
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Beyond the Grounding Bottleneck:
Datalog Techniques for Inference in Probabilistic Logic Programs

Efthymia Tsamoura
Samsung AI Research

Vı́ctor Gutiérrez-Basulto
Cardiff University

Angelika Kimmig
Cardiff University

Abstract

State-of-the-art inference approaches in probabilistic logic
programming typically start by computing the relevant
ground program with respect to the queries of interest, and
then use this program for probabilistic inference using knowl-
edge compilation and weighted model counting. We propose
an alternative approach that uses efficient Datalog techniques
to integrate knowledge compilation with forward reasoning
with a non-ground program. This effectively eliminates the
grounding bottleneck that so far has prohibited the applica-
tion of probabilistic logic programming in query answering
scenarios over knowledge graphs, while also providing fast
approximations on classical benchmarks in the field.

1 Introduction

The significant interest in combining logic and probability
for reasoning in uncertain, relational domains has led to a
multitude of formalisms, including the family of probabilis-
tic logic programming (PLP) languages based on the dis-
tribution semantics (Sato 1995) with languages and systems
such as PRISM (Sato 1995), ICL (Poole 2008), ProbLog (De
Raedt, Kimmig, and Toivonen 2007; Fierens et al. 2015)
and PITA (Riguzzi and Swift 2011). State-of-the-art infer-
ence for PLP uses a reduction to weighted model count-
ing (WMC) (Chavira and Darwiche 2008), where the de-
pendency structure of the logic program and the queries is
first transformed into a propositional formula in a suitable
format that supports efficient WMC. While the details of
this transformation differ across approaches, a key part of
it is determining the relevant ground program with respect
to the queries of interest, i.e., all groundings of rules that
contribute to some derivation of a query. This grounding
step has received little attention, as its cost is dominated by
the cost of constructing the propositional formula in typical
PLP benchmarks that operate on biological, social or hy-
perlink networks, where formulas are complex. However, it
has been observed that the grounding step is the bottleneck
that often makes it impossible to apply PLP inference in
the context of ontology-based data access over probabilis-
tic data (pOBDA) (Schoenfisch and Stuckenschmidt 2017;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

van Bremen, Dries, and Jung 2019), where determining the
relevant grounding explores a large search space, but only
small parts of this space contribute to the formulas.

We address this bottleneck, building upon the TcP oper-
ator (Vlasselaer et al. 2015), which integrates formula con-
struction into forward reasoning for ground programs and
is state-of-the-art for highly cyclic PLP programs. Our key
contribution is a program transformation approach that al-
lows us to implement forward inference using an efficient
Datalog engine that directly operates on non-ground functor-
free programs. We focus on programs without negation for
simplicity, though the TcP operator has been studied for
general probabilistic logic programs (Bogaerts and Van den
Broeck 2015; Riguzzi 2016) as well; the extension to strat-
ified negation following (Vlasselaer et al. 2016) is straight-
forward. We further build upon two well-known techniques
from the Datalog community, namely semi-naive evalua-
tion (Abiteboul, Hull, and Vianu 1995), which avoids re-
computing the same consequences repeatedly during for-
ward reasoning, and the magic sets transformation (Ban-
cilhon et al. 1986; Beeri and Ramakrishnan 1991), which
makes forward reasoning query driven. We adapt and ex-
tend both techniques to incorporate the formula construc-
tion performed by the TcP operator and implement our ap-
proach using VLog (Urbani, Jacobs, and Krötzsch 2016;
Carral et al. 2019). Our experimental evaluation demon-
strates that the resulting vProbLog system enables PLP in-
ference in the pOBDA setting, answering each of the 14
standard queries of the LUBM benchmark (Guo, Pan, and
Heflin 2011) over a probabilistic database of 19K facts in
a few minutes at most, while most of these are infeasi-
ble for the existing ProbLog implementation of TcP . Fur-
thermore, for ten of the queries, vProbLog computes ex-
act answers over 1M facts in seconds. At the same time,
on three standard PLP benchmarks (Fierens et al. 2015;
Renkens et al. 2014; Vlasselaer et al. 2016) where the bot-
tleneck is formula construction, vProbLog achieves compa-
rable approximations to the existing implementation in less
time.

For details on proofs as well as additional background,
we refer to the accompanying technical report (Tsamoura,
Gutiérrez-Basulto, and Kimmig 2019).

10284

2 Background

We provide some basics on probabilistic logic programming.
We use standard notions of propositional logic and logic
programming, cf. (Tsamoura, Gutiérrez-Basulto, and Kim-
mig 2019). We focus on the probabilistic logic programming
language ProbLog (De Raedt, Kimmig, and Toivonen 2007;
Fierens et al. 2015), and consider only function-free logic
programs.

A rule (or definite clause) is a universally quantified ex-
pression of the form h :− b1, ..., bn where h and the bi are
atoms and the comma denotes conjunction. A logic program
(or program for short) is a finite set of rules. A ProbLog
program P is a triple (R,F , π), where R is a program, F
is a finite set of ground facts1 and π : F → [0, 1] a func-
tion that labels facts with probabilities, which is often writ-
ten using annotated facts p :: f where p = π(f). Without
loss of generality, we restrict R to non-fact rules and in-
clude ‘crisp’ logical facts f in F by setting π(f) = 1. We
also refer to a ProbLog program as probabilistic program.
As common in probabilistic logic programming (PLP), we
assume that the sets of predicates defined by facts in F and
rules in R, respectively, are disjoint. A ProbLog program
specifies a probability distribution over its Herbrand inter-
pretations, also called possible worlds. Every fact f ∈ F
independently takes values true with probability π(f) or
false with probability 1− π(f).

For the rest of the section we fix a probabilistic program
P = (R,F , π). A total choice C ⊆ F assigns a truth value
to every (ground) fact, and the corresponding logic program
C ∪R has a unique least Herbrand model; the probability of
this model is that ofC. Interpretations that do not correspond
to any total choice have probability zero. The probability
of a query q is then the sum over all total choices whose
program entails q:

Pr(q) :=
∑

C⊆F :C∪R|=q

∏
f∈C

π(f) ·
∏

f∈F\C
(1− π(f)) . (1)

As enumerating all total choices entailing the query is
infeasible, state-of-the-art ProbLog inference reduces the
problem to that of weighted model counting. For a formula
λ over propositional variables V and a weight function w(·)
assigning a real number to every literal for an atom in V , the
weighted model count is defined as

WMC(λ) :=
∑

I⊆V :I|=λ

∏
a∈I

w(a) ·
∏

a∈V \I
w(¬a) . (2)

The reduction assigns w(f) = π(f) and w(¬f) = 1−π(f)
for facts f ∈ F , and w(a) = w(¬a) = 1 for other atoms.
For a query q, it constructs a formula λ such that for every
total choice C ⊆ F , C ∪{λ} |= q if and only if C ∪R |= q.
While λ may use variables besides the facts, e.g., variables
corresponding to the atoms in the program, their values have
to be uniquely defined for each total choice.

In what follows we present (and adapt) notions and results
by Vlasselaer et al. (2016).

1Note that the semantics is well-defined for countable F , but
assume (as usual in exact inference) that the finite support condi-
tion holds, which allows us to restrict to finite F for simplicity.

We start by noting that one way to (abstractly) specify
such a λ is to take a disjunction over the conjunctions of
facts in all total choices that entail the query of interest:∨

C⊆F :C∪R|=q

∧
f∈C

f

We next extend the immediate consequence operator TP for
classic logic programs to construct parameterized interpre-
tations associating a propositional formula with every atom.

Recall that the TP operator is used to derive new knowl-
edge starting from the facts. Let P be a logic program. For a
Herbrand interpretation I , the TP operator returns

TP(I) = {h | h :− b1, . . . , bn ∈ P and {b1, . . . , bn} ⊆ I }
The least fixpoint of this operator is the least Herbrand
model of P and is the least set of atoms I such that TP(I) ≡
I . Let T k

P(∅) denote the result of k consecutive calls of TP ,
and T∞

P (∅) the least fixpoint interpretation of TP .
Let HB(P) denote the set of all ground atoms that can be

constructed from the constants and predicates occurring in
a program P . A parameterized interpretation I of a proba-
bilistic program P is a set of tuples (a, λa) with a ∈ HB(P)
and λa a propositional formula over F . We say that two pa-
rameterized interpretations I and J are equivalent, I ≡ J ,
if and only if they contain formulas for the same atoms and
for all atoms a with (a, ϕ) ∈ I and (a, ψ) ∈ J , ϕ ≡ ψ.

Before defining the TcP operator for probabilistic pro-
grams, we introduce some notation. For a parameterized in-
terpretation I of P , we define the set B(I,P) as

B(I,P) = {(hθ, λ1 ∧ . . . ∧ λn) | (h:− b1, . . . , bn) ∈ P
∧hθ ∈ HB(P) ∧ ∀1 ≤ i ≤ n : (biθ, λi) ∈ I}

Intuitively,B(I,P) contains for every grounding of a rule
in P with head hθ for which all body atoms have a for-
mula in I the pair consisting of the atom and the conjunction
of these formulas. Note the structural similarity with TP(I)
above: the ∀i condition in the definition of B(I,P) corre-
sponds to the subset condition there, we include substitu-
tions θ as our program is non-ground, and we store conjunc-
tions along with the ground head.

Definition 1 (TcP operator) Let I be a parameterized in-
terpretation of P . Then, the TcP operator is

TcP(I) = {(a, λ(a, I,P)) | a ∈ HB(P), λ(a, I,P) �≡ ⊥}
where

λ(a, I,P) =

{
a if a ∈ F∨

(a,ϕ)∈B(I,P) ϕ if a ∈ HB(P) \ F .

The formula associated with a derived atom a in TcP(I)
is the disjunction ofB(I,P) formulae for all rules with head
a, but only if this disjunction is not equivalent to the empty
disjunction ⊥. The latter is akin to not explicitly listing truth
values for false atoms in regular interpretations.

We have the following correctness results. TciP(∅) and
Tc∞P (∅) are analogously defined as above.

10285

Algorithm 1 TcP(I) for PLP P
1: I := ∅; B := ∅
2: for each h :− b1, . . . , bn ∈ R do
3: for each θ with hθ ∈ HB(P)∧∀i : (biθ, λi) ∈ I do
4: B := B ∪ {(hθ, λ1 ∧ . . . ∧ λn)}
5: for each f ∈ F do
6: I := I ∪ {(f, f)}
7: for each a with some (a, ·) ∈ B do
8: I := I ∪ {(a,∨(a,ϕ)∈B ϕ)}
9: return I

Theorem 1 (Vlasselaer et al. 2016) For a probabilistic
program P , let λia be the formula associated with atom a
in TciP(∅). For every atom a ∈ HB(P) and total choice
C ⊆ F , the following hold:
1. For every iteration i, we have

C |= λia implies C ∪R |= a

2. There is an i0 such that for every iteration i ≥ i0, we
have

C ∪R |= a if and only if C |= λia

Thus, for every atom a, the λia reach a fixpoint λ∞a ex-
actly describing the possible worlds entailing a, and the TcP
operator therefore reaches a fixpoint where for all atoms a,
Pr(a) = WMC(λ∞a).2

Algorithm 1 shows how to naively compute TcP(I) fol-
lowing the recipe given in the definition. Lines 2–4 compute
the set B(I,P), lines 5–6 add the formulas for facts and
lines 7–8 the disjunctions that are different from ⊥ (i.e., not
empty) to the result. The fixpoint can then be easily com-
puted, using the equivalence test as stopping criterion.

The ProbLog2 system provides an implementation of the
TcP following (Vlasselaer et al. 2016), which proceeds in
two steps. It first uses backward reasoning or SLD resolution
to determine the relevant ground program for the query, i.e.,
all groundings of rules in R and all facts in F that contribute
to some derivation of the query, and then iteratively applies
the TcP on this program until it reaches the fixpoint or a
user-provided timeout. In the latter case, the current prob-
ability is reported as lower bound. The implementation of
the TcP updates formulas for one atom at a time, using a
scheduling heuristic aimed at quick increases of probability
with moderate increase of formula size.

Magic Sets Transformation. The two most common ap-
proaches to logical inference are backward reasoning or
SLD-resolution, and forward reasoning. The magic sets
transformation (Bancilhon et al. 1986; Beeri and Ramakrish-
nan 1991) is a well-known technique to make forward rea-
soning query-driven by simulating backward reasoning. The
key idea behind this transformation is to introduce magic
predicates for all derived predicates in the program, and to
use these in the bodies of rules as a kind of guard that delays
application of a rule during forward reasoning until the head

2The finite support condition ensures this happens in finite time.

Algorithm 2 Semi-naive fixpoint computation of TcP for
PLP P

1: ΔI := {(f, f) | f ∈ F}
2: I := ΔI
3: repeat
4: ΔI := ΔTcP(I,ΔI)
5: I := ΔI ∪ {(a, λ) ∈ I | ¬∃λ′ : (a, λ′) ∈ ΔI}
6: until ΔI = ∅
7: return I

predicate of the rule is known to be relevant for answering
the query. To further exploit call patterns, different versions
of such magic predicates can be used for the same origi-
nal predicate; these are distinguished by adornments. In this
work we exploit the fact that this transformation preserves
query entailment.

Theorem 2 (Beeri and Ramakrishnan 1991) For any set
R of rules with non-empty body, any set of facts F , and any
query q, R ∪ F |= q if and only if magic(R, q) ∪ F |= q,
where magic(R, q) is the program obtained by the magic
sets transformation.

3 Semi-naive Evaluation for TcP
It is well-known that the computational cost of computing
the fixpoint of the regular TP operator can be lowered us-
ing semi-naive rather than naive evaluation (Abiteboul, Hull,
and Vianu 1995). Intuitively, semi-naive evaluation focuses
on efficiently computing the changes compared to the input
interpretation rather than re-computing the full interpreta-
tion from scratch. We now discuss how we apply this idea to
the TcP operator, where avoiding redundant work becomes
even more important, as we have the added cost of compila-
tion and more expensive fixpoint checks.

The high level structure of semi-naive evaluation for TcP
is given in Algorithm 2. We start from the interpretation
already containing the formulas for facts, that is, initially,
the set ΔI of formulas that just changed and the interpreta-
tion I derived so far contain exactly those pairs. The main
loop then computes the set of pairs for which the formula
changes in line 4, and updates I to contain these new pairs
while keeping the old pairs for atoms whose formulas did
not change. The fixpoint check in this setting simplifies to
checking whether the set of changed formulas is empty.

Thus, the task of ΔTcP(I,ΔI) is to efficiently compute
updated formulas for those derived atoms a whose formula
changes compared to I given ΔI. This is outlined in Algo-
rithm 3. Compared to TcP(I) in Algorithm 1, line 3 con-
tains an additional condition: we only add those pairs for
which at least one body atom has a changed formula, i.e.,
appears in ΔI, that is, the set D is a subset of the set B
in naive evaluation. We no longer need to re-add fact for-
mulas every time. Where naive evaluation simply formed all
disjunctions from B to add to the result, in semi-naive eval-
uation, computing the result is slightly more involved. For
each atom appearing in D, we compute the disjunction over
D (line 6). If the atom did not yet have a formula, we add
the disjunction to the output (line 11), otherwise, we disjoin

10286

Algorithm 3 ΔTcP(I,ΔI) for PLP P
1: Δ := ∅; D := ∅
2: for each h :− b1, . . . , bn ∈ R do
3: for each θ with hθ ∈ HB(P) ∧ ∀i : (biθ, λi) ∈ I

∧∃i : (biθ, λi) ∈ ΔI do
4: D := D ∪ {(hθ, λ1 ∧ . . . ∧ λn)}
5: for each a with some (a, ·) ∈ D do
6: βa :=

∨
(a,ϕ)∈D ϕ

7: if (a, λa) ∈ I then � has previous formula λa
8: γa := λa ∨ βa
9: if γa �≡ λa then Δ := Δ ∪ {(a, γa)}

10: else � no previous formula
11: Δ := Δ ∪ {(a, βa)}
12: return Δ

the disjunction with the old formula and only add this for-
mula to the output if it is not equivalent to the previous one.
Note that this performs the equivalence check per formula
that needs to happen explicitly in naive evaluation.

Formally, lines 4 and 5 in Algorithm 2 implement the fol-
lowing operator.

Definition 2 (ScP operator) Let P be a probabilistic logic
program. Let I be a parameterized interpretation of P , and
ΔI ⊆ I. Let H = HB(P) \F . Then, the ΔTcP operator is

ΔTcP(I,ΔI)
= {(a, βa) | a ∈ H ∧ ¬∃λ : (a, λ) ∈ I ∧ βa �≡ ⊥}
∪ {(a, λ ∨ βa) | a ∈ H ∧ (a, λ) ∈ I ∧ λ �≡ (λ ∨ βa)}

where
βa =

∨
(a,ϕ)∈D(I,ΔI,P)

ϕ and

D(I,ΔI,P) = {(hθ, λ1 ∧ .. ∧ λn) | (h:− b1, .., bn) ∈ P
∧hθ ∈ HB(P) ∧ ∀1 ≤ i ≤ n : (biθ, λi) ∈ I

∧∃1 ≤ i ≤ n : (biθ, λi) ∈ ΔI}
The semi-naive TcP -operator ScP is

ScP(I,ΔI) = ΔTcP(I,ΔI)
∪ {(a, λ) ∈ I | ¬∃λ′ : (a, λ′) ∈ ΔTcP(I,ΔI)}

We are now ready to prove correctness of the approach.
Let I0 = {(f, f) | f ∈ F}, let TciP(I0) be the re-
sult of i consecutive applications of the TcP starting from
I0, and SciP(I0, I0) be the result of i consecutive appli-
cations of the ScP starting from I0 = ΔI0 and using
Ii+1 = ScP(Ii,ΔIi) and ΔIi+1 = ΔTcP(Ii,ΔIi).

The next claim can be easily proven by induction.
Claim For all i ≥ 1, TciP(I0) ≡ SciP(I0, I0).

Semi-naive Fixpoint Computation using Rules

The key idea behind our efficient implementation of the
semi-naive fixpoint computation for TcP is to introduce re-
lations that capture the information computed in the steps of
Algorithms 3 and 2, and rules that populate these relations,

which can be executed using semi-naive evaluation function-
ality provided by an existing Datalog engine, cf. Section 5
below. We discuss the relations and rules here, abstracting
from the specific syntax used in the implementation.

We focus on ΔTcP first, and assume that, as common
in semi-naive evaluation, the engine “knows” which tuples
in I are in ΔI as well. The input consists of atoms of
the form lambda(atom,formula), based on which
we define three relations d(head,conjunction)
representing the set D of head-conjunction pairs,
beta(head,disjunction) representing pairs (a, βa)
computed in line 6, and delta(head,disj) represent-
ing the pairs in the output Δ.

The following types of rules populate these pred-
icates. For every (potentially non-ground) rule
h :- b1,...,bn in P , we have a rule of the form
d(h,conj([F1,...,Fn])) :-

lambda(b1,F1), ..., lambda(bn,Fn).

For every predicate p/n defined by rules in P , we have
beta(p(X1,...,Xn),disj(L)) :-

d(p(X1,...,Xn),_),
findall(C, d(p(X1,...,Xn),C), L).

Finally, we have the general rules
delta(A,D) :- beta(A,D), not lambda(A,_).
delta(A,disj([D,F])) :-

beta(A,D), lambda(A,F),
not equivalent(disj([D,F]),F).

Here, findall is the usual Prolog predicate that col-
lects all groundings of the first argument for which the sec-
ond argument holds in a list and unifies the variable in the
third argument with that list, not is negation as failure, and
equivalent is a special predicate provided as an exter-
nal Boolean function that when called on two ground terms
returns true if the propositional formulas encoded by these
terms are logically equivalent.

When computing the fixpoint, the relation delta pro-
vides the next ΔI, and we need to compute the next I from
the current lambda and the delta as in line 5 of Algo-
rithm 2. We next show how we integrate this step into the
rules. The key idea is to extend the lambda predicate with
an additional argument that contains a unique identifier for
every atom-formula pair added to the relation, to mark pairs
that contain outdated formulas for an atom by adding the
identifier to a new relation outdated, and to incrementally
populate these two relations across the fixpoint computation
while dropping all intermediate relations after each iteration.

The most recent formula for an atom
a is now given by the conjunctive query
lambda(a,F,I), not outdated(I). We adapt
the rules defining d to use this pattern in the body, keep the
rules for beta unchanged, and replace the rules for delta
with the following set of rules:
lambda(A,D,A) :-
beta(A,D), not lambda(A,_,_).

aux(A,disj([D,F]),I) :-
beta(A,D), lambda(A,F,I), not outdated(I),
not equivalent(disj([D,F]),F).

lambda(A,F,u(I)) :- aux(A,F,I).
outdated(I) :- aux(A,F,I).

10287

The first of these covers the case where atom A did not
have a formula yet, in which case we use the atom itself
as identifier. The second rule defines an auxiliary relation
whose elements are an atom, the updated formula for the
atom, and the identifier for the atom’s previous formula,
where the latter is used in the last two rules to generate a
new identifier and mark the old one as outdated.

At the fixpoint, we perform a final pro-
jection step to eliminate identifiers using
lambda(A,F) :- lambda(A,F,I), not
outdated(I).

4 Magic Sets for TcP
So far, we have discussed how to efficiently compute the full
fixpoint of the TcP operator. However, in practice, we are
often only interested in specific queries. In this case, regular
TP often uses the magic set transformation to restrict the
fixpoint computation to the atoms relevant to the query. We
now show that we can apply the same transformation in our
setting to make the TcP goal-directed, and then introduce
an optimization of our approach for magic programs.

We fix a probabilistic program P = (R,F , π).
Definition 3 (Magic Sets for PLP) The magic transform of
P with respect to a query q is the program M =
(magic(R, q),F , π), where magic(·, ·) is as in Theorem 2.

That is, we apply the regular magic set transformation to the
rules with non-empty body and keep the facts and labeling.

Theorem 3 Let q be a query. The formula λ(M, q) associ-
ated with q in the fixpoint of TcM is equivalent to the for-
mula λ(P, q) associated with q in the fixpoint of TcP .

This is a direct consequence of Theorems 1 (Point 2) and 2.
While the above makes our approach query directed, com-

piling formulas for magic atoms may introduce significant
overhead. We therefore now define an optimized version of
goal-directed TcP that avoids compilation for magic atoms,
and show that this computes correct formulas.

Definition 4 (magic-TcP operator) Let q ∈ HB(P) be the
query of interest, and I a parameterized interpretation of the
magic transform M of P . Then, the magic-TcP operator
McP(I) is defined as

{(a, μ(a, I,M)) | a ∈ HB(M) ∧ μ(a, I,M) �≡ ⊥}
where

μ(a, I,M) =

{
λ(a, I,M) if a ∈ HB(P)

� if ”magic case”

where λ is as in Definition 1 above, and ”magic case”
means that a ∈ HB(M) \ HB(P) and there is a rule h :−
b1, . . . , bn in M and a grounding substitution θ such that
a = hθ and for each bi there is a λi such that (biθ, λi) ∈ I.

That is, if a is not a magic atom (which includes the facts),
we use the same update operations as for the regular TcM
operator with the magic program, but for magic atoms, we
set the formula � if (and only if) there is a rule that can
derive the atom from the current interpretation I.

Theorem 4 For a query q, let τ iq be the formula associated
with q in MciP(∅). For every total choice C ⊆ F , there is an
i0 such that for every iteration i ≥ i0, τ iq exists and

C ∪R |= q if and only if C |= τ iq

The proof relies on two intermediate results: Formulas com-
puted by TcP are always lower bounds for those computed
by McP ; and for any atom in the original program (i.e., ex-
cluding the magic atoms), the formulas computed by McP
only include correct choices relative to the original program.
These combined with Theorem 1 (Point 2) provide us with
the desired result.

5 Implementation

We use VLog (Urbani, Jacobs, and Krötzsch 2016; Carral
et al. 2019) to implement the principles introduced in Sec-
tion 3, and refer to this implementation as vProbLog3. We
use VLog because it has been shown to be efficient, is open
source, supports negation (which is used by some of our
transformed rules) and provides very efficient rule execution
functions that we can invoke directly.

As VLog is a Datalog engine, we cannot directly use the
rules as introduced in Section 3. Instead, we encode func-
tors into predicate or constant names wherever possible and
use a procedural variant of the second set of rules to avoid
findall. We implement the “equivalent” function as an exter-
nal function over Sentential decision diagrams (SDD) (Dar-
wiche 2011), using the SDD package developed at UCLA4.

More precisely, given program P , query q and iteration
parameter d, vProbLog performes the following steps:
1. Apply the magic set transformation to R and q.
2. Partition magic(R, q) into three sets, where R1 contains

the rules whose bodies only use facts, R2 contains all
other rules that do not depend on cyclic derivations, and
R3 the remaining ones, and apply the transformation of
Section 3 to all three.

3. Materialize the fixpoint, i.e., execute the transforms of
R1 and R2 in sequence, iteratively execute the transform
of R3 d times (or until fixpoint if d = ∞), and finally use
the projection rule to eliminate bookkeeping identifiers.

4. For each query answer in the materialization, compute
the WMC of its SDD.

This gives us vProbLogplain, an implementation of TcM,
i.e., without the optimizations introduced in Section 4. To
implement the modified operator McP , we note that instead
of explicitly setting the formula of a magic atom � in our
transformed program, we can simply not store magic atoms
in the lambda relation but instead keep them as usual wher-
ever they appear. We refer to this as vProbLogopt.

6 Experimental Evaluation

We perform experiments using the two versions of
vProbLog as well as the implementation of TcP provided

3https://bitbucket.org/tsamoura/vproblog/
4http://reasoning.cs.ucla.edu/sdd/

10288

by the ProbLog2 system5, which we refer to as ProbLog2,
to answer the following questions:
Q1 Does vProbLogopt outperform vProbLogplain in terms

of running times and scalability?
Q2 How does the performance of vProbLogopt compare to

that of ProbLog2?
Q3 How scalable is vProbLogopt?

As vProbLog aims to improve the reasoning phase, but
essentially keeps the knowledge compilation phase un-
changed, we distinguish two types of benchmarks: those
where the bottleneck is reasoning, i.e., propositional for-
mulas are relatively small, but a large amount of reasoning
may be required to identify the formulas, and those where
the bottleneck is knowledge compilation, i.e., propositional
formulas become complex quickly. As a representative of
the former, we use a probabilistic version of LUBM (Guo,
Pan, and Heflin 2011), a setting known to be challenging for
ProbLog (Schoenfisch and Stuckenschmidt 2017; van Bre-
men, Dries, and Jung 2019); for the latter type, we use three
benchmarks from the ProbLog literature (Fierens et al. 2015;
Renkens et al. 2014; Vlasselaer et al. 2016) that essentially
are all variations of network connectivity queries:

LUBM We create a probabilistic version of the LUBM
benchmark by adding a random probability from
[0.01, 1.0] to each fact in the database, using three
databases of increasing size (approximately 19K tuples in
LUBM001, 1M tuples in LUBM010 and 12M tuples in
LUBM100). We drop all rules that introduce existentials,
as these are not supported in our setting, and use the 14
standard queries (with default join order).

WebKB We use the WebKB6 dataset restricted to the 100
most frequent words (Davis and Domingos 2009) and
with random probabilities from

[
0.01, 0.1

]
, using all

pages from the Cornell database. This results in a dataset
with 63 ground queries.

Smokers We use random power law graphs with increas-
ing numbers of persons for the standard ‘Smokers’ social
network domain, and non-ground query asthma(_).

Genes We use the biological network of Ourfali et al. 2007
and 50 of its connection queries on gene pairs.

To answer Q1, we compare running times of both ver-
sions of vProbLog on LUBM001. The first two blocks of
Table 1 report times for materialization and WMC as well
as their sum, with a two minute timeout on the former. The
differences in materialization time clearly show that com-
piling formulas for magic atoms can introduce significant
overhead and should thus be avoided. We thus answer Q1
affirmatively, and only use vProbLogopt (or vProbLog for
short) below.

To answer Q2, we consider all benchmarks, with a two
minute timeout per query for ProbLog2. In the middle of
Table 1, we list the times ProbLog2 reports for grounding,
compiling SDDs, and total time (which also includes data

5https://dtai.cs.kuleuven.be/problog/ version 2.1.0.37, option
-k fsdd

6http://www.cs.cmu.edu/webkb/

loading) per query on LUBM001. The answer column indi-
cates whether ProbLog2 returns exact probabilities (fixpoint
detected), lower bounds (timeout with partial formula for
query, before detecting fixpoint) or no result (timeout with-
out formula for query). The lower bounds reported for q10
and q13 are practically the final probabilities, but ProbLog2
has not detected this yet at timeout. ProbLog2 reaches the
timeout during grounding for q02, q07, q08 and q09, for
which the default join order first builds a Cartesian product
of two or three type relations, which is the worst possible
join order for SLD resolution.

Comparing ProbLog2’s times to the times for
vProbLogopt to the left, we observe that vProbLog
materializes fixpoints, which includes compiling formulas
(using the same SDD tool) in often significantly less time
than it takes ProbLog2 to just determine the relevant ground
program, with the exception being the database lookup
query q14, where running times are similar. These results
clearly demonstrate the benefits of exploiting Datalog
techniques in terms of speed.

On the PLP benchmarks, ProbLog2 can only compute
lower bounds for most queries, and vProbLog cannot fully
materialize the fixpoint, as SDDs quickly become too large
to handle. For vProbLog, we therefore select for each bench-
mark a fixed number of iterations close to the feasibility bor-
derline. Intuitively, this restricts the length of paths explored,
though that length does not equal the number of iterations
due to our program transformations, and vProbLog thus al-
ways computes lower bounds. Here, we are thus interested
to see whether vProbLog can achieve comparable or better
lower bounds to ProbLog2 in less time.

For WebKB, seven of the 63 queries are easy, as the corre-
sponding pages have incoming link chains of length at most
two, whereas formulas explode for all others. ProbLog2
computes probabilities for the easy queries in at most seven
seconds, and bounds after timeout for the others, whereas
vProbLog computes bounds using four iterations for all
queries in at most seven seconds. All differences between
lower bounds are smaller than 0.02, with ProbLog2 achiev-
ing higher bounds on 47 queries and smaller bounds on 11.

For Smokers, ProbLog2 quickly computes exact answers
for all networks up to size 12, and reaches the timeout on all
networks from size 19 onwards. We therefore consider 10
networks for each size from 10 to 20 persons, using three it-
erations for vProbLog. Table 2 lists for each size the number
of scenarios (out of ten) solved exactly by ProbLog2, along
with minimum, average and maximum total times for both
systems (excluding timeout cases). We again observe a clear
time advantage for vProbLog with increasing size. Further-
more, the bounds provided by vProbLog are close to actual
probabilities (exact for 89 queries, at most 0.002 lower for
615 queries) where ProbLog2 computes those, and close to
ProbLog2’s lower bounds otherwise (up to 0.05 higher on
570 queries, and at most 0.002 lower for 312).

For Genes, ProbLog2 reaches the timeout and thus com-
putes lower bounds for all queries. As those range from
0.0108 to 0.9999, we run vProbLog for 1, 3, 5, 6 and 7 it-
erations to explore the effect of the approximation in more
detail. 5 iterations are infeasible for two queries, 7 iterations

10289

Table 1: Results for LUBM: time for materialization, weighted model counting and total time for vProbLogplain (two minute
timeout for materialisation) and vProbLogopt on LUBM001 (Q1), grounding time, compilation time and total time for
ProbLog2 (two minute overall timeout, marked x) as well as type of answer (exact or lower bound) provided if any (Q2),
and times for vProbLogopt on LUBM010 and LUBM100 (Q3). All times in seconds.

LUBM001 LUBM010 LUBM100

vProbLogplain vProbLogopt ProbLog2 vProbLogopt vProbLogopt

mat wmc total mat wmc total ground comp total answer mat wmc total mat wmc total
q01 0.1 0.1 0.1 0.0 0.1 0.1 0.7 1.2 40.9 exact 0.5 0.2 0.7 6.7 1.8 8.5
q02 0.5 0.0 0.5 0.1 0.0 0.1 x - 6.9 0.6 7.5
q03 0.1 0.1 0.2 0.0 0.1 0.2 6.3 x exact 0.2 0.3 0.5 2.3 1.9 4.1
q04 x x 3.6 0.5 4.2 49.6 x - 5.2 0.7 5.8
q05 x x 6.3 11.3 17.5 56.4 x - 7.5 9.8 17.3
q06 x x 41.8 113.4 155.2 47.7 x -
q07 6.3 0.9 7.3 3.4 1.0 4.4 x - 5.1 1.1 6.2
q08 x x 60.6 115.2 175.8 x -
q09 x x 22.2 2.8 25.0 x -
q10 1.6 0.1 1.6 0.5 0.1 0.6 50.6 x bound 1.2 0.2 1.5
q11 0.5 5.3 5.8 0.3 3.4 3.7 0.4 0.9 40.7 exact 0.3 3.5 3.8 0.4 4.9 5.3
q12 x x 15.5 0.2 15.7 47.2 x - 17.9 0.4 18.3
q13 2.1 0.0 2.1 1.0 0.0 1.1 57.9 x bound 12.7 0.6 13.3
q14 0.2 80.2 80.4 0.2 89.4 89.6 1.2 0.2 87.7 exact 3.1

Table 2: Smokers: ProbLog2: number of scenarios (of 10)
solved exactly in 2 minutes, min/avg/max times in seconds
over those; vProbLog: min/avg/max times in seconds over
all networks to compute lower bounds with 3 iterations

ProbLog2 vProbLog
size exact min avg max min avg max

10 10 0.1 0.6 3.3 0.5 0.6 1.0
11 10 0.1 1.0 5.7 0.5 0.6 0.8
12 10 0.2 10.9 93.1 0.6 0.8 0.9
13 9 0.2 15.7 55.9 0.6 0.8 1.2
14 8 0.7 34.9 106.7 0.3 1.2 3.6
15 3 2.7 34.2 65.6 0.8 1.3 2.5
16 3 12.0 24.6 41.8 0.7 1.6 3.3
17 2 1.7 8.4 15.1 0.8 2.1 4.5
18 1 23.6 23.6 23.6 0.9 2.7 5.8
19 0 1.1 4.6 12.1
20 0 1.3 3.9 13.4

for another five queries. vProbLog running times for the last
feasible iteration of each query are below five seconds per
query for all but two queries, which take 13 and 78 seconds,
respectively. We refer to the first non-zero bound for query
q vProbLog reaches as fq , to the last (feasible) one as lq ,
and to ProbLog2’s bound as pq . We observe pq < fq for 23
queries, fq ≤ pq < lq for 15, and lq ≤ pq for 12. The actual
differences pq − lq vary from −0.88 to 0.20, indicating that
this is a diverse set of queries where no single approxima-
tion strategy suits all, but also that vProbLog often achieves
much higher bounds in less time.

Based on these results, as an answer to Q2, we conclude
that vProbLog often speeds up logical inference time signif-
icantly, which enables inference in scenarios that have previ-
ously been infeasible due to the grounding bottleneck. At the
same time, for benchmarks where the bottleneck is knowl-
edge compilation, its use of magic sets provides a natural

scheduling strategy for formula updates that achieves simi-
lar bounds to those of ProbLog2, but often in less time.

To answer Q3, we consider the three LUBM databases.
Table 1 lists running times of vProbLogopt (for materializa-
tion, weighted model counting, and total of both) without it-
eration limit per query in seconds. Blank entries indicate that
the corresponding phase did not finish due to problems with
SDDs. The three queries that are answered on the largest
database all have one element answers from relatively nar-
row classes with a direct link to a specific constant, which
limits both the number of answers and the size of formulas.
In contrast, the three queries that cannot be solved on the
medium size database either ask for a broad class (all stu-
dents, q06) or triples that include members of such a class
and two related objects (q08 and q09), which means both
more answers on larger databases and more complex SDDs.

Taking all results together, our answer to Q3 is that
vProbLog directly benefits from the scalability of VLog for
logical reasoning, but as all WMC-based approaches is lim-
ited by the complexity of formula manipulation.

7 Related Work

A related formalism is the probabilistic version of Datalog
by Bárány et al. 2017, but it does not adopt the distribu-
tion semantics and there is no existing system. pOBDA can
be also viewed as a variation of PLP formalisms (Jung and
Lutz 2012). The exact relation to PLP broadly depends on
the ontology language of choice, usually based on descrip-
tion logics or existential rules, see (Borgwardt, Ceylan, and
Lukasiewicz 2018) for a recent survey.

Finally, we note that magic sets have been also applied
to other extensions of Datalog, e.g. with aggregates, equal-
ity or disjunctive Datalog (Alviano, Greco, and Leone 2011;
Benedikt, Motik, and Tsamoura 2018; Alviano et al. 2012).

10290

8 Conclusions

We have adapted and extended the well-known Datalog
techniques of semi-naive evaluation and magic sets to avoid
the grounding bottleneck of state-of-the-art inference in
probabilistic logic programming, contributed a prototype
implementation based on VLog, and experimentally demon-
strated the benefits in terms of scalability on both traditional
PLP benchmarks and a query answering scenario that previ-
ously has been out of reach for ProbLog. Immediate future
work includes extending the approach to stratified negation
and eliminating the need to pre-determine the depth param-
eter by iterative expansion, which will provide a proper any-
time algorithm. Beyond this, we intend to perform experi-
ments on additional benchmarks in the knowledge graph and
ontology setting, including ontologies based on description
logics and existential rules, to study ways to support proba-
bilistic programs with functors, as well as alternative ways
to trade-off time spent on logical reasoning vs compilation,
e.g., by restricting the number of fixpoint checks performed.

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Alviano, M.; Faber, W.; Greco, G.; and Leone, N. 2012. Magic Sets
for disjunctive Datalog programs. Artificial Intelligence 187:156–
192.
Alviano, M.; Greco, G.; and Leone, N. 2011. Dynamic Magic Sets
for Programs with Monotone Recursive Aggregates. In LPNMR.
Bancilhon, F.; Maier, D.; Sagiv, Y.; and Ullman, J. D. 1986. Magic
sets and other strange ways to implement logic programs. In PODS.
Bárány, V.; ten Cate, B.; Kimelfeld, B.; Olteanu, D.; and Vagena, Z.
2017. Declarative probabilistic programming with datalog. ACM
Trans. Database Syst. 42(4):22:1–22:35.
Beeri, C., and Ramakrishnan, R. 1991. On the power of magic. J.
Log. Program. 10(3&4):255–299.
Benedikt, M.; Motik, B.; and Tsamoura, E. 2018. Goal-driven
query answering for existential rules with equality. In AAAI Con-
ference on Artificial Intelligence.
Bogaerts, B., and Van den Broeck, G. 2015. Knowledge compila-
tion of logic programs using approximation fixpoint theory. TPLP
15(4-5):464–480.
Borgwardt, S.; Ceylan, İ. İ.; and Lukasiewicz, T. 2018. Recent ad-
vances in querying probabilistic knowledge bases. In International
Joint Conference on Artificial Intelligence.
Carral, D.; Dragoste, I.; González, L.; Jacobs, C.; Krötzsch, M.;
and Urbani, J. 2019. VLog: A rule engine for knowledge graphs.
In International Semantic Web Conference.
Chavira, M., and Darwiche, A. 2008. On probabilistic inference
by weighted model counting. Artif. Intell. 172(6-7):772–799.
Darwiche, A. 2011. SDD: A New Canonical Representation of
Propositional Knowledge Bases. In International Joint Conference
on Artificial Intelligence (IJCAI).
Davis, J., and Domingos, P. 2009. Deep Transfer via Second-Order
Markov Logic. In International Conference on Machine Learning
(ICML).
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog: A
probabilistic Prolog and its application in link discovery. In Inter-
national Joint Conference on Artificial Intelligence.

Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov, D. S.;
Gutmann, B.; Thon, I.; Janssens, G.; and De Raedt, L. 2015. Infer-
ence and learning in probabilistic logic programs using weighted
boolean formulas. Theory and Practice of Logic Programming
(TPLP) 15(3):358–401.
Guo, Y.; Pan, Z.; and Heflin, J. 2011. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web 3(2-3).
Jung, J. C., and Lutz, C. 2012. Ontology-based access to proba-
bilistic data with OWL QL. In International Semantic Web Con-
ference.
Ourfali, O.; Shlomi, T.; Ideker, T.; Ruppin, E.; and Sharan, R. 2007.
SPINE: a framework for signaling-regulatory pathway inference
from cause-effect experiments. Bioinformatics 23(13):359–366.
Poole, D. 2008. The Independent Choice Logic and Beyond. In
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S., eds.,
Probabilistic Inductive Logic Programming, volume 4911 of Lec-
ture Notes in Artificial Intelligence. Springer. 222–243.
Renkens, J.; Kimmig, A.; Van den Broeck, G.; and De Raedt, L.
2014. Explanation-based approximate weighted model counting
for probabilistic logics. In AAAI Conference on Artificial Intelli-
gence.
Riguzzi, F., and Swift, T. 2011. The PITA System: Tabling and
Answer Subsumption for Reasoning under Uncertainty. Theory
and Practice of Logic Programming 11(4–5):433–449.
Riguzzi, F. 2016. The distribution semantics for normal programs
with function symbols. Int. J. Approx. Reasoning 77:1–19.
Sato, T. 1995. A statistical learning method for logic programs
with distribution semantics. In International Conference on Logic
Programming (ICLP).
Schoenfisch, J., and Stuckenschmidt, H. 2017. Analyzing real-
world SPARQL queries and ontology-based data access in the con-
text of probabilistic data. Int. J. Approx. Reasoning 90:374–388.
Tsamoura, E.; Gutiérrez-Basulto, V.; and Kimmig, A. 2019.
Beyond the grounding bottleneck: Datalog techniques for infer-
ence in probabilistic logic programs (technical report). CoRR
abs/1911.07750.
Urbani, J.; Jacobs, C. J. H.; and Krötzsch, M. 2016. Column-
oriented datalog materialization for large knowledge graphs. In
AAAI Conference on Artificial Intelligence.
van Bremen, T.; Dries, A.; and Jung, J. C. 2019. Ontology-
mediated queries over probabilistic data via probabilistic logic
programming. In International Conference on Information and
Knowledge Management (CIKM). ACM.
Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.; and
De Raedt, L. 2015. Anytime inference in probabilistic logic pro-
grams with Tp-compilation. In International Joint Conference on
Artificial Intelligence (IJCAI).
Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.; and De
Raedt, L. 2016. Tp-compilation for inference in probabilistic logic
programs. International Journal of Approximate Reasoning 78:15
– 32.

10291

