥ′ equals ĥ, where ĥ is the proof
polynomial (9) associated with G,C, ηi, τ .

First, without loss of generality we can assume that the
degree of both ĥ′ and ĥ is bounded by d with (19). Indeed,
if this is not the case, we must have ĥ′ �= ĥ and thus we can
immediately reject the given ĥ′ as a bad proof.

Next, let us perform the following randomized test on ĥ′.
Draw a uniform random element ζ ∈ F. Use Horner’s rule
on the coefficient reprensentation (20) to recover the value
ĥ′(ζ) ∈ F in O(d) arithmetic operations in F. Next, use
the evaluation algorithm on G,C, ηi, τ, ζ to obtain the value
ĥ(ζ) ∈ F of the true proof polynomial ĥ at ζ. Finally, test
whether ĥ′(ζ) = ĥ(ζ) and either accept or reject ĥ′ as the
correct proof polynomial ĥ accordingly.

Let us now analyze the test. It is immediate that ĥ′(ζ) =
ĥ(ζ) holds always when ĥ′ = ĥ. That is, the correct proof
always passes the test. When ĥ′ �= ĥ, we observe that the
difference polynomial ĥ′ − ĥ is a not-identically-zero poly-
nomial of degree at most d, and thus has at most d roots
by the Fundamental Theorem of Algebra. Furthermore, in
this case we have ĥ′(ζ) = ĥ(ζ) if and only if ζ is a root
of the difference polynomial ĥ′ �= ĥ, and this happens with
probability at most d/|F| over the uniform random choice of
ζ ∈ F. Assuming that d ≪ |F|, a single test will thus result
with high probability in the outcome ĥ′(ζ) �= ĥ(ζ) and thus
the detection of the bad proof.4 Furthermore, r independent
repetitions of the test can be used to amplify the probabil-
ity of detecting a bad proof to at least 1 − (d/|F|)r. This
completes the proof of Theorem 1.

Let us stress that while preparing the proof takes d + 1
evaluations with d given in (19), verifying the proof takes
one evaluation (or r evaluations when amplified) and so is
considerably more efficient than proof preparation.

Accessing the Result of Inference. Once the proof poly-
nomial ĥ is available in coefficient form (1) and has been
verified, the map g : DB → F represented by G can
be recovered using fast polynomial batch evaluation on the
points τ(DC) ⊆ F to recover the values ĥ(τ(s, t)) for
all (s, t) ∈ DB × DC\B . In particular, by (11) we can
then recover g(s) =

∑
t∈DC\B

ĥ(τ(s, t)) for all s ∈ DB .
This process is dominated by the cost of batch-evaluating
the degree-at-most d polynomial ĥ, and takes O

(
M(d) +

M
(|DC |

)
log |DC |

)
operations in F. A slightly more coarse-

grained bound is Õ(D|C|+1m) operations.

Acknowledgments

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement 338077 “Theory and Practice of
Advanced Search and Enumeration” as well as from the
Academy of Finland, Grant 316771.

4Here it should be perhaps stressed that a bad proof will be
detected with high probability even when the bad proof has been
adversarially prepared by an all-powerful adversary.

10200



References

Bertelè, U., and Brioschi, F. 1972. Nonserial Dynamic Pro-
gramming. Academic Press.
Bidyuk, B., and Dechter, R. 2003. An empirical study of
w-cutset sampling for Bayesian networks. In Meek, C., and
Kjærulff, U., eds., UAI ’03, Proc. 19th Conference in Uncer-
tainty in Artificial Intelligence, 37–46. Morgan Kaufmann.
Bidyuk, B., and Dechter, R. 2004. On finding minimal w-
cutset. In Chickering, D. M., and Halpern, J. Y., eds., UAI
’04, Proc. 20th Conference in Uncertainty in Artificial Intel-
ligence, 43–50. AUAI Press.
Bidyuk, B., and Dechter, R. 2007. Cutset sampling for
Bayesian networks. J. Artif. Intell. Res. 28:1–48.
Björklund, A., and Kaski, P. 2016. How proofs are prepared
at Camelot: Extended abstract. In Giakkoupis, G., ed., Proc.
2016 ACM Symposium on Principles of Distributed Com-
puting, PODC 2016, 391–400. ACM.
Carmosino, M. L.; Gao, J.; Impagliazzo, R.; Mihajlin, I.; Pa-
turi, R.; and Schneider, S. 2016. Nondeterministic exten-
sions of the strong exponential time hypothesis and conse-
quences for non-reducibility. In Sudan, M., ed., Proc. 2016
ACM Conference on Innovations in Theoretical Computer
Science, 261–270. ACM.
Dagum, P., and Luby, M. 1993. Approximating probabilis-
tic inference in Bayesian belief networks is NP-hard. Artif.
Intell. 60(1):141–153.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. J. ACM 50(3):280–305.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artif. Intell. 113(1-2):41–85.
Fishelson, M., and Geiger, D. 2004. Optimizing exact ge-
netic linkage computations. J. Comput. Biol. 11(2/3):263–
275.
Fürer, M. 2009. Faster integer multiplication. SIAM J. Com-
put. 39(3):979–1005.
Gao, S. 2003. A new algorithm for decoding Reed–Solomon
codes. In Bhargava, V. K.; Poor, H. V.; Tarokh, V.; and Yoon,
S., eds., Communications, Information, and Network Secu-
rity. Springer. 55–68.
Goldreich, O. 2018. On doubly-efficient interactive proof
systems. Found. Trends Theor. Comput. Sci. 13(3):158–246.
Goldwasser, S.; Kalai, Y. T.; and Rothblum, G. N. 2015.
Delegating computation: Interactive proofs for muggles.
J. ACM 62(4):27:1–27:64.
Harvey, D., and van der Hoeven, J. 2019. Integer multipli-
cation in time O(n log n). Manuscript https://hal.archives-
ouvertes.fr/hal-02070778 .
Holmgren, J., and Rothblum, R. 2018. Delegating com-
putations with (almost) minimal time and space overhead.
In Thorup, M., ed., 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, 124–135. IEEE
Computer Society.
Kaski, P. 2018. Engineering a delegatable and error-tolerant
algorithm for counting small subgraphs. In Pagh, R., and
Venkatasubramanian, S., eds., Proc. Twentieth Workshop on

Algorithm Engineering and Experiments, ALENEX 2018,
184–198. SIAM.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H. 2001. Fac-
tor graphs and the sum-product algorithm. IEEE Trans. Inf.
Theory 47(2):498–519.
Lang, S. 2002. Algebra, volume 211 of Graduate Texts in
Mathematics. Springer-Verlag, New York, third edition.
Larrosa, J., and Dechter, R. 2003. Boosting search with vari-
able elimination in constraint optimization and constraint
satisfaction problems. Constraints 8(3):303–326.
Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local com-
putations with probabilities on graphical structures and their
application to expert systems. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 50(2):157–194.
Montgomery, P. 1985. Modular multiplication without trial
division. Math. Comp. 44(170):519–521.
Nederlof, J. 2017. A short note on Merlin-Arthur protocols
for subset sum. Inform. Process. Lett. 118:15–16.
Pearl, J. 1986. Fusion, propagation, and structuring in belief
networks. Artif. Intell. 29(3):241–288.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Rish, I., and Dechter, R. 2000. Resolution versus search:
Two strategies for SAT. J. Autom. Reason. 24(1/2):225–275.
Schönhage, A., and Strassen, V. 1971. Schnelle Multiplika-
tion grosser Zahlen. Computing (Arch. Elektron. Rechnen)
7:281–292.
Shachter, R. D.; Andersen, S. K.; and Szolovits, P. 1994.
Global conditioning for probabilistic inference in belief net-
works. In de Mántaras, R. L., and Poole, D., eds., UAI ’94:
Proc. Tenth Annual Conference on Uncertainty in Artificial
Intelligence, 514–522. Morgan Kaufmann.
Shafer, G. R., and Shenoy, P. P. 1990. Probability propaga-
tion. Ann. Math. Artif. Intell. 2(1):327–351.
Shamir, A. 1992. IP = PSPACE. J. ACM 39(4):869–877.
Tiwari, D.; Gupta, S.; Gallarno, G.; Rogers, J.; and Maxwell,
D. 2015. Reliability lessons learned from GPU experience
with the Titan supercomputer at Oak Ridge leadership com-
puting facility. In Kern, J., and Vetter, J. S., eds., Proc. Inter-
national Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2015, 38:1–38:12. ACM.
von zur Gathen, J., and Gerhard, J. 2013. Modern Computer
Algebra. Cambridge University Press, third edition.
Walfish, M., and Blumberg, A. J. 2015. Verifying computa-
tions without reexecuting them. Commun. ACM 58(2):74–
84.
Williams, R. R. 2016. Strong ETH breaks with Merlin and
Arthur: Short non-interactive proofs of batch evaluation. In
Raz, R., ed., 31st Conference on Computational Complex-
ity, CCC 2016, volume 50 of LIPIcs, 2:1–2:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Zhang, N. L., and Poole, D. L. 1994. A simple approach to
Bayesian network computations. In Proc. Tenth Canadian
Conference on Artificial Intelligence, 171–178.

10201


