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Abstract

Humans can learn many novel tasks from a very small num-
ber (1–5) of demonstrations, in stark contrast to the data re-
quirements of nearly tabula rasa deep learning methods. We
propose an expressive class of policies, a strong but general
prior, and a learning algorithm that, together, can learn inter-
esting policies from very few examples. We represent policies
as logical combinations of programs drawn from a domain-
specific language (DSL), define a prior over policies with a
probabilistic grammar, and derive an approximate Bayesian
inference algorithm to learn policies from demonstrations. In
experiments, we study six strategy games played on a 2D grid
with one shared DSL. After a few demonstrations of each
game, the inferred policies generalize to new game instances
that differ substantially from the demonstrations. Our policy
learning is 20–1,000x more data efficient than convolutional
and fully convolutional policy learning and many orders of
magnitude more computationally efficient than vanilla pro-
gram induction. We argue that the proposed method is an apt
choice for tasks that have scarce training data and feature sig-
nificant, structured variation between task instances.

Introduction

People are remarkably good at learning and generalizing
strategies for everyday tasks, like ironing a shirt or brewing
a cup of coffee, from one or a few demonstrations. Websites
like WikiHow.com and LifeHacker.com are filled with thou-
sands of “how-to” guides for tasks that are hard to solve by
pure reasoning or trial and error alone, but easy to learn and
generalize from just one illustrated demo (Figure 1). We are
interested in designing artificial agents with the same few-
shot imitation learning capabilities.

A common approach to imitation learning is behavior
cloning (BC), in which demonstrations are used as super-
vision to directly train a policy. BC is often thought to be
too prone to overfitting to generalize from very little data.
Indeed, we find that neural network policies trained with
BC are suspectible to severe overfitting in our experiments.
However, we argue that this failure is due not to BC in gen-
eral, but rather, to an underconstrained policy class and a
weak prior.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: People can learn strategies for an enormous vari-
ety of tasks from one or a few demonstrations, e.g., “gate
off an area,” “build stairs,” or “catch a bird” (left). We pro-
pose a policy class and learning algorithm for similarly data-
efficient imitation learning. Given 1–5 demos of tasks like
“Fence In,” “Reach for the Star,” and “Chase” (middle), we
learn policies that generalize substantially (right).

More structured policies with strong Occam’s razor pri-
ors can be found in two lines of work: logical and rela-
tional (policy) learning (Džeroski, De Raedt, and Blockeel
1998; Natarajan et al. 2011), and program (policy) synthesis
(Wingate et al. 2013; Sun et al. 2018). Policies expressed in
predicate logic are easy to learn, but difficult to scale, since
each possible predicate must be hand-engineered by the re-
searcher. Programmatic policies can be automatically gener-
ated by searching a small domain-specific language (DSL),
but learning even moderately sophisticated policies can re-
quire an untenably large search in program space.

We propose Logical Program Policies (LPP): an expres-
sive, structured, and efficiently learnable policy class that
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combines the strengths of logical and programmatic poli-
cies. Our first main idea is to consider policies that have
logical “top level” structure and programmatic feature de-
tectors (predicates) at the “bottom level.” The feature detec-
tors are expressions in a domain-specific language (DSL).
By logically combining feature detectors, we can derive an
infinitely large, rich policy class from a small DSL. This “in-
finite use of finite means” is in contrast to prior work in re-
lational RL where each feature is individually engineered,
making it labor-intensive to apply in complex settings.

Our second main idea is to exploit the logical structure
of LPP to obtain an efficient imitation learning algorithm,
overcoming the intractability of general program synthesis.
To find policies in LPP, we incrementally enumerate fea-
ture detectors, apply them to the demonstrations, invoke an
off-the-shelf Boolean learning method, and score each can-
didate policy with a likelihood and prior. What would be
an intractable search over full policies is effectively reduced
to a manageable search over feature detectors. We thus
have an efficient approximate Bayesian inference method for
p(π|D), the posterior distribution of policies π given demon-
strations D.

While LPP and the proposed learning method are agnos-
tic to the particular choice of the DSL and application do-
main, we focus here on six strategy games which are played
on 2D grids of arbitrary size (see Figure 3). In these games,
a state consists of an assignment of discrete values to each
grid cell and an action is a single grid cell (a “click” on the
grid). The games are diverse in their transition rules and in
the tactics required to win, but the common state and action
spaces allow us to build our policies for all six games from
one shared, small DSL. In experiments, we find that poli-
cies learned from five or fewer demonstrations can general-
ize perfectly in all six games. In contrast, policies learned as
convolutional neural networks fail to generalize, even when
domain-specific locality structure is built into the architec-
ture (as in fully convolutional networks (Long, Shelhamer,
and Darrell 2015)). Overall, our experiments suggest that
LPP offers an efficient, flexible framework for learning rich,
generalizable policies from very little data.

Problem Statement

In imitation learning, we are given a dataset D of expert
trajectories (s0, a0, ..., sT−1, aT−1, sT ) where st ∈ S are
states and at ∈ A are actions. We suppose that the trajecto-
ries are sampled from a Markov process M = (S,A, T,G),
with transition distribution T (s′ | s, a) and goal states
G ⊂ S , and that actions are sampled from an expert policy
π∗ : S × A → [0, 1], where π∗(a | s) is a state-conditional
distribution over actions. For imitation learning, we must
specify (1) a hypothesis class of policies Π and (2) an al-
gorithm for learning a policy π ∈ Π from D that matches
the expert π∗. We assume that the expert π∗ is optimal with
respect to M, so we report the fraction of trials in which a
learned policy π reaches goal states in G from held-out ini-
tial states in M to evaluate performance.

The LPP Policy Class

We seek a policy class Π with a concise parameterization
that can be reasonably specified by a human programmer,
and for which there is a tractable learning algorithm for re-
covering π∗ ∈ Π from demonstrations.

We consider policies that are parameterized by state-
action classifiers h : S×A → {0, 1}. When h(s, a) = 0, ac-
tion a will never be taken in state s; when h(s, a) = 1, a may
be taken. This parameterization allows us to handle arbitrar-
ily large action spaces (variable grid sizes). Given h(s, a),
we can derive a corresponding policy π(a | s) that samples
a uniformly at random among those a such that h(s, a) = 1.
In other words, π(a | s) ∝ h(s, a). This stochastic policy
formulation reflects the fact that the demonstrator may ran-
domly select among several optimal actions. For complete-
ness, we define π(a | s) ∝ 1 if ∀a, h(s, a) = 0. Specifying a
policy class Π thus reduces to specifying a class of functions
H from which to learn an h.

One option for H is to consider logical rules that com-
pute Boolean expressions combining binary features derived
from (s, a). Although this enables fast inference using well-
understood Boolean learning algorithms, it requires the AI
programmer to hand-engineer informative binary features,
which will necessarily vary from task to task. Another op-
tion is to consider programmatic rules: rules that are ex-
pressions in some general-purpose DSL for predicates on
state-action pairs. In this case, the AI programmer need only
specify a small core of primitives for the DSL, from which
task-specific policies can be derived during inference. The
challenge here is that finding a good policy in the infinitely
large class of programs in the DSL is difficult; simple meth-
ods like enumeration are much too slow to be useful.

We combine the complementary strengths of logical and
program-based policies to define the Logical Program Poli-
cies (LPP) class. Policies in LPP have a logical “top level”
and a programmatic ”bottom level.” The bottom level is
comprised of feature detector programs f : S×A → {0, 1}.
These programs are expressions in a DSL and can include,
for example, loops and conditional statements. A feature de-
tector program takes a state s and an action a as input and re-
turns a binary output, which provides one bit of information
about whether a should be taken in s. The top level is com-
prised of a logical formula h over the outputs of the bottom
level. Without loss of generality, we can express the formula
in disjunctive normal form:

h(s, a) � (f1,1(s, a) ∧ ... ∧ f1,n1
(s, a)) ∨ ...

∨(fm,1(s, a) ∧ ... ∧ fm,nm
(s, a))

(1)

where the f ’s are possibly negated. LPP thus includes all
policies that correspond to logical formulae over finite sub-
sets of feature detector programs expressed in the DSL.

Imitation Learning as Bayesian Inference

We now address the imitation learning problem of finding a
policy π that fits the expert demonstrations D. Rather than
finding a single LPP policy, we will infer a full posterior
distribution over policies p(π | D). From a Bayesian per-
spective, maintaining the full posterior is principled; from a

10252



practical perspective, the full posterior leads to modest per-
formance gains over a single MAP policy. Once we have
inferred p(π | D), we will ultimately take MAP actions ac-
cording to argmaxa∈A Ep(π|D)[π(a | s)].

Probabilistic Model p(π,D)

We begin by specifying a probabilistic model over policies
and demonstrations p(π,D), which factors into a prior dis-
tribution p(π) over policies in LPP, and a likelihood p(D |
π) giving the probability that an expert generates demonstra-
tions D by following the policy π.

We choose the prior distribution p(π) to encode a
preference for those policies which use fewer, simpler
feature detector programs. Recall that a policy π ∈
LPP is parameterized by a logical formula h(s, a) =∨

i=1...M

(∧
j=1...Ni

fi,j(s, a)
bij (1− fi,j(s, a))

1−bij
)

, in
which each of the fi,j is a binary feature detector expressed
in a simple DSL and the bij are binary parameters that de-
termine whether a given feature detector is negated. We set
the prior probability of such a policy to depend only on
the number and sizes of the programmatic components fi,j :
namely, p(π) ∝ ∏M

i=1

∏Ni

j=1 p(fi,j), the probability of gen-
erating each of the fi,j independently from a probabilistic
context-free grammar p(f) (Manning and Schütze 1999).1
The grammar we use in this work is shown in Table 1.

The likelihood of a dataset D given a policy π is p(D |
π) ∝ ∏N

i=1

∏Ti

j=1 π(aij | sij).

Approximating the Posterior p(π | D)

Algorithm 1: LPP imitation learning
input: Demos D, ensemble size K, max iters L
Create anti-demos D = {(s, a′) : (s, a) ∈ D, a′ 	= a};
Set labels y[(s, a)] = 1 if (s, a) ∈ D else 0;
Initialize approximate posterior q;
for i in 1, ..., L do

fi = generate next feature();
X = {(f1(s, a), ..., fi(s, a))T : (s, a) ∈ D ∪ D}
μi, wi = logical inference(X , y, p(f), K);

update posterior(q, μi, wi);
end
return q;

We now have a prior p(π) and likelihood p(D | π),
and we wish to compute an approximate posterior q(π) ≈
p(π | D). We take q to be a weighted mixture of K policies
μ1, . . . , μK (in our experiments, K = 25) and initialize it
so that each μi is equally weighted and equal to the uniform
policy, μi(a | s) ∝ 1. Our core insight is a way to exploit

1Note that without some maximum limit on
∑M

i=1 Ni, this is
an improper prior, and for this technical reason, we introduce a
uniform prior on

∑M
i=1 Ni, between 1 and a very high maximum

value α; the resulting factor of 1
α

does not depend on π at all, and
can be folded into the proportionality constant.

Production rule Probability
Programs

P → at cell with value(V, C) 0.5

P → at action cell(C) 0.5

Conditions

C → shifted(O, B) 0.5

C → B 0.5

Base conditions

B → cell is value(V) 0.5

B → scanning(O, C, C) 0.5

Offsets

O → (N, 0) 0.25

O → (0, N) 0.25

O → (N, N) 0.5

Numbers

N → N 0.5

N → −N 0.5

Natural numbers (for i = 1, 2, . . . )
N → i (0.99)(0.01)i−1

Values (for each value v in this game)
V → v 1/|V|

Table 1: The prior p(f) over programs, specified as a proba-
bilistic context-free grammar (PCFG).

the structure of LPP to efficiently search the space of poli-
cies and update the mixture q to better match the posterior.

Our algorithm is given a set of demonstrations D. The
state-action pairs (s, a) in D comprise positive examples —
inputs for which h(s, a) = 1. We start by computing a set
of “anti-demonstrations” D = {(s, a′) | (s, a) ∈ D, a′ 	=
a}, which serve as approximate negative examples. (D is
approximate because it may contain false negatives, but they
will generally constitute only a small fraction of the set.)

We now have a binary classification problem with posi-
tive examples D and negative examples D. The main loop
of our algorithm considers progressively larger feature rep-
resentations of these examples. At iteration i, we use only
the simplest feature detectors f1, ..., fi, where “simplest”
here means “of highest probability under the probabilistic
grammar p(f).” We can enumerate features in this order by
performing a best-first search through the grammar.

Given a finite set of feature detectors f1, . . . , fi, we can
convert any state-action pair (s, a) into a length-i binary
feature vector x ∈ {0, 1}i = (f1(s, a), . . . , fi(s, a))

T .
We do this conversion on D and D to obtain a design
matrix Xi ∈ {0, 1}|D∪D|×i. The remaining problem of
learning a binary classifier as a logical combination of
binary features is very well understood (Mitchell 1978;
Quinlan 1986). In this work, we use an off-the-shelf stochas-
tic greedy decision-tree learner (Pedregosa et al. 2011).

Given a learned decision tree, we can eas-
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Method Type Description

cell is value V → C Check whether the attended cell has a given value
shifted O × C → C Shift attention by an offset, then check a condition
scanning O × C × C → C Repeatedly shift attention by the given offset, and

check which of two conditions is satisfied first
at action cell C → P Attend to the action cell and check a condition
at cell with value V × C → P Attend to a cell with the value and check condition

Table 2: Methods of the domain-specific language (DSL) used in this work. A program (P) in the DSL implements a predicate
on state-action pairs (i.e., P = S × A → {0, 1}), by attending to a certain cell, then running a condition (C). Conditions check
that some property holds of the current state relative to an implicit attention pointer. V ranges over possible grid cell values and
an “off-screen” token, and O over “offsets,” which are pairs (x, y) of integers specifying horizontal and vertical displacements.

Figure 2: Example of a policy in LPP for the “Nim” game. (A) h(s, a) is a logical combination of programs from a DSL. For
example, f12 returns True if the cell to the right of the action a has value �. The induced policy is π(a | s) ∝ h(s, a). (B)
Given state s, (C) there is one action selected by h. This policy encodes the “leveling” tactic, which wins the game.

ily read off a logical formula h(s, a) =∨
j=1...M

(∧
l=1...Nj

fj,l(s, a)
bjl(1− fj,l(s, a))

1−bjl
)

,
in which each of the fj,l is one of the i feature detectors
under consideration at iteration i. This induces a candi-
date policy μ∗(a|s) ∝ h(s, a). We can evaluate its prior
probability p(μ∗) and its likelihood p(D | μ∗), then decide
whether to include μ∗ in our mixture q, based on whether
its unnormalized posterior probability is greater than that
of the lowest-scoring existing mixture component. The
mixture is always weighted according to our model over π
and D, so that q(μj) =

p(μj |D)
∑K

i=1 p(μi|D)
. In practice, we run the

decision-tree learner several times (5 in experiments) with
different random seeds to generate several distinct candidate
policies at each iteration of the algorithm. We can stop the
process after a fixed number of iterations, or when the prior
probabilities of the enumerated programs fi fall below a
threshold: any policy that uses a feature detector fi with
prior probability p(fi) < p(μj ,D) for all μj in q’s support
has no chance of meriting inclusion in our mixture.

Once we have an approximation q to the posterior, we can
use it to derive a final policy for use at test time:

π∗(s) = argmax
a∈A

Eq[π(a | s)] = argmax
a∈A

∑
μ∈q

q(μ)μ(a|s).

We could alternatively use the full distribution over actions
to guide exploration, e.g., in combination with reinforce-

ment learning (Hester et al. 2018). In this work, we focus
on exploitation and therefore require only the maximum a
posteriori actions, for use with a deterministic final policy.

Experiments and Results

We now present experiments to evaluate the data efficiency,
computational complexity, and generalization of LPP versus
several baselines. We also analyze the learned policies, ex-
amine qualitative performance, and conduct ablation studies
to measure the contributions of the components of LPP. All
experiments were performed on a single laptop running ma-
cOS Mojave with a 2.9 GHz Intel Core i9 processor and 32
GB of memory.

Tasks

We consider six diverse strategy games (Figure 3) that share
a common state space (S =

⋃
h,w∈N

V hw; variable-sized
grids with discrete-valued cells) and action space A =
N× N; single “clicks” on any cell). For a grid of dimension
h×w, we only consider clicks on the grid, i.e., {1, ..., h} ×
{1, ..., w}. Grid sizes vary within tasks. These tasks fea-
ture high variability between different task instances; learn-
ing a robust policy requires substantial generalization. The
tasks are also very challenging due to the unbounded ac-
tion space, the absence of shaping or auxiliary rewards, and
the arbitrarily long horizons that may be required to solve
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Figure 3: The strategy games studied in this work.

a task instance. Each task has a maximum episode length
of 60 and counts as a failure if the episode terminates with-
out a success. There are 11 training and 9 test instances per
task. Instances of Nim, Checkmate Tactic, and Reach for the
Star are procedurally generated; instances of Stop the Fall,
Chase, and Fence In are manually generated, as the variation
between instances is not trivially parameterizable.

Domain-Specific Language

Recall that each feature detector program takes a state and
action as input and returns a Boolean value. In our tasks,
states are full grid layouts and actions are single grid cells
(“clicks”). The specific DSL of feature detectors that we use
in this work (Table 2) is inspired by early work in visual
routines (Ullman 1987; Hay et al. 2018). Each program im-
plements a procedure for attending to some grid cell and
checking that a local condition holds nearby. Given input
(s, a), a program begins by initializing an implicit atten-
tion pointer either to the grid cell in s associated with ac-
tion a (at action cell), or to an arbitrary grid cell con-
taining a certain value (at cell with value). Next, the
program will check a condition at or near the attended cell.
The simplest condition is cell is value, which checks
whether the attended cell has a certain value. More com-
plex conditions, which look not just at but near the attended
cell, can be built up using the shifted and scanning
methods. The shifted method builds a condition that first
shifts the attention pointer by some offset, then applies an-
other condition. The scanning method starts at the cur-
rently attended cell and “scans” along some direction, re-
peatedly shifting the attention pointer by a specified off-
set and checking whether either of two specified conditions
hold. If, while scanning, the first condition becomes satis-
fied before the second, the scanning condition returns 1.
Otherwise, it returns 0. Thus the overall DSL contains five
methods, which are summarized in Table 2. See Figure 2 for
a complete example of a policy in LPP using this DSL.

Baselines

Local Linear Network (LLN): A single 3×3 convolutional
filter is trained to classify whether each cell in s should
be “clicked,” based only on the 8 surrounding cells. FCN:
A deep fully convolutional network (Long, Shelhamer, and
Darrell 2015) is trained with the same inputs and outputs as
“Local Linear.” The network has 8 convolutional layers with

kernel size 3, stride 1, padding 1, 4 channels (8 in the in-
put layer), and ReLU nonlinearities. This architecture was
chosen to reflect the receptive field sizes we expect are nec-
essary for the tasks. CNN: A standard convolutional neural
network is trained with full grid inputs and discrete action
outputs. Grids are padded so that all have the same maximal
height and width. The architecture is: 64-channel convolu-
tion; max pooling; 64-channel fully-connected layer; |A|-
channel fully-connected layer. All kernels have size 3 and
all strides and paddings are 1. Vanilla Program Induction
(VPI): Full policies are enumerated from a DSL grammar
that includes logical disjunctions, conjunctions, and nega-
tions over the feature detector DSL. The number of disjunc-
tions and conjunctions each follow a geometric distribution
(p = 0.5). (Several other values of p were also tried without
improvement.) Policies are then enumerated and mixed as in
LPP learning; this baseline is thus identical to LPP learning
but with the greedy Boolean learning removed.

Effect of Number of Demonstrations

We first evaluate the test-time performance of LPP and base-
lines as the number of training demonstrations varies from 1
to 10. For each number of demonstrations, we run leave-one-
out cross validation: 10 trials, each featuring a distinct set
of demonstrations drawn from the overall pool of 11 train-
ing demonstrations. LPP learning is run for 10,000 itera-
tions for each task. The mean and maximum trial perfor-
mance offer complementary insight: the mean reflects the
expected performance if demonstrations were selected at
random; the maximum reflects the expected performance if
the most useful demonstrations were selected, perhaps by an
expert teacher. Results are shown in Figure 4. On the whole,
LPP markedly outperforms all baselines, especially on the
more difficult tasks. The baselines are limited for different
reasons. The highly parameterized CNN baseline is able to
perfectly fit the training data and win all training games (not
shown), but given the limited training data and high variation
from training to task, it severely overfits and fails to gener-
alize. The FCN baseline is also able to fit the training data
almost perfectly. Its additional structure permits better gen-
eralization in Nim, Checkmate Tactic, Reach for the Star,
and Fence In than the CNN, but overall its performance is
still far behind LPP. In contrast, the LLN baseline is unable
to fit the training data; with the exception of Nim, its training
performance is close to zero. Similarly, the training perfor-
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Figure 4: Performance on held-out test task instances as a function of the number of training demonstrations for LPP (ours) and
four baselines. Maximums and means are over 10 training sets.

Figure 5: Performance on held-out test task instances as
a function of the number of programs enumerated for the
Vanilla Program Induction (VPI) baseline and LPP (ours).

mance of the VPI baseline is near or at zero for all tasks
beyond Nim. In Nim, there is evidently a low complexity
program that works roughly half the time, but an optimal
policy is more difficult to find.

Effect of Number of Programs Searched

We now examine test-time performance of LPP and VPI as
a function of the number of programs searched. For this ex-
periment, we give both methods all 11 training demonstra-
tions for each task. Results are shown in Figure 5. LPP re-
quires fewer than 100 programs to learn a winning policy for
Nim, fewer than 1,000 for Checkmate Tactic and Chase, and
fewer than 10,000 for Stop the Fall, Reach for the Star, and
Fence In. In contrast, VPI is unable to achieve nonzero per-
formance for any task other than Nim, for which it achieves
roughly 45% performance after 100 programs enumerated.
The lackluster performance of VPI is unsurprising given the

Figure 6: Performance on held-out test task instances for
LPP and four ablation models.

combinatorial explosion of programs. For example, the op-
timal policy for Nim shown in Figure 2 involves six con-
stituent programs, each with a parse tree depth of three or
four. There are 108 unique constituent programs with parse
tree depth three and therefore more than 13,506,156,000 full
policies with six or fewer constituent programs. VPI would
have to search roughly so many programs before arriving at a
winning policy for Nim, which is by far the simplest task. In
contrast, a winning LPP policy is learnable after fewer than
100 enumerations. In practical terms, LPP learning for Nim
takes on the order of 1 second on a laptop without highly
optimized code; after running VPI for six hours in the same
setup, a winning policy is still not found.

Ablation Studies

We now perform ablation studies to explore which aspects
of the LPP class and learning algorithm contribute to the
strong performance. We consider four ablated models. The
“Features + NN” model learns a neural network state-action
binary classifier on the first 10,000 feature detectors enu-
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merated from the DSL. This model addresses the possibil-
ity that the features alone are powerful enough to solve the
task when combined with a simple classifier. The NN is a
multilayer perceptron with two layers of dimension 100 and
ReLU activations. The “Features + NN + L1 Regularization”
model is identical to the previous baseline except that an L1

regularization term is added to the loss to encourage sparsity.
This model addresses the possibility that the features alone
suffice when we incorporate an Occam’s razor bias similar to
the one that exists in LPP learning. The “No Prior” model is
identical to LPP learning, except that the grammatical prior
is replaced with a uniform prior. Similarly, the “Sparsity
Prior” model uses a prior that penalizes the number of top-
level programs involved in the policy, without regard for the
relative priors of the individual programs. Results are pre-
sented in Figure 6. They confirm that the each component
— the feature detectors, the sparsity regularization, and the
grammatical prior — adds value to the overall framework.

Related Work
Sample efficiency and generalization are two of the main
concerns in imitation learning (Schaal 1997; Abbeel and Ng
2004). To cope with limited data, demonstrations can be
used in combination with additional RL (Hester et al. 2018;
Nair et al. 2018). Alternatively, a mapping from demonstra-
tions to policies can be learned from a background set of
tasks (Duan et al. 2017; Finn et al. 2017). A third option is
to introduce a prior over a structured policy class (Andre and
Russell 2002; Doshi-Velez et al. 2010; Wingate et al. 2011),
e.g., hierarchical or compositional policies (Niekum 2013).
Our work fits into the third tradition; our contribution is a
new policy class with a structured prior that enables efficient
learning.
LPP policies are logical at the “top level” and program-

matic at the “bottom level.” Logical representations for RL
problems have been considered in many previous works,
particularly in relational RL (Džeroski, De Raedt, and Bloc-
keel 1998; Natarajan et al. 2011). Also notable is work by
Shah et al. (2018), who learn linear temporal logic specifi-
cations from demonstration using a finite grammatical prior.
While some LPP programs may be seen as fixed-arity log-
ical relations in the classical sense, others are importantly
more general and powerful, involving loops and a potentially
arbitrary number of atoms. For example, one program suf-
fices to check whether a Queen’s diagonal path is clear in
Chess; no relation over a fixed number of squares can cap-
ture the same feature. Furthermore, relational RL assumes
that relations are fixed, finite, and given, typically hand-
designed by the programmer. In LPP, the programmer in-
stead supplies a DSL describing infinitely many features.
LPP learning is a particular type of program synthesis,

which more broadly refers to a search over programs, in-
cluding but not limited to the case where we have a gram-
mar over programs, the programs are mappings, and input-
output examples are available. When a grammar is given, the
problem is sometimes called syntax-guided synthesis (Alur
et al. 2013). Most relevant is work by Alur, Radhakrishna,
and Udupa (2017), who propose a “divide and conquer” ap-
proach that uses greedy decision tree learning in combina-

tion with enumeration from a grammar of “conditions”, sim-
ilar to our “No Prior” baseline.

Recent work has also examined neural program synthe-
sis (NPS) wherein a large dataset of (input, output, pro-
gram) examples is used to train a guidance function for pro-
gram enumeration (Parisotto et al. 2016; Bunel et al. 2018;
Huang et al. 2019). In practice, NPS methods are still limited
to programs involving ∼10 primitives. The neural guidance
can delay, but not completely avoid, the combinatorial ex-
plosion of search in program space. LPP learning is not a
generic program induction method, but rather, an algorithm
that exploits the logical structure of LPP programs to dra-
matically speed up search, sometimes finding programs with
∼250 primitives.

The interpretation of policy learning as an instance of
program synthesis is explored in prior work (Wingate et
al. 2011; Sun et al. 2018; Verma et al. 2018). In particu-
lar, Lázaro-Gredilla et al. (2019) learn object manipulation
concepts from before/after image pairs that can be trans-
ferred between 2D simulation and a real robot. In this work,
we focus on the problem of efficient inference and compare
against vanilla program induction in experiments.

Discussion and Conclusion

In an effort to efficiently learn policies from very few
demonstrations that generalize substantially, we have intro-
duced the LPP policy class and an approximate Bayesian in-
ference algorithm for imitation learning. We have seen that
the LPP policy class includes winning policies for a diverse
set of strategy games, and moreover, that those policies can
be efficiently learned from five or fewer demonstrations. In
ongoing work we are studying how to scale our approach
to a wider range of tasks, starting with more sophisticated
DSLs that include counting or simple data structures. How-
ever, even our current DSL is surprisingly general. For in-
stance, in preliminary experiments, we find that our current
algorithm can learn a generalizing policy for Atari Breakout
from just one demonstration.

Beyond policy learning, this work contributes to the long
and ongoing discussion about the role of prior knowledge in
AI. In the common historical narrative, early attempts to in-
corporate prior knowledge via feature engineering failed to
scale, leading to the modern shift towards domain-agnostic
deep learning methods (Sutton 2019). Now there is renewed
interest in incorporating inductive bias into contemporary
methods, especially for problems where data is scarce. We
argue that encoding prior knowledge via a probabilistic
grammar over feature detectors and learning to combine
these feature detectors with Boolean logic is a promising
path forward. More generally, we submit that “meta-feature
engineering” of the sort exemplified here strikes an appro-
priate balance between the strong inductive bias of classical
AI and the flexibility and scalability of modern methods.
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