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Abstract

Collaborative robotics requires effective communication be-
tween a robot and a human partner. This work proposes a
set of interpretive principles for how a robotic arm can use
pointing actions to communicate task information to peo-
ple by extending existing models from the related litera-
ture. These principles are evaluated through studies where
English-speaking human subjects view animations of sim-
ulated robots instructing pick-and-place tasks. The evalua-
tion distinguishes two classes of pointing actions that arise
in pick-and-place tasks: referential pointing (identifying ob-
jects) and locating pointing (identifying locations). The study
indicates that human subjects show greater flexibility in inter-
preting the intent of referential pointing compared to locating
pointing, which needs to be more deliberate. The results also
demonstrate the effects of variation in the environment and
task context on the interpretation of pointing. Our corpus, ex-
periments and design principles advance models of context,
common sense reasoning and communication in embodied
communication.

Introduction

Recent years have seen a rapid increase of robotic deploy-
ment, beyond traditional applications in cordoned-off work-
cells in factories, into new, more collaborative use-cases. For
example, social robotics and service robotics have targeted
scenarios like rehabilitation, where a robot operates in close
proximity to a human. While industrial applications envision
full autonomy, these collaborative scenarios involve interac-
tion between robots and humans and require effective com-
munication. For instance, a robot that is not able to reach
an object may ask for a pick-and-place to be executed in
the context of collaborative assembly. Or, in the context of
a robotic assistant, a robot may ask for confirmation of a
pick-and-place requested by a person.

When the robot’s form permits, researchers can design
such interactions using principles informed by research
on embodied face-to-face human–human communication.
In particular, by realizing pointing gestures, an articulated
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robotic arm with a directional end-effector can exploit a fun-
damental ingredient of human communication (Kita 2003).
This has motivated roboticists to study simple pointing ges-
tures that identify objects (Han, Kennington, and Schlangen
2018; Holladay, Dragan, and Srinivasa 2014; Zhao et al.
2016). This paper develops an empirically-grounded ap-
proach to robotic pointing that extends the range of physical
settings, task contexts and communicative goals of robotic
gestures. This is a step towards the richer and diverse inter-
pretations that human pointing exhibits (Kendon 2004).

This work has two key contributions. First, we create a
systematic dataset, involving over 7000 human judgments,
where crowd workers describe their interpretation of anima-
tions of simulated robots instructing pick-and-place tasks.
Planned comparisons allow us to compare pointing actions
that identify objects (referential pointing) with those that
identify locations (locating pointing). They also allow us to
quantify the effect of accompanying speech, task constraints
and scene complexity, as well as variation in the spatial con-
tent of the scene. This new resource documents important
differences in the way pointing is interpreted in different
cases. For example, referential pointing is typically robust
to the exactness of the pointing gesture, whereas locating
pointing is much more sensitive and requires more deliberate
pointing to ensure a correct interpretation. The Experiment
Design section explains the overall process of data collec-
tion, the power analysis for the preregistered protocol, and
the content presented to subjects across conditions.

The second contribution is a set of interpretive principles,
inspired by the literature on vague communication, that sum-
marize the findings about robot pointing. They suggest that
pointing selects from a set of candidate interpretations deter-
mined by the type of information specified, the possibilities
presented by the scene, and the options compatible with the
current task. In particular, we propose that pointing picks
out all candidates that are not significantly further from the
pointing ray than the closest alternatives. Based on our em-
pirical results, we present design principles that formalize
the relevant notions of “available alternatives” and “signifi-
cantly further away”, which can be used in future pointing
robots. The Analysis and Design Principles sections explain
and justify this approach.
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Figure 1: A pick-and-place task requires a referential point-
ing action to the object (orange cube) at the initial position,
and a locating pointing action to a final placement position
(dotted cube). Such an action by a robot (in red) can also be
accompanied by verbal cues like “Put that there.”

Related work

This paper focuses on the fundamental AI challenge of
effective embodied communication, by proposing empiri-
cally determined generative rules for robotic pointing, in-
cluding not only referential pointing but also pointing that
is location-oriented in nature. Prior research has recog-
nized the importance of effective communication by em-
bracing the diverse modalities that AI agents can use to ex-
press information. In particular, perceiving physical actions
(Thibadeau 1986) is often essential for socially-embedded
behavior (Dautenhahn, Ogden, and Quick 2002), as well as
for understanding human demonstrations and inferring so-
lutions that can be emulated by robots (Kuniyoshi, Inaba,
and Inoue 1994). Animated agents have long provided re-
sources for AI researchers to experiment with models of
conversational interaction including gesture (Cassell et al.
1994), while communication using hand gestures (Pavlovic,
Sharma, and Huang 1997) has played a role in supporting
intelligent human-computer interaction.

Enabling robots to understand and generate instructions to
collaboratively carry out tasks with humans is an active area
of research in natural language processing and human-robot
interaction (Bütepage and Kragic 2017; Cha et al. 2018).
Since robotic hardware capabilities have increased, robots
are increasingly seen as a viable platform for expressing and
studying behavioral models (Scassellati 2003). In the con-
text of human-robot interaction, deictic or pointing gestures
have been used as a form of communication (Pook and Bal-
lard 1996). More recent work has developed richer abilities
for referring to objects by using pre-recorded, human-guided
motions (Sauppé and Mutlu 2014), or using mixed-reality,
multi-modal setups (Williams et al. 2019).

Particular efforts in robotics have looked at making point-
ing gestures legible, adapting the process of motion planning
so that robot movements are correctly understood as being
directed toward the location of a particular object in space
(Holladay, Dragan, and Srinivasa 2014; Zhao et al. 2016).
The current work uses gestures, including pointing gestures
and demonstrations, that are legible in this sense. It goes on
to explore how precise the targeting has to be to signal an
intended interpretation.

In natural language processing research, it’s common to
use an expanded pointing cone to describe the possible target
objects for a pointing gesture, based on findings about hu-
man pointing (Kranstedt, Kühnlein, and Wachsmuth 2003;
Rieser 2004). Pointing cone models have also been used
to model referential pointing in human–robot interaction
(Whitney et al. 2016; 2017). In cluttered scenes, the point-
ing cone typically includes a region with many candidate
referents. Understanding and generating object references
in these situations involves combining pointing with natu-
ral language descriptions (Han, Kennington, and Schlangen
2018; Kollar et al. 2014). While we also find that many
pointing gestures are ambiguous and can benefit from lin-
guistic supplementation, our results challenge the assump-
tion of a uniform pointing cone. We argue for an alternative,
context-sensitive model.

In addition to gestures that identify objects, we also look
at pointing gestures that identify points in space. The closest
related work involves navigation tasks, where pointing can
be used to discriminate direction (e.g., left vs right) (Mei,
Bansal, and Walter 2016; Tellex et al. 2011). The spatial in-
formation needed for pick-and-place tasks is substantially
more precise. Our findings suggest that this precision signif-
icantly impacts how pointing is interpreted and how it should
be modeled.

Communicating Pick-and-Place

This section provides a formalization of pick-and-place
tasks and identifies information required to specify them.
Manipulator: Robots that can physically interact with their
surroundings are called manipulators, of which robotic arms
are the prime example.
Workspace: The manipulator operates in a 3D workspace
W ⊆ R

3. The workspace also contains a stable surface of
interest defined by a plane S ⊂ W along with various ob-
jects. To represent 3D coordinates of workspace positions,
we use x ∈ W .
End-effector: The tool-tips or end-effectors are geometries,
often attached at the end of a robotic arm, that can interact
with objects in the environment. These form a manipulator’s
chief mode of picking and placing objects of interest and
range from articulated fingers to suction cups. A subset of
the workspace that the robot can reach with its end-effector
is called the reachable workspace. The end-effector in this
work is used as a pointing indicator.
Pick-and-place: Given a target object in the workspace, a
pick-and-place task requires the object to be picked up from
its initial position and orientation, and placed at a final posi-
tion and orientation. When a manipulator executes this task
in its reachable workspace, it uses its end-effector. The rest
of this work ignores the effect of the object’s orientation
by considering objects with sufficient symmetry. Given this
simplification, the pick-and-place task can be viewed as a
transition from an initial position xinit ∈ W to a final place-
ment position xfinal ∈ W . Thus, a pick-and-place task can be
specified with a tuple

PAP = 〈o, xinit, xfinal〉.
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Figure 2: (A) Workspace setup showing the pointing cone
and the corresponding conic section on the table. (B) The
degrees-of-freedom considered for placement of the object
on the table. (C) Sampling policy to sample object poses
within the conic section.

Pointing Action: Within its reachable workspace the end-
effector of the manipulator can attain different orientations
to fully specify a reachable pose p, which describes its posi-
tion and orientation. The robots we study have a directional
tooltip that viewers naturally see as projecting a ray r along
its axis outward into the scene. In understanding pointing as
communication, the key question is the relationship between
the ray r and the spatial values xinit and xfinal that define the
pick-and-place task.

To make this concrete, we distinguish between the target
of pointing and the intent of pointing. Given the ray r com-
ing out of the end-effector geometry, we define the target
of the pointing as the intersection of this ray on the stable
surface,

x∗ = r ∩ S.

Meanwhile, the intent of pointing specifies one component
of a pick-and-place task. There are two cases:

- Referential Pointing: The pointing action is intended to
identify a target object o to be picked up. This object is
the referent of such an action. We can find xinit, based on
the present position of o.

- Locating Pointing: The pointing action is intended to
identify the location in the workspace where the object
needs to be placed, i.e, xfinal.

We study effective ways to express intent for a pick-and-
place task. In other words, what is the relationship between a
pointing ray r and the location xinit or xfinal that it is intended
to identify? To assess these relationships, we ask human ob-
servers to view animations expressing pick-and-place tasks
and classify their interpretations. To understand the factors
involved, we investigate a range of experimental conditions.

Experiments

Our experiments share a common animation platform, de-
scribed in the Experimental Setup, and a common Data Col-
lection protocol. The experiments differ in presenting sub-
jects with a range of experimental conditions, as described

in the corresponding section. All of the experiments de-
scribed here together with the methods chosen to analyze the
data were based on a private but approved pre-registration
on aspredicted.org. The document is publicly available at:
https://aspredicted.org/cg753.pdf.

Experiment Setup

Each animation shows a simulated robot producing two
pointing gestures to specify a pick-and-place task. Follow-
ing the animation, viewers are asked whether a specific
image represents a possible result of the specified task.

Robotic Platforms The experiments were performed on
two different robotic geometries, based on a Rethink Baxter,
and a Kuka IIWA14. The Baxter is a dual-arm manipulator
with two arms mounted on either side of a static torso. The
experiments only move the right arm of the Baxter. The
Kuka consists of a single arm that is vertically mounted, i.e.,
points upward at the base. In the experiments the robots are
shown with a singly fingered tool-tip, where the pointing
ray is modeled as the direction of this tool-tip.

Note The real Baxter robot possesses a heads-up display
that can be likened to a ‘head’. This has been removed in
the simulations that were used in this study (as shown for
example in Figure 4).

Workspace Setup Objects are placed in front of the manip-
ulators. In certain trials a table is placed in front of the robot
as well, and the objects rest in stable configurations on top
of the table. A pick-and-place task is provided specified in
terms of the positions of one of the objects.

Objects The objects used in the study include small house-
hold items like mugs, saucers and boxes (cuboids), that are
all placed in front of the robots.

Motion Generation The end-effector of the manipulator is
instructed to move to pre-specified waypoints, designed for
the possibility of effective communication, that typically
lie between the base of the manipulator and the object
itself. Such waypoints fully specify both the position and
orientation of the end-effector to satisfy pointing actions.
The motions are performed by solving Inverse Kinematics
for the end-effector geometry and moving the manipulator
along these waypoints using a robotic motion planning
library (Littlefield et al. 2014). The motions were replayed
on the model of the robot, and rendered in Blender.

Pointing Action Generation Potential pointing targets are
placed using a cone C(r, θ), where r represents the point-
ing ray and θ represents the vertex angle of the cone. As
illustrated in Fig 2, the cone allows us to assess the possible
divergence between the pointing ray and the actual location
of potential target objects on the rest surface S.

Given a pointing ray r, we assess the resolution of the
pointing gesture by sampling N object poses pi, i = 1 : N
in P = C(r, θ) ∩ S—the intersection of the pointing cone
with the rest surface. While pi is the 6d pose for the object
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Figure 3: The image shows the differences between referen-
tial (top) and locating pointing (bottom), demonstrated on a
robotic manipulator, Kuka IIWA14. An overlay of the object
is shown at the placement location where locating pointing
needs to be directed. Human subjects are more flexible in
the interpretation of referential pointing than with that of lo-
cating pointing.

with translation t ∈ R3 and orientation R ∈ SO(3) only 2
degrees-of-freedom (x, y) corresponding to t are varied in
the experiments. By fixing the z coordinate for translation
and restricting the z-axis of rotation to be perpendicular to
S, it is ensured that the object rests in a physically stable
configuration on the table.

The N object poses are sampled by fitting an ellipse
within P and dividing the ellipse into 4 quadrants q1 . . . q4
(See Figure 2 (C)). Within each quadrant qi the N/4 (x, y)
positions are sampled uniformly at random. For certain
experiments additional samples are generated with an
objective to increase coverage of samples within the ellipse
by utilizing a dispersion measure.

Speech Some experiments also included verbal cues with
phrases like ‘Put that there’ along with the pointing actions.
It was very important for the pointing actions and these ver-
bal cues to be in synchronization. To fulfill this we generate
the voice using Amazon Polly with text written in SSML
format and make sure that peak of the gesture (the moment
a gesture comes to a stop) is in alignment with the peak of
each audio phrase in the accompanying speech. During the
generation of the video itself we took note of the peak mo-
ments of the gestures and then manipulated the duration be-
tween peaks of the audio using SSML to match them with
gesture peaks after analyzing the audio with the open-source
tool PRAAT (www.praat.org).

Data Collection

Data collection was performed in Amazon Mechanical Turk.
All subjects agreed to a consent form and were compensated

Figure 4: (Left) In an unnatural scene, a gesture pointing to
an unstable position (edge of the stack) is deemed correct.
(Right) In natural scenes, although the robot points to the
edge of the stack, a physically realistic object position gets
more user vote than the unstable position.

at an estimated rate of USD 20 an hour. The subject-pool was
restricted to non-colorblind US citizens. Subjects are pre-
sented a rendered video of the simulation where the robot
performs one referential pointing action, and one locating
pointing action which amounts to it pointing to an object,
and then to a final location. During these executions syn-
chronized speech is included in some of the trials to provide
verbal cues.

Then on the same page, subjects see the image that shows
the result of the pointing action. They are asked whether the
result is (a) correct, (b) incorrect, or (c) ambiguous.

To test our hypothesis, we studied the interpretation of the
two pointing behaviors in different contexts. Assuming our
conjecture and a significance level of 0.05, a sample of 28
people in each condition is enough to detect our effect with
a 95% power. Participants are asked to report judgments on
the interpretation of the pointing action in each class. Each
participant undertakes two trials from each class. The range
of different cases are described below. Overall, the data col-
lection in this study involved over 7,290 responses to robot
pointing actions.1

Experimental Conditions

We used our experiment setup to generate videos and images
from the simulation for a range of different conditions.

Referential vs Locating In this condition, to reduce the
chances of possible ambiguities, we place only one mug is
on the table. The Baxter robot points its right arm to the
mug and then points to its final position, accompanied by a
synchronized verbal cue, “Put that there.”

We keep the motion identical across all the trials in this
method. We introduce a variability in the initial position of
the mug by sampling 8 random positions within conic sec-
tions subtending 45◦, 67.5◦, and 90◦ on the surface of the
table. New videos are generated for each such position of

1The data, code, and videos are available at https://github.com/
malihealikhani/That and There.
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the mug. This way we can measure how flexible subjects are
to the variation of the initial location of the referent object.

To test the effect for the locating pointing action, we test
similarly sampled positions around the final pointed loca-
tion, and display these realizations of the mug as the result
images to subjects, while the initial position of the mug is
kept perfectly situated.

A red cube that is in the gesture space of the robot, and
is about twice as big as the mug is placed on the other side
of the table as a visual guide for the subjects to see how
objects can be placed on the table. We remove the tablet that
is attached to Baxter’s head for our experiments.

Effect of speech In order to test the effect of speech on the
disparity between the kinds of pointing actions, a set of ex-
periments were designed under the Referential vs Locating
method with and without any speech. All subsequent meth-
ods will include verbal cues during their action execution.
These cues are audible in the video.

Reverse Task One set of experiments are run for the pick-
and-place task with the initial and final positions of the ob-
ject flipped during the reverse task. As opposed to the first
set of experiments, the robot now begins by pointing to an
object in the middle of the table, and then to an area areas
towards the table’s edge, i.e., the pick and place positions of
the object are ‘reversed’.

The trials are meant to measure the sensitivity of the sub-
jects in pick trials to the direction of the pointing gestures
and to the absolute locations that the subjects thought the
robot was pointing at.

This condition is designed to be identical to the basic Ref-
erential vs Locating study, except for the direction of the
action. The motions are still executed on the Baxter’s right
arm.

Different Robotic Arm In order to ensure that the results
obtained in this study are not dependent on the choice of the
robotic platform or its visual appearance, a second robot—a
singly armed industrial Kuka manipulator—is also evaluated
in a Referential vs Locating study (shown in Figure 3).

Cluttered Scene To study how the presence of other ob-
jects would change the behavior of referential pointing, we
examine the interpretation of the pointing actions when there
is more than one mug on the table. Given the instructions to
the subjects, both objects are candidate targets. This exper-
iment allows the investigation of the effect of a distractor
object in the scene on referential pointing.

We start with a setup where there are two mugs placed on
the table (similar to the setup in Figure 5). One is a target
mug placed at position xobject and a distractor mug at posi-
tion xdistractor. With the robot performing an initial pointing
action to a position xinit on the table. Both the objects are
sampled around xinit along the diametric line of the conic
section arising from increasing cone angles of 45◦, 67.5◦,
and 90◦, where the separation of xobject, and xdistractor is equal
to the length of the diameter of the conic section, D. The

Figure 5: A cluttered trial consists of collecting the response
from a human subject when the position of the referential
pointing action lies between two objects.

objects are then positioned on the diametric line with a ran-
dom offset between [−D

2 ,
D
2 ] around xinit and along the line.

This means that the objects are at various distances apart,
and depending upon the offset, one of the objects is nearer
to the pointing action. The setup induces that the nearer mug
serves as the object, and the farther one serves as the distrac-
tor. The motions are performed on the Baxter’s right arm.
The camera perspective in simulation is set to be facing into
the pointing direction. The subjects in this trial are shown
images of the instant of the referential pointing action.

Natural vs Unnatural scene In this condition we study
how the contextual and physical understanding of the world
impacts the interpretation of pointing gestures. We generate
a scenario for locating pointing in which the right arm of the
Baxter points to a final placement position for the cuboidal
object on top of a stack of cuboidal objects but towards the
edge which makes it physically unstable. The final config-
urations of the object (Figure 6) shown to the users were
a) object lying on top of the stack b) object in the unstable
configuration towards the edge of the stack and c) object at
the bottom of the stack towards one side. New videos are
generated for each scenario along with verbal cues.

The pointing action, as well as the objects of interest, stay
the identical between the natural, and unnatural trials. The
difference lies in other objects in the scene that could defy
gravity and float in the unnatural trials. The subjects were
given a text-based instruction at the beginning of an unnatu-
ral trial saying they were seeing a scene where “gravity does
not exist.”

Different verbs To test if the effect is specific to the verb
put, we designed a control condition where everything re-
mained the same as the Referential vs Locating trials except
the verb put which we replaced with place, move and push.
Here again we collect 30 data points for each sampled x∗.
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Figure 6: The diagram shows the three different configura-
tions of the placement of a blue cuboid object evaluated in
the Natural vs Unnatural trials.

Analysis

Referential vs Locating We study how varying the target
of the pointing action from a referent object to a part of the
space changes the interpretation of the pointing action by
comparing the interpretation of the position of the pointing
action x∗ in each condition.

Figure 7 shows the results of the experiment. The plot
shows the spread of correct, incorrect, ambiguous responses
over the sampled positions about the location of referential
vs locating pointing actions. The referential data demon-
strates the robustness of the interpretation. Most of the re-
sponses were overwhelmingly correct, for both robots, in
interpreting a referent object in the pick part of a pick-and-
place task. The locating pointing shows a much higher sensi-
tivity to an accuracy of x∗ with respect to the true final place-
ment. This comes up as a larger incidence of incorrect and
ambiguous responses from the human subjects. This trend is
true for the reverse trial as well.

While the study attempts to separate out and measure the
critical aspects of the interpretation of robotic pointing ac-
tions some ambiguities like those arising out of perspective
of the camera being projected onto a simulated 2D video or
image are unavoidable. We suspect that the observed stretch
of correct responses in spatial trials is due to perspective.

To test our hypothesis that Referential pointing is inter-
preted less precisely than Locating pointing we performed
a Chi-squared test and compared the proportion of correct,
incorrect and ambiguous responses in referential and spatial
trials. The results of the test shows that these two classes
are statistically significantly different (χ2 = 13.89, p =
0.00096).

To study if we are observing the same effects in the results
of the reverse trial, no speech trial and the Kuka trial, we ran
an equivalence test following the two one-sided tests method
as described in (Lakens 2017), where each test is a pooled
z-test with no continuity correction with a significance level
of 0.05. We found changing the robot, removing the speech
and changing the direction of the pointing action to make
no difference in the interpretation of locating pointing and
referential pointing within any margin that is less than 5%.

Natural vs Unnatural As shown in Table 1 we observed
in the natural scene, when the end-effector points towards
the edge of the cube that is on top of the stack, subjects place
the new cube on top of the stack or on the table instead of the

correct incorrect ambiguous
unnatural top 12 9 9

edge 24 2 4
table 2 2 26

natural top 26 3 1
edge 9 11 10
table 7 13 12

Table 1: Results of the unnatural scene and natural scene.
(Numbers are out of 30.)

edge of the cube. However, in the unnatural scene, when we
explain to subjects that there is no gravity, a majority agree
with the final image that has the cube on the edge. To test if
this difference is statistically significant, we use the Fisher
exact test (Fisher 1922). The test statistic value is 0.0478.
The result is significant at p < 0.05.

Different verbs The results of the Chi-squared test shows
that in spatial trials when we replace put with place, push
and move, the differences of the distributions of correct, in-
correct and ambiguous responses are not statistically signifi-
cant (χ = 0.2344, p = 0.971). The coefficients of the multi-
nomial logistic regression model and the p-values also sug-
gest that the differences in judgements with different verbs
are not statically significant (b < 0.0001 , p > 0.98).

Cluttered The data from these trials show how human
subjects select between the two candidate target objects on
the table. Since the instructions do not serve to disambiguate
the target mug, the collected data show what the observers
deemed as the correct target. Figure 8 visualizes subjects’
responses across trials. The location of each pie uses the x-
axis to show how much closer one candidate object is to the
pointing target than the other, and uses the y-axis to show
the overall imprecision of pointing. Each pie in Figure 8
shows the fraction of responses across trials that recorded
the nearer (green) mug as correct compared to the farther
mug (red). The white shaded fractions of the pies show the
fraction of responses where subjects found the gesture am-
biguous.

As we can see in Figure 8, once the two objects are
roughly equidistant the cups from the center of pointing
(within about 10cm), subjects tend to regard the pointing
gesture as ambiguous, but as this distance increases, subjects
are increasingly likely to prefer the closer target. In all cases,
wherever subjects have a preference for one object over the
other, they subjects picked the mug that was the nearer target
of the pointing action more often than the further one.

Human Evaluation of Instructions

After designing and conducting our experiments, we be-
came concerned that subjects might regard imprecise refer-
ential pointing as understandable but unnatural. If they did,
their judgments might combine ordinary interpretive reason-
ing with additional effort, self-consciousness or repair. We
therefore added a separate evaluation to assess how natural
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Figure 7: The aggregated results from the referential versus spatial trials for the Baxter and Kuka robots. The locations of the
responses correspond to the center of the circles, and are plotted in the coordinate frame centered at the position of the pointing
action, marked with ×. The circles show the fraction of correct (grey), incorrect (black) and ambiguous (white) responses.

the generated pointing actions and instructions are. We re-
cruited 480 subjects from Mechanical Turk using the same
protocol described in our Data Collection procedure, and
asked them to rank how natural they regarded the instruc-
tion on a scale of 0 to 5.

The examples were randomly sampled from the videos
of the referential pointing trials that we showed to sub-
jects for both the Baxter and Kuka robots. These exam-
ples were selected in a way that we obtained equal num-
ber of samples from each cone. The average rating for sam-
ples from the 45◦, 67.5◦ and 90◦ cone are 3.625, 3.521 and
3.650 respectively. For Kuka, the average rating for sam-
ples from the 45◦, 67.5◦ and 90◦ cone are 3.450, 3.375,
and 3.400. Overall, the average for Baxter is 3.600, and for
Kuka is 3.408. The differences between Kuka and Baxter
and the differences across cones are not statistically signif-
icant (t ≤ |1.07|, p > 0.1). Thus we have no evidence that
subjects regard imprecise pointing as problematic.

Design Principles

The results of the experiments suggest that locating pointing
is interpreted rather precisely, where referential pointing is
interpreted relatively flexibly. This naturally aligns with the
possibility for alternative interpretations. For spatial refer-
ence, any location is a potential target. By contrast, for ref-
erential pointing, it suffices to distinguish the target object
from its distractors.

We can characterize this interpretive process in formal
terms by drawing on observations from the philosophical
and computational literature on vagueness (DeVault and
Stone 2004; Graff Fara 2000; Kyburg and Morreau 2000).
Any pointing gesture starts from a set of candidate interpre-
tations D ⊂ W determined by the context and the com-
municative goal. In unconstrained situations, locating point-
ing allows a full set of candidates D = W. If factors like
common-sense physics impose task constraints, that trans-
lates to restrictions on feasible targets CS, leading to a
more restricted set of candidates D = CS ∩ W . Finally,
for referential pointing, the potential targets are located at
x1 . . . xN ∈ S, and D = {x1 . . . xN}.
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Figure 8: The scatter plot represents the spread of responses
where human subjects chose the nearer cup (green), farther
cup (red), and ambiguous (white). The x-axis represents the
absolute difference between the distances of each cup to the
locations of pointing, the y-axis represents the total distance
between the two cups.

Based on the communicative setting, we know that the
pointing gesture, like any vague referring expression, must
select at least one of the possible interpretations (Kyburg and
Morreau 2000). We can find the best interpretation by its dis-
tance to the target x∗ of the pointing gesture. Using d(x, x∗)
to denote this distance, gives us a threshold

θ = min
x∈D

d(x, x∗).

Vague descriptions can’t be sensitive to fine distinctions
(Graff Fara 2000). So if a referent at θ is close enough to the
pointing target, then another at θ+ε must be close enough as
well, for any value of ε that is not significant in the conversa-
tional context. Our results suggest that viewers regard 10cm
(in the scale of the model simulation) as an approximate
threshold for a significant difference in our experiments.

In all, we predict that a pointing gesture is interpreted as
referring to {x ∈ D|d(x, x∗) ≤ θ + ε}. We explain the
different interpretations through the different choice of D.

Locating Pointing For unconstrained locating pointing,
x∗ ∈ D, so θ = 0. That means, the intended placement
cannot differ significantly from the pointing target. Taking
into account common sense, we allow for small divergence
that connects the pointing, for example, to the closest stable
placement.

Referential Pointing For referential pointing, candidates
play a much stronger role. A pointing gesture always has
the closest object to the pointing target as a possible ref-
erent. However, ambiguities arise when the geometries of
more than one object intersect with the θ + ε-neighborhood
of x∗. We can think of that, intuitively, in terms of the ef-
fects of θ and ε. Alternative referents give rise to ambiguity
not only when they are too close to the target location (θ)

but even when they are simply not significantly further away
from the target location (ε).

Conclusion and Future Work

We have presented an empirical study of the interpreta-
tion of simulated robots instructing pick-and-place tasks.
Our results show that robots can effectively combine
pointing gestures and spoken instructions to communicate
both object and spatial information. We offer an empiri-
cal characterization—the first, to the best of the authors’
knowledge—of the use of robot gestures to communicate
precise spatial locations for placement purposes. We have
suggested that pointing, in line with other vague references,
give rise to a set of candidate interpretations that depend on
the task, context and communicative goal. Users pick the in-
terpretations that are not significantly further from the point-
ing ray than the best ones. This contrasts with previous mod-
els that required pointing gestures to target a referent exactly
or fall within a context-independent pointing cone.

Our work has a number of limitations that suggest av-
enues for future work. It remains to implement the design
principles on robot hardware, explore the algorithmic pro-
cess for generating imprecise but interpretable gestures, and
verify the interpretations of physically co-present viewers.
Note that we used a 2D interface, which can introduce arti-
facts, for example from the effect of perspective. In addition,
robots can in general trade off pointing gestures with other
descriptive material in offering instructions. Future work is
needed to assess how such trade-offs play out in location
reference, not just in object reference.

More tight-knit collaborative scenarios need to be ex-
plored, including ones where multiple pick-and-place tasks
can be composed to communicate more complex challenges
and ones where they involve richer human environments.
Our study of common sense settings opens up intriguing av-
enues for such research, since it suggests ways to take into
account background knowledge and expectations to narrow
down the domain of possible problem specifications in com-
posite tasks like “setting up a dining table.”

While the current work studies the modalities of pointing
and verbal cues, effects of including additional robotic com-
munication in the form of heads-up displays or simulated
eye-gaze would be other directions to explore. Such exten-
sions would require lab experiments with human subjects
and a real robot. This is the natural next step of our work.
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