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Abstract

We propose a new framework for online testing of heteroge-
neous treatment effects. The proposed test, named sequential
score test (SST), is able to control type I error under continu-
ous monitoring and detect multi-dimensional heterogeneous
treatment effects. We provide an online p-value calculation
for SST, making it convenient for continuous monitoring, and
extend our tests to online multiple testing settings by con-
trolling the false discovery rate. We examine the empirical
performance of the proposed tests and compare them with a
state-of-art online test, named mSPRT using simulations and
a real data. The results show that our proposed test controls
type I error at any time, has higher detection power and allows
quick inference on online A/B testing.

1 Introduction

Randomized controlled experiment, also known as A/B test-
ing, is widely used in web facing industry to improve prod-
ucts and technologies in a data-driven manner (Kohavi et
al. 2009). Most of A/B tests are conducted by performing
a formal null hypothesis statistical testing (NHST) with the
typical null hypothesis H0 : β := μB − μA = 0 to deter-
mine if the difference of the metric across two variants is
significant or not. The result of a NHST is summarized in a
p-value and the case that the p-value is less than a preset sig-
nificance level α will lead the null hypothesis to be rejected.
A valid testing is able to get a high power to detect the dif-
ference if there is, while controlling the type I error, i.e., the
probability of erroneously rejecting H0, to be less than α.

However, the validity of NHST requires that the sample
size is fixed in advance, which is often violated in prac-
tice. In A/B testing practice, a fast-paced product evolution
pushes its shareholders to continuously monitor the p-values
and draw conclusions prematurely. In fact, stopping experi-
ments in an adaptive manner can favorably bias getting sig-
nificant results and lead to very high false positive probabil-
ities, well in excess of the nominal significance level (Good-
son 2014; Simmons, Nelson, and Simonsohn 2011). As an
extreme example in (Pekelis, Walsh, and Johari 2015), it
can be shown that stopping the first time that the p-value
is less than α actually has type I error probability of 1. Yet
for all that, this ”peeking” behavior is not without reasons.
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The time cost and opportunity cost for fixed-horizon hypoth-
esis testing are large (Ju et al. 2019), so users want to find
true effects and stop the experiments as quickly as possible.
Moreover, the sample size calculation requires an estimate
of the minimum detectable effect (MDE). Most users lack
good prior knowledge of the trade-off between high detec-
tion ability and short waiting time and may want to adjust
them after peeking early at results.

Another problem of A/B testing is that it assumes there
is only an average treatment effect (ATE) in the popula-
tion of experiment. But underlying this average effect may
be substantial variation in how particular subgroups respond
to treatments: there may be heterogeneous treatment effects
(HTE) (Grimmer, Messing, and Westwood 2017). It might
be that the population average effect of a product with a new
feature is not significant, but the feature does benefit a lot
among particular subgroups of users. In this case, we won’t
be able to detect those effects and will lose the chance of
making profits by promoting new products to those target
sub-populations, if only ATE is tested in A/B testing.

To address the continuously monitoring problem, sequen-
tial testing (ST) was first developed by Wald (Wald 1945),
who introduced the sequential probability ratio test (SPRT).
ST allows intermediate checks of significance while provid-
ing type I error control at any time; see (Lai 2001) for a
survey on sequential testing. Moreover, ST could help de-
cision makers conclude an experiment earlier with often
much fewer samples than the fixed-horizon testing (Wald
1945). Mixture sequential probability ratio test (mSPRT)
(Robbins 1970) and maximized sequential probability test
(MaxSPRT) (Kulldorff et al. 2011) are two variants of se-
quential testing that generalized SPRT to a composite hy-
pothesis. Due to the merits of mSPRT that it is a test
with power 1 (Robbins and Siegmund 1974) and almost
optimal (Pollak 1978) with respect to expected time to
stop, it was brought to A/B testing by Johari et al. (2015;
2017). They also proposed a notion of always valid p-value
process (sequential p-values) in the same papers and used it
as a tool for converting fixed-horizon multiple testing proce-
dures to a sequential version. Later, Malek et al. (2017) also
showed that if the original multiple testing procedure has a
type I error guarantee in a certain family (including false dis-
covery rate and family-wise error rate), then the sequential
conversion inherits an analogous guarantee.
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However, current online testing procedures, such as
mSPRT, are not suitable for testing heterogeneous treatment
effects due to two aspects. First, they can not accommodate
the nuisance parameters in the baseline effects. Second, they
may not be able to control the type I error and may lack of
power for detecting heterogeneous treatment effects. In this
paper, we propose a new framework for online testing of
heterogeneous treatment effects. The proposed test, named
SST, is based on the ratio of asymptotic score statistic distri-
butions, which is able to test multi-dimensional parameters.
Furthermore, the asymptotic normality of the score func-
tions guarantees an explicit form of the integral, which al-
lows the integration for the ratio to be efficient. At last, we
generalize our framework to online multiple testing, which
is often the case in industrial practice.

The remainder of this paper is structured as follows. In
Section 2, we introduce some preliminary knowledge about
fixed-horizon testing and sequential testing. In Section 3, we
present the proposed new framework for online testing of
heterogeneous treatment effects. We extend SST to multi-
ple testing settings in Section 4 and conduct experiments in
Section 5 to compare our framework with the widely-used
mSPRT. Finally, in Section 6, we conclude the paper and
present future directions.

2 Preliminaries

2.1 Fixed-horizon testing

Fixed-horizon testing is the most widely used procedure in
industry where the sample size is fixed in advance. It can
be broken down into several steps (Lehmann and Romano
2006):

Step 1: Determine a desired significance level α, mini-
mum detectable effect (MDE) and power at MDE. It means
that the probability to detect the MDE is at least at the value
of power, while the probability of rejecting H0, if it is actu-
ally true, is at most α.

Step 2: Calculate/Estimate the minimum sample size n.
The sample size n needs to be large enough to achieve the
desired power at MDE while controlling type I error at a
significance level, but too large sample size will lead to more
opportunity cost of waiting for more samples. One need to
trade off between these two aspects when choosing sample
size.

Step 3: Collect n samples and compute the observed value
of an appropriate test statistics Λn. The most common test
statistics for two-sample tests are z-tests and t-tests, which
assume that data are from a normal distribution with known
or unknown variance, respectively.

Step 4: Compute a p-value pn and reject the null hypoth-
esis if pn ≤ α. P-value is a random variable to denote the
probability of seeing a test statistic as extreme as the ob-
served statistics Λn under null hypothesis, and can be for-
mally defined as

pn = inf{α : Λn ≥ k(α)}, (1)

where k(α) is a critical value depending on significance
level and the distribution of Λn under H0. The critical value
is determined such that, under the null hypothesis H0, the

event Λn ≥ k(α) occurs with probability no greater than
α. Since the p-value was computed assuming a fixed sample
size n, we refer to this as a fixed-horizon p-value. Small p-
values suggest evidence in support of alternative hypothesis.

A decision rule is a pair (T, δ) representing a testing,
where T is a stopping time indicating the sample size at
which the test is ended, and δ is a binary indicator for rejec-
tion decision. With the definition of fixed-horizon p-value
in (1), it is obvious to see that (n, δ1) and (n, δ2) with
δ1 = 1{pn ≤ α} and δ2 = 1{Λn ≥ k(α)} are two equiva-
lent decision rules for fixed-horizon testing. That means the
decision rule and p-value can be obtained from each other:
find p-value from decision rule (n, δ2) by (1), or make the
decision (n, δ1) from p-value. Hence, we can actually stop at
step 3 and reject H0 if Λn ≥ k(α) for some predetermined
significance level α. Nonetheless, the decision-making pro-
cess using p-values is remarkably simple and transparent:
one can choose their own significance level and make a valid
decision.

2.2 Sequential testing

Sequential testing, contrast to fixed-horizon, is a proce-
dure where the decision of terminating the process at any
stage of the experiment depends on the results of the ob-
servations previously made. It has gained recent popular-
ity in online A/B testing (Balsubramani and Ramdas 2015;
Johari, Pekelis, and Walsh 2015) due to its flexibility of con-
tinuously monitoring and ending the experiment as soon as
significant results are observed.

The decision rules for sequential testing is a nested fam-
ily of (T (α), δ(α)), parameterized by significance level α.
It has the following two properties (Johari et al. 2017): First,
the type I error is controlled, that is, PH0

(δ(α) = 1) ≤ α;
Second, T (α) is (almost surely) non-increasing in α while
δ(α) is (almost surely) non-decreasing in α. In other words,
less stringent type I error control allows the test to stop
sooner, and is more likely to lead to rejection.

Similar to fixed-horizon testing, a notion of sequential p-
values was also introduced for sequential testing and named
always valid p-value process by (Johari et al. 2017): A se-
quence of fixed-horizon p-values (pn)∞n=1 is always valid if
it satisfies the property that ∀s ∈ [0, 1], PH0(pT ≤ s) ≤ s
for any given (possibly infinite) stopping time T . It allows
the user to trade off detection power and sample size dy-
namically as they see fit while still control type I error. In
the same way, the always valid p-values can be derived from
the decision rule for a sequential test, and vice versa. For a
given sequential test (T (α), δ(α)),

pn = inf{α : T (α) ≤ n, δ(α) = 1} (2)

defines an always valid p-value process. For any always
valid p-value process (pn)∞n=1, a sequential test is obtained
as follows:

T (α) = inf{n : pn ≤ α} δ(α) = 1{T (α) < ∞}. (3)

The mixture sequential probability ratio test (mSPRT)
(Robbins 1970) is a well studied family of sequential tests.
Its test statistic based on the first n observations Λπ

n is a mix-
ture of likelihood ratios against the null hypothesis, with the
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mixture density π(·) over the space for target parameter β.
The decision rule for mSPRT is as below:

T (α) = inf{n : Λπ
n ≥ α−1} δ(α) = 1(T (α) < ∞).

(4)
It can be shown that the type I error for mSPRT is well
controlled at α by a simple application of optional stop-
ping theorem (Grimmett, Grimmett, and Stirzaker 2001),
since the likelihood ratio under H0 is a nonnegative mar-
tingale with initial value equal to one and so is the mix-
ture of such likelihood ratios; see (Malek et al. 2017;
Pekelis, Walsh, and Johari 2015) for a detailed proof.

Johari et al. (2017), recently, have brought mSPRT to on-
line A/B tests where testing parameters μA, μB are assumed
to be the mean of Bernoulli or normal distribution, depend-
ing on whether the data is binary or continuous. They mod-
ified the original mSPRT to make it applicable to industrial
A/B tests based on some approximation techniques, and em-
pirically showed that the new test has high detection perfor-
mance with type I error control.

2.3 Heterogeneous Treatment Effect

Up to now, all the online A/B tests we have talked about
are focusing only on testing the average treatment effect
(ATE). However, treatment effects are commonly believed
to be varying among individuals, and individual treatment
effects may differ in magnitude and even have opposite di-
rection. This is called heterogeneous treatment effect (HTE).
Testing HTE could help us identify sub-populations where
treatment shows better performance and allow personalized
treatment as well.

To give a better insight of the difference between ATE and
HTE testing, let’s take the generalized linear model (GLM)
for example,

Yi
ind∼ Exponential Family(γi, φ), i = 1, · · · , n

fYi
(yi|γi, φ) = exp

{
yiγi − b(γi)

ai(φ)
+ c(yi, φ)

}
, (5)

where n denotes the sample size, ai(·), b(·) and c(·, ·) are
known functions, γi is the canonical parameter, and φ is a
typically known dispersion parameter. They are related to
the mean and variance of the response through:

μi = E(Yi) = b′(γi), V ar(Yi) = ai(φ) · b′′(γi). (6)

A link function g(·) provides the relationship between the
linear predictor and the mean of response:

g(μi) = ηi. (7)

where the linear predictor ηi has different forms depend-
ing on either ATE or HTE setting. There is always a well-
defined canonical link derived from the response’s density
function, which is a link function such that g(μi) = γi.
For example, normal distribution has an identity function
g(μi) = μi as the canonical link, Bernoulli has a logit link
g(μi) = log μi

1−μi
and Poisson has a log link g(μi) = log μi.

HTE and ATE testings have different assumptions about
the form of the linear predictor. ATE testing assumes that

ηi = θ + βAi, (8)

and test H0 : β = β0, whereas HTE testing assumes that

ηi = θ
TXi + (βTXi)Ai, (9)

and test H0 : β = β0, where Xi denotes the covariates
vector with the first element being 1 indicating the intercept,
and Ai denotes the binary treatment. Note that β and θ in
HTE testing are both vectors since at least one covariate is
considered.

In the case of HTE testing, mSPRT does not work well for
the following reasons:

1. The test statistic may not have an explicit form if a con-
jugate prior π(·) for likelihood ratio doesn’t exist, as is
often the case in HTE testing, e.g., logistic regression. As
a result, the computation is inefficient to implement in a
streaming environment;

2. The nuisance parameter θ in the likelihood function is un-
known. Even though it can be replaced by its estimator,
the resulting test statistics is no longer a martingale and
hence the type I error cannot be controlled. Johari, Peke-
lis, and Walsh (2015) used a sufficient statistic for nui-
sance parameter and applied central limit theory to deal
with this issue in A/B tests with Bernoulli distribution.
However, this technique failed to be extended to HTE set-
ting.

Therefore, we want to develop a valid online test that can
deal with heterogeneous treatment effect.

3 A New Framework of Sequential Testing

In this section, we propose a new framework of sequential
testing, called Sequential Score Test (SST), which is able
to test heterogeneous treatment effect while accounting for
unknown individual effects. This framework is applicable to
independent observations from an exponential family, which
includes a large set of commonly used distributions.

Instead using integrated likelihood ratios as in mSPRT,
we consider the integration of the ratios of asymptotic score
statistic distributions under the local alternative against the
null hypothesis. The proposed method can naturally handle
nuisance parameters in testing HTE. In addition, the asymp-
totic representation of the score statistics under the local al-
ternative and the null hypotheses (established in Lemma 3.1)
can lead to a martingale structure under the null similarly as
for the integrated likelihood ratio statistics, and the resulting
test statistic have a closed form for integration, which facil-
itates the implementation of the proposed testing procedure.

3.1 Sequential Score Test

Suppose we have i.i.d. data (Yi, Ai,Xi), where Y , A, X
respectively denote response, binary treatment and (p + 1)-
dimensional covariates vector including an intercept, respec-
tively. We assume that the distribution of Yi conditional on
(Ai,Xi) is an exponential family defined in (5)-(7) with ηi
in the form of (9), where β and θ denote the heterogeneous
treatment effect and baseline effect, respectively. We want to
test null hypothesis H0 : β = β0 against local alternative
H1 : β = β0 +

δ√
n

(δ �= 0).
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To introduce the test statistic of SST, let’s start with some
notations. For ease of exposition, we suppose that each
group has n observations. Let S(1)

n,β(θ,β0) denotes the score
function of β for treatment group (A = 1) under the null hy-
pothesis H0 : β = β0:

S
(1)
n,β(θ,β0) =

n∑
i=1

(
∂μ

(1)
i (β,θ)

∂βT
· (Y

(1)
i − μ

(1)
i (β,θ))

ai(φ) · V (1)
i (β,θ)

)∣∣∣∣
β=β0

(10)
and S

(0)
n,θ(θ) denotes the score function of θ for control

group (A = 0):

S
(0)
n,θ(θ) =

n∑
i=1

∂μ
(0)
i (θ)

∂θT
· (Y

(0)
i − μ

(0)
i (θ))

ai(φ) · V (0)
i (θ)

, (11)

where μ
(0)
i (θ) = E(Yi|Ai = 0,Xi), μ

(1)
i (β,θ) =

E(Yi|Ai = 1,Xi), ai(φ) · V (0)
i (θ) = V ar(Yi|Ai = 0,Xi)

and ai(φ) ·V (1)
i (β,θ) = V ar(Yi|Ai = 1,Xi). For simplic-

ity, let’s assume ai(φ) = a(φ) for all i and a(φ) is known.
Consider the following estimated average score S̄n for

treatment group (A=1) under H0 : β = β0:

S̄n :=
1

n
S
(1)
n,β(θ̂n,β0), (12)

where θ̂n is the maximum likelihood estimator of θ calcu-
lated based on data from the control group (A = 0). The
idea behind SST is to consider the test statistic as a mixture
of asymptotic probability ratios of S̄n, instead of the likeli-
hood ratios, under alternative hypothesis to that under null
hypothesis. The test statistic Λ̃π

n is defined as below:

Λ̃π
n =

∫ ψ(
Ī(1)n (θ̂n)(β−β0),

Vn(θ̂n)
n

)(S̄n)

ψ(
0,

Vn(θ̂n)
n

)(S̄n)
π(β)dβ, (13)

where

• ψ(μ,Σ)(·) denotes the probability density function of mul-
tivariate normal distribution with mean μ and variance Σ

• Vn(θ) = Ī
(1)
n (θ) + Ī

(1)
n (θ)

[
Ī
(0)
n (θ)

]−1

Ī
(1)
n (θ)

• Ī
(1)
n (θ) = − 1

n

∂S
(1)
n,β(θ,β0)

∂θ =

1
n

∑n
i=1

[
∂μ

(1)
i

(β,θ)

∂θT · ∂μ
(1)
i

(β,θ)

∂β

a(φ)·V (1)
i (β,θ)

] ∣∣∣∣
β=β0

• Ī
(0)
n (θ) = − 1

n

∂S
(0)
n,θ(θ)

∂θ = 1
n

∑n
i=1

[
∂μ

(0)
i

(θ)

∂θT · ∂μ
(0)
i

(θ)

∂θ

a(φ)·V (0)
i (θ)

]

• π(·) is a ”mixture” distribution over the parameter space
denoting the distribution of true effects β. It is assumed to
be positive everywhere. For ease of computation, we often
choose β ∼ MVN(β0, τ

2I), where I denotes (p+ 1)×
(p+1) identity matrix and τ is chosen based on historical
data

Intuitively, large value of Λ̃π
n represents the evidence

against H0 in favor of a mixture of alternatives β �= β0,
weighted by β ∼ π(·). The decision rule for SST is quite
simple and is shown in (14). That is, given a significance
level α, the test stops and rejects the null hypothesis at the
first time that Λ̃π

n ≥ α−1; if no such time exists, it accepts
the null hypothesis.

T (α) = inf{n : Λ̃π
n ≥ α−1} δ(α) = 1(T (α) < ∞).

(14)
The corresponding sequential (always valid) p-value at sam-
ple size n, by definition of (2), is the reciprocal of the maxi-
mum value of Λ̃π

n up to n:

pn =
1

maxm≤nΛ̃π
m

. (15)

It is obvious to see that the online p-value is monotonically
non-increasing in n and pT (α) = α.

3.2 Validity of SST

The intuition of Λ̃π
n being the appropriate test statistics

comes from representing the mixture of asymptotic proba-
bility ratios of S̄n. In this section, we will give the asymp-
totic distribution of S̄n under null hypothesis and local al-
ternative hypothesis, respectively. Meanwhile, we will of-
fer some insights to demonstrate the approximate validity of
SST, that is, the type I error is controlled at large sample
size.

The following lemma provides the asymptotic distribu-
tions of S̄n with proof shown in the supplemental material.
Lemma 3.1 For generalized linear model in (5)-(7)(9) and
S̄n in (12), define the information matrix for each group as
below:

I
(0)

(θ) := E(X,Y)

[̄
I
(0)
n (θ)

]
= E(X,Y)

⎡
⎢⎢⎣

∂μ
(0)
1 (θ)

∂θT · ∂μ
(0)
1 (θ)

∂θ

a(φ) · V (0)
1 (θ)

⎤
⎥⎥⎦ (16)

I
(1)

(θ) := E(X,Y)

[̄
I
(1)
n (θ)

]
= E(X,Y)

⎡
⎢⎢⎣

∂μ
(1)
1 (β,θ)

∂θT · ∂μ
(1)
1 (β,θ)

∂β

a(φ) · V (1)
1 (β, θ)

⎤
⎥⎥⎦
∣∣∣∣
β=β0

(17)
Then, under null hypothesis H0 : β = β0,

√
nS̄n

d−−→
H0

MVNp+1 (0,V(θ0)) (18)

whereas under local alternative H1 : β = β0 +
δ√
n

,
√
n
(
S̄n − I(1)(θ0)(β − β0)

)
d−−→
H1

MVNp+1 (0,V(θ0))

(19)

where V(θ) = I(1)(θ) + I(1)(θ)
[
I(0)(θ)

]−1

I(1)(θ), and
θ0 is the true value of the nuisance parameter.

By Lemma 3.1, the asymptotic probability ratio of S̄n un-
der local alternative H1 : β = β0 +

δ√
n

against under null
hypothesis H0 : β = β0 can be represented as:

λn =

ψ(
I(1)(θ0)(β−β0),

V(θ0)
n

)(S̄n)

ψ(
0,

V(θ0)
n

)(S̄n)
(20)
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Different from likelihood ratio, λn is not an exact martin-
gale, but we can show that the approximate martingale prop-
erty does hold when the sample size n is large enough. See
the following remark for mathematical expression; the proof
can be found in the supplemental material.

Remark 3.1 For generalized linear model in (5)-(7)(9) and
λn defined by (20), let Fn denote the filtration that contains
historical information as below:

Fn = {(X(j)
i , Y

(j)
i ), i = 1, · · · , n; j = 0, 1} (21)

Then, under the null hypothesis H0 : β = β0, E [λn+1|Fn]
is approximately equal to λn · exp {op(1)}.

For practical purpose, we usually replace λn with its fol-
lowing empirical version λ̃n:

λ̃n =

ψ(
Ī(1)n (θ̂n)(β−β0),

Vn(θ̂n)
n

)(S̄n)

ψ(
0,

Vn(θ̂n)
n

)(S̄n)
(22)

which is exactly the main term in the definition (13) of Λ̃π
n.

The empirical ratio λ̃n shares the same martingale property
as λn when the sample size is large enough.

Similar to mSPRT in Section 2.2, if we can show that the
ratio λ̃n is a martingale under null hypothesis H0 : β = β0,
the type I error control for SST follows immediately by ap-
plying optional stopping theorem and the fact that a mix-
ture of a martingale is also a martingale. Clearly, as a result
of asymptotic distribution and empirical replacement, exact
martingale cannot be proved for λ̃n. But with approximate
martingale property in Remark 3.1, the decision rule (14) for
SST approximately controls type I error at small α where
large sample size is necessary to reject H0.

4 Multiple Testing

The SST framework can also be applied to multiple test-
ing, where more than one treatment variation are compared
against a baseline variation, or more than one metric are of
interest between two variations. The main problem in mul-
tiple comparisons is that the probability to find at least one
statistically significant effect across a set of tests, even when
in fact there is nothing going on, increases with the number
of comparisons (Hsu 1996).

In fixed-horizon, Bonferroni correction (Miller 1966) and
Benjamini-Hochberg(BH) (Benjamini and Hochberg 1995)
are two well-studied methods designed to address this is-
sue. The Bonferroni correction deals with multiple testing by
controlling the family-wise error rate (FWER): the probabil-
ity of making at least one false rejections. Although FWER
control provides the safest inference, it is too conservative
to offer sufficient detection power. Therefore, the BH proce-
dure is proposed to control the false discovery rate (FDR):
the expected proportion of the rejections that are false. Both
these two procedures take as input the vector of the p-values
for each comparison and produce a set of rejections.

In sequential test, the always-valid p-value defined in (2)
works as the ordinary p-value in fixed horizon testing. It is
trivial to show that Bonferroni or BH procedure applied on

a collection of sequential p-values controls FWER or FDR
(respectively) in the presence of arbitrary continuous moni-
toring (Johari et al. 2017). The corresponding algorithms for
sequential multiple comparisons under SST framework can
be summarized in proposition 1 and 2.

Proposition 1 (Bonferroni Correction for SST). For arbi-
trary stopping time T , compute the corresponding sequen-
tial p-values (piT )

m
i=1 by (15) for m comparisons. Then re-

ject hypotheses (1), ...(j), where j is the maximal such that
p
(j)
T ≤ α/m, and p

(1)
T , ..., p

(m)
T are the p-values arranged in

an increasing order.

Proposition 2 (Benjamini-Hochberg Procedure for SST).
For arbitrary stopping time T , compute the corresponding
sequential p-values (piT )

m
i=1 by (15) for m comparisons.

Then reject hypotheses (1), ...(j), where j is the maximal
such that:

p
(j)
T ≤ αj

m
∑m

r=1 1/r
(23)

and p
(1)
T , ..., p

(m)
T are the p-values arranged in an increasing

order.

Note that the term
∑m

r=1 1/r in (23) accounts for the fact
that the p-values may be correlated (Benjamini, Yekutieli,
and others 2001).

5 Experiment

5.1 Simulation

In this section, we compare our SST with the widely-used
mSPRT for both A/B tests (two-variations tests) and mul-
tiple tests on simulation data generated from combinations
of three generalized linear models (5)-(7)(9) and five types
of covariates. The significance level α = 0.05, null value
of testing parameter β0 = (0, 0) (for 2-dimensional covari-
ates) or (0, 0, 0) (for 3-dimensional covariates) and true nui-
sance parameter θ0 = (0, 1) (2-dimension) or (0, 1,−1) (3-
dimension) are fixed for all experiments. Each experiment is
repeated 1000 times to estimate type I error and power for
SST and mSPRT.

Generalized linear models: We choose three general-
ized linear models to represent response in different appli-
cations. For binary outcomes, such as clicks, conversions,
etc., we use logistic regression (Bernoulli distribution). For
real-valued response like revenue, ordinary linear regres-
sion (normal distribution) is a good choice. If the response
are non-negative integers, Poisson distribution which corre-
sponds to log regression is appropriate. However, mSPRT
didn’t provide the form of test statistics for Poisson distribu-
tion, so we only gives our SST result for log regression.

Covariates generation: We consider 5 different distribu-
tions for 2 or 3-dimensional (p = 1 or 2) covariates. The first
dimension is always 1 to indicate the intercept. The other el-
ement of 2-dimensional covariates are generated from nor-
mal distribution N(0, 1), uniform distribution U[−1, 1] and
Bernoulli distribution Ber(0.5), respectively. The last two
elements of 3-dimensional covariates are generated either
from a multivariate normal with mean ( 00 ) and variance
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GLM β0 θ0 Covariates Type I error (SST) Type I error (mSPRT)

Logistic (0,0) (0,1)
N(0,1) 0.017 0.001
U[-1,1] 0.019 0.004
Ber(0.5) 0.016 0.005

Regression (0,0,0) (0,1,-1) MVN 0.023 0.003
N(0,1)+U[-1,1] 0.026 0.002

Linear (0,0) (0,1)
N(0,1) 0.001 0.132
U[-1,1] 0.003 0.026
Ber(0.5) 0.005 0.021

Regression (0,0,0) (0,1,-1) MVN < 0.001 0.136
N(0,1)+U[-1,1] < 0.001 0.201

Log (0,0) (0,1)
N(0,1) 0.006

NA
U[-1,1] 0.008
Ber(0.5) 0.006

Regression (0,0,0) (0,1,-1) MVN 0.003
N(0,1)+U[-1,1] 0.004

Table 1: Estimated Type I error for HTE and ATE testing

GLM β0 θ0 Covariates Power (SST) Power (mSPRT)

Logistic

(-0.12,0.12) (0,1)
N(0,1) 0.730 0.356
U[-1,1] 0.709 0.514
Ber(0.5) 0.215 0.079

Regression (-0.15,0.15) (0,1)
N(0,1) 0.956 0.655
U[-1,1] 0.938 0.851
Ber(0.5) 0.436 0.169

(-0.12,0.12,-0.12) (0,1,-1) MVN 0.544 0.384
N(0,1)+U[-1,1] 0.559 0.287

(-0.15,0.15,-0.15) (0,1,-1) MVN 0.875 0.636
N(0,1)+U[-1,1] 0.897 0.564

Linear

(-0.05,0.05) (0,1)
N(0,1) 0.685 0.607
U[-1,1] 0.419 0.535
Ber(0.5) 0.053 0.099

Regression (-0.08,0.08) (0,1)
N(0,1) 1 0.943
U[-1,1] 0.979 0.960
Ber(0.5) 0.413 0.323

(-0.05,0.05,-0.05) (0,1,-1) MVN 0.400 0.607
N(0,1)+U[-1,1] 0.602 0.653

(-0.08,0.08,-0.08) (0,1,-1) MVN 0.994 0.955
N(0,1)+U[-1,1] 0.999 0.943

Log

(-0.05,0.05) (0,1)
N(0,1) 0.499

NA

U[-1,1] 0.132
Ber(0.5) 0.026

Regression (-0.08,0.08) (0,1)
N(0,1) 0.996
U[-1,1] 0.758
Ber(0.5) 0.282

(-0.05,0.05,-0.05) (0,1,-1) MVN 0.242
N(0,1)+U[-1,1] 0.726

(-0.08,0.08,-0.08) (0,1,-1) MVN 0.971
N(0,1)+U[-1,1] 1

Table 2: Estimated power for HTE and ATE testing

( 1 0.5
0.5 1 ), or a hybrid distribution with one variable from

N(0, 1) and the other one from U[−1, 1] independently.

In A/B testing, data are generated in batch with batch size
200, and then are assigned equally to control group and treat-
ment group. After each batch, we compute the correspond-
ing test statistic and reject the null hypothesis the first time it

exceeds some predetermined threshold. We also set an upper
bound N = 10000, which means that we would accept the
null hypothesis if the test statistic does not exceed the thresh-
old before the data are accumulated to N = 10000 (for each
group). We set the true value of HTE β to be 3 vectors with
different scales, including the null value β0. For β = β0,
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GLM Covariates FDR (SST) FDR (mSPRT) TPR (SST) TPR (mSPRT)

Logistic
N(0,1) 0.0119 0.0008 0.8038 0.7191
U[-1,1] 0.0059 0.0009 0.7957 0.7662

Regression Ber(0.5) 0.0067 0.0009 0.6501 0.4761
MVN 0.0114 0.0009 0.7664 0.7171

N(0,1)+U[-1,1] 0.0148 0.0007 0.7775 0.6944

Linear
N(0,1) 0.0004 0.1983 1 0.3787
U[-1,1] 0.0009 0.0687 0.9994 0.2868

Regression Ber(0.5) 0.0011 0.3332 0.8725 0.0504
MVN 0.0024 0.2013 0.9999 0.3748

N(0,1)+U[-1,1] 0.0005 0.2708 1 0.4092

Log
N(0,1) 0.0011

NA

1

NA
U[-1,1] 0.0025 0.9750

Regression Ber(0.5) 0.0019 0.8396
MVN 0.0010 0.9997

N(0,1)+U[-1,1] 0.0011 1

Table 3: Estimated FDR and TPR of HTE and ATE testing for multiple testing

Control article id Treatment article id HTE (β) ATE (β)
109510 109520 (-0.401, -0.091, -0.068, 0.661, -0.178) -0.179

Table 4: Fitted HTE and ATE

we estimate the type I error by computing the rejection ratio
among 1000 repeated experiments. For other two vectors,
we estimate the power in the same way.

It shows that the sequential score test is able to control
type I error (Table 1), and achieve higher detection power
(Table 2) than mSPRT if there is heterogeneous treatment
effect. We also find that if there exists individual effects on
response, that is, θ �= 0, mSPRT may not be able to control
type I error (Table 1). That is because the model assump-
tion for mSPRT given in formula (8) cannot handle individ-
ual baseline effects (i.e. θ in (9)) and possible treatment-
covariates interaction effects (i.e. HTE effects described by
β in formula (9)). Therefore, the mSPRT test cannot adjust
baseline covariates and may lead to incorrect type I errors
for testing HTE. For example, when θ �= 0 while β = 0 in
(9), mSPRT may reject the null hypothesis due to the out-
come difference caused by baseline effects, which may lead
to inflated type I errors. On the other hand, when β �= 0, the
mSPRT may fail to detect the HTE (lose power) or need to
wait a long time to reject the null hypothesis since treatment
effects may be masked by individual heterogeneity.

Our proposed test also works with high-dimensional co-
variates. We conduct additional simulations with 21 covari-
ates (p=20) under logistic regression. Except the first dimen-
sion (being 1), the last 20 covariates are independently gen-
erated from different distributions. Among these 20 covari-
ates, 7 are generated from normal distribution with variance
1 and different means between -0.3 to 0.3, 8 covariates are
from uniform distribution with mean 0 and upper limit be-
tween 0.3 to 1, and the last 5 covariates are generated from
binomial distribution with probability between 0.1 to 0.5.
The individual baseline effect θ has two non-zero compo-
nents. The simulation result shows that our SST still can
control type I error under the null (type I error is 0.025,

which is less than the significance level α), and has rea-
sonable power (i.e. when HTE effects β has three non-zero
components with the value of 0.2, the power is 0.731; and
when β has three non-zero components with the value of
0.3, the power is 1).

In multiple testing, the configurations of the hypotheses
involve m = 64 hypotheses, 3

4m true null hypotheses (β0 =

(0, 0) or (0, 0, 0)) and the remaining 1
4m true alternatives

being equally placed at β0 = (−B,B) or (−B,B,−B),
where B = 0.1, 0.2, 0.3, 0.4, respectively. For each compar-
ison, we wait until the data are accumulated to N = 10000
(for each group) and compute the sequential p-value pN ac-
cording to (15). After applying Benjamini-Hochberg(BH)
procedure, we get the rejections from which we can esti-
mate FDR and true positive rate (TPR), also known as re-
call. The TPR, defined as the proportion of correctly rejec-
tions in truly alternatives, is a metric for detection power in
multiple testing. Same as A/B testing, the results (Table 3)
show that SST applied on multiple testing achieves higher
TPR than mSPRT while maintaining FDR in control.

5.2 Real Data

We also compare SST with mSPRT on Yahoo dataset which
contains user click events on articles over 10 days. Each
event has a timestamp, a unique article id, a binary click in-
dicator, and five user features which are between 0 and 1 and
sum to 1 for each user (we only use the last four features).
We treat each article as different treatment variations, click
actions as the binary responses. Our goal is to test if there
is any article effects on user click behaviors with (SST) or
without (mSPRT) accounting for the user features.

We first conduct A/A test to show the validity of test on
click events with the most popular article (id=109510) on
the date May 1st, 2009, by randomly assigning fake treat-
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ment indicators to them. Then we conduct A/B test on events
with two most popular articles (id=109510 and 109520) on
the date May 1st, 2009. With every 200 events (from both
articles) coming in a time sequence, we compute the cor-
responding test statistics. As soon as the statistics exceed
the predetermined critical value (1/α), we stop and reject
the null hypothesis. If all the data are used up, we accept
the null hypothesis. The experiment shows that both SST
and mSPRT accept the null hypothesis for A/A test, indi-
cating type I errors are well controlled for both tests un-
der the considered hypotheses. For the A/B test, SST needs
n = 19600 events to get rejection conclusion while mSPRT
needs n = 67600. It means that we are able to discover the
difference early by accounting for the covariates. We also
provide estimated HTE (β in (9)) and ATE (β in (8)) by fit-
ting logistic regression.

For multiple test, we choose 10 articles and do pairwise
comparisons. Hence, there are m = 45 comparisons in to-
tal. We compute pT for each pair with T = 20000 from
each article and then apply BH procedure. Among 45 pair
comparisons, we reject 43 with SST and 23 with mSPRT.

6 Conclusions

We propose a new framework of online test based on the
probability ratio of score function. It is able to test a multi-
dimensional heterogeneous treatment effect while account-
ing for the unknown individual effect. The asymptotic nor-
mality of the score function guarantees an explicit form,
greatly improving the computation efficiency. We provide
an online p-value for SST and extend the procedure to online
multiple testing. We validate our testing procedure by both
theoretical proof and empirical results. We also compare it
with a state-of-art online test named mSPRT on simulation
and real data. The results show that our proposed test con-
trols type I error at any time, has higher detection power and
allows quick inference on online A/B testing.

There is still some interesting work we may do in the fu-
ture. The decision rule of our test implies that we can only
get rejection conclusions unless we wait essentially indef-
initely, which is impossible in practice. This necessitates
truncating SST at a maximum size and admitting an inclu-
sive result if we ever reach it, which may diminish the power
more or less. How to choose the truncating size to trade off
between waiting time and power still remains a problem.

References

Balsubramani, A., and Ramdas, A. 2015. Sequential non-
parametric testing with the law of the iterated logarithm.
arXiv preprint arXiv:1506.03486.
Benjamini, Y., and Hochberg, Y. 1995. Controlling the false
discovery rate: a practical and powerful approach to multi-
ple testing. Journal of the Royal statistical society: series B
(Methodological) 57(1):289–300.
Benjamini, Y.; Yekutieli, D.; et al. 2001. The control of the
false discovery rate in multiple testing under dependency.
The annals of statistics 29(4):1165–1188.
Goodson, M. 2014. Most winning a/b test results are illu-
sory. Whitepaper, Qubit, Jan.

Grimmer, J.; Messing, S.; and Westwood, S. J. 2017. Es-
timating heterogeneous treatment effects and the effects of
heterogeneous treatments with ensemble methods. Political
Analysis 25(4):413–434.
Grimmett, G.; Grimmett, G. R.; and Stirzaker, D. 2001.
Probability and random processes. Oxford university press.
Hsu, J. 1996. Multiple comparisons: theory and methods.
Chapman and Hall/CRC.
Johari, R.; Koomen, P.; Pekelis, L.; and Walsh, D. 2017.
Peeking at a/b tests: Why it matters, and what to do about
it. In Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 1517–1525. ACM.
Johari, R.; Pekelis, L.; and Walsh, D. J. 2015. Always valid
inference: Bringing sequential analysis to a/b testing. arXiv
preprint arXiv:1512.04922.
Ju, N.; Hu, D.; Henderson, A.; and Hong, L. 2019. A se-
quential test for selecting the better variant: Online a/b test-
ing, adaptive allocation, and continuous monitoring. In Pro-
ceedings of the Twelfth ACM International Conference on
Web Search and Data Mining, 492–500. ACM.
Kohavi, R.; Longbotham, R.; Sommerfield, D.; and Henne,
R. M. 2009. Controlled experiments on the web: survey
and practical guide. Data mining and knowledge discovery
18(1):140–181.
Kulldorff, M.; Davis, R. L.; Kolczak, M.; Lewis, E.; Lieu,
T.; and Platt, R. 2011. A maximized sequential probability
ratio test for drug and vaccine safety surveillance. Sequential
analysis 30(1):58–78.
Lai, T. L. 2001. Sequential analysis: some classical prob-
lems and new challenges. Statistica Sinica 303–351.
Lehmann, E. L., and Romano, J. P. 2006. Testing statistical
hypotheses. Springer Science & Business Media.
Malek, A.; Katariya, S.; Chow, Y.; and Ghavamzadeh, M.
2017. Sequential multiple hypothesis testing with type i er-
ror control. In Artificial Intelligence and Statistics, 1468–
1476.
Miller, R.G., J. 1966. Simultaneous Statistical Inference.
New York: McGraw-Hill Book Co.
Pekelis, L.; Walsh, D.; and Johari, R. 2015. The new stats
engine. Internet. Retrieved December 6:2015.
Pollak, M. 1978. Optimality and almost optimality of mix-
ture stopping rules. The Annals of Statistics 910–916.
Robbins, H., and Siegmund, D. 1974. The expected sample
size of some tests of power one. The Annals of Statistics
415–436.
Robbins, H. 1970. Statistical methods related to the law of
the iterated logarithm. The Annals of Mathematical Statis-
tics 41(5):1397–1409.
Simmons, J. P.; Nelson, L. D.; and Simonsohn, U. 2011.
False-positive psychology: Undisclosed flexibility in data
collection and analysis allows presenting anything as sig-
nificant. Psychological science 22(11):1359–1366.
Wald, A. 1945. Sequential tests of statistical hypotheses.
The annals of mathematical statistics 16(2):117–186.

10317


