
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

On the Problem of Covering a 3-D Terrain

Eduard Eiben,1 Isuru S. Godage,2 Iyad Kanj,2 Ge Xia3

1Department of Computer Science, Royal Holloway, University of London, UK. Email: Eduard.Eiben@rhul.ac.uk
2School of Computing, DePaul University, USA. Emails: igodage@depaul.edu, ikanj@depaul.edu

3Department of Computer Science, Lafayette College, USA. Email: xiag@lafayette.edu

Abstract

We study the problem of covering a 3-dimensional terrain by
a sweeping robot that is equipped with a camera. We model
the terrain as a mesh in a way that captures the elevation levels
of the terrain; this enables a graph-theoretic formulation of the
problem in which the underlying graph is a weighted plane
graph. We show that the associated graph problem is NP-hard,
and that it admits a polynomial time approximation scheme
(PTAS). Finally, we implement two heuristic algorithms based
on greedy approaches and report our findings.

Introduction

We study the problem of covering a 3-dimensional (3-D) ter-
rain by a sweeping robot that is equipped with a camera; we
refer to this problem as the TERRAIN COVERAGE problem.
Informally speaking, the TERRAIN COVERAGE problem is
to compute a terrain path such that every point in the terrain
falls within the camera-range of at least one point of this path.
We show how to model the TERRAIN COVERAGE problem as
the following graph problem: Given an edge-weighted plane
graph, each of whose vertices is associated with a subset
of vertices that it can cover, compute a path of minimum
weight such that every vertex in the graph is covered by (at
least one point of) this path. Variants of this fundamental mo-
tion planning problem have been studied, motivated by their
robotics applications, which include de-mining (Gage 1994),
lawn mowing/harvesting (Arkin, Fekete, and Mitchell 2000;
Cao, Huang, and Hall 1988), painting (Atkar et al. 2005),
and autonomous underwater inspection of complex struc-
tures (Englot and Hover 2012; Hert, Tiwari, and Lumelsky
1996), among others.

In this paper, we study the complexity of the TERRAIN
COVERAGE problem and design approximation and heuristic
algorithms for it.

Related Work. A significant amount of work has been
devoted to variants of the TERRAIN COVERAGE prob-
lem, which fall under the umbrella of the so-called Cov-
erage Path Planning problem (CPP). In the CPP problem,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

given a set of points in the plane, one seeks a path that
“covers” all the points in the set, while optimizing a cer-
tain function/criterion. Various notions of coverage have
been studied, and their corresponding problems turn out
to be NP-hard, being variants of the Euclidean Travelling
Salesman problem (Euclidean TSP), for which polynomial
time approximation schemes (PTAS) exist (Arora 1998;
Mitchell 1999). For instance, Arkin and Hassin (Arkin and
Hassin 1994) gave constant-ratio approximation algorithms
for the Covering Salesman problem, in which we are given
a set of points referred to as “buyers”, each with a speci-
fied set of locations that she is willing to travel to in order
to meet the salesman, and the goal is to compute a closed
tour of minimum Euclidean length that meets all buyers. An-
other related problem is the sweeper problem, where one
is given a set of points in the plane, and a sweeper’s shape
(disk/rectangle/etc.), and the goal is to find a path of mini-
mum Euclidean length that sweeps through all given points;
constant-ratio approximation algorithms were also given for
continuous versions of the sweeper problem, referred to as the
milling and mowing problems (Arkin, Fekete, and Mitchell
2000), where the area to be milled/mowed is a continuous
region of the plane (e.g., disk or polygon).

Perhaps the most related problem to the TERRAIN COV-
ERAGE problem under consideration, albeit much simpler in
terms of its setting, is the Watchman (resp. Sweeper) Route
Under Limited Visibility problem, in which we are given
a simple polygon and a visibility range, and the goal is to
find a tour of minimum Euclidean length such that each
point on the boundary of the polygon (resp. in the poly-
gon) is visible from at least one point of the tour. Constant-
ratio approximation algorithms were given for the watch-
man variant of the problem, and a PTAS was given for the
simpler sweeper variant (Li and Klette 2008; Ntafos 1991).
Other problems that are related to TERRAIN COVERAGE
have also been considered, with different notions of coverage
and/or optimization criteria; see (Arkin et al. 2011; 2005;
Fekete, Mitchell, and Schmidt 2012).

The problem of covering a 3-D terrain has also been exten-
sively studied based on different approaches. One approach
relies on using a planar 2-dimensional (2-D) terrain cover-
ing algorithm, where the idea is to apply a planar cover-

10361

age algorithm to successive horizontal planes of the 3-D
terrain (Hert, Tiwari, and Lumelsky 1996; Lee et al. 2009).
Another valid approach is to use randomized algorithms (e.g.,
floor-sweeping robots). However, for covering a vast 3-D ter-
rain, randomized algorithms are infeasible, as the energy cost
would not be affordable (due to the large amount of coverage
overlap which is common in such solutions) (Galceran and
Carreras 2013).

Most path coverage algorithms start by decomposing
the free space to be covered into subregions, called cells.
Different decomposition methods have been studied (e.g.,
trapezoidal (Choset et al. 2005; Latombe 1991); Boustro-
phedon (Choset et al. 2005); Morse (Acar et al. 2002);
grid-based coverage (Lee et al. 2011; Gabriele and Rimon
2002)), and the algorithms are classified accordingly. Graph-
based coverage algorithms were also used; they start by
formulating the problem as a graph, and then apply heuris-
tics (Xu, Viriyasuthee, and Rekleitis 2011). For more de-
tails on coverage path planning and 3-D path planning,
we refer the reader to the following surveys (Choset 2001;
Galceran and Carreras 2013; Yang et al. 2016).

Results and Techniques. We start by modelling the TER-
RAIN COVERAGE problem as a graph problem in two phases:
in the first phase we create a 2-D mesh to represent the
3-D terrain, using weights to model the terrain elevations,
and in the second phase we define a weighted plane graph
based on the plane subdivision determined by the mesh. The
meshing and camera parameters (e.g., camera range) are
captured/modelled through the structural parameters of the
defined graph. More specifically, each vertex is associated
with a subset of vertices that it can cover, and each edge is
associated with a weight that reflects the distance between
the mesh cells corresponding to its endpoints. The result-
ing graph problem seeks a path of minimum weight whose
vertices cover the vertex-set of the graph.

We first show that the resulting graph problem is NP-hard
in the strong sense, even for very restricted instances of the
problem; this rules out the existence of a fully polynomial
time approximation scheme (FPTAS) for the problem. We
then study the approximation properties of this graph prob-
lem and show that it admits a polynomial time approximation
scheme (PTAS); that is, we show that it can be approximated
to within any precision in polynomial time. Unlike many
plane graph problems for which Baker’s (Baker 1994) folk-
lore layer decomposition method yields PTAS, the TERRAIN
COVERAGE problem does not yield to this method, as ex-
plained later in this paper. Instead, to design our PTAS, we
use an approach similar to that of Klein (Klein 2008), which
combines the layer decomposition method with dynamic pro-
gramming on graphs of bounded treewidth.

Finally, we implement two efficient heuristic (greedy) al-
gorithms, evaluate their performance empirically on different
terrain types and camera ranges, and report our findings.

Due to the space limit, some proofs have been omitted.

Preliminaries

We refer to (Diestel 2012) for more information on graphs.

A graph is planar if it can be drawn in the plane without
edge intersections (except at the endpoints). A plane graph
has a fixed embedding in the plane. The unbounded face is
called the outer face. A 1-outerplane graph, or an outerplane
graph, is a planar graph that has a drawing for which every
vertex is incident to the outer face. An i-outerplane graph, for
i > 1, is defined inductively as a graph such that the removal
of its outer face results in an (i− 1)-outerplane graph. The
layer decomposition of a plane graph G is a partitioning
of V (G) into disjoint layers (L1, . . . , Lr), r ≥ 1, defined
inductively as follows. Layer L1 is the set of vertices that lie
on the outer face of G, and layer Li is the set of vertices that
lie on the outer face of G−

⋃i−1
j=1 Lj for 1 < i ≤ r. A layer

decomposition of a planar graph G can be computed in linear
time (Baker 1994).

For an edge e = uv in a edge-weighted graph G with edge-
weight function wt(), contracting e means removing the two
vertices u and v from G, replacing them with a new vertex
w, and for every vertex y in the neighborhood of v (resp. u)
in G, adding in the new graph an edge wy of weight wt(vy)
(resp. wt(uy)), while allowing the creation of multiple edges
but no self-loops. For a subset S ⊆ E(G), G/S denotes the
graph resulting from G by contracting the edges in S.

A tree decomposition of G = (V,E) is a pair (V, T),
where V is a collection of subsets of V , referred to each as
a bag, satisfying that

⋃
Xi∈V = V , and T is a rooted tree

whose node set is V , such that: (1) for every edge e ∈ E,
there is a bag in V containing both endpoints of e; and (2)
if Xi, Xj , Xk ∈ V such that Xj is on the path between Xi

and Xk in T , then Xi ∩ Xk ⊆ Xj . The width of the tree
decomposition (V, T) is defined to be max{|Xi| | Xi ∈
V} − 1. The treewidth of the graph G, denoted tw(G), is the
minimum width over all tree decompositions of G.

A tree decomposition (V, T) is nice if it satisfies: (1) Each
node in the tree T has at most two children; (2) if a node Xi

has two children Xj and Xk in T , then Xi = Xj = Xk, and
node Xi is called a join node; (3) if a node Xi has only one
child Xj in T , then either |Xi| = |Xj |+1 and Xj ⊂ Xi, and
in this case Xi is called an insert node, or |Xi| = |Xj | − 1
and Xi ⊂ Xj , and in this case Xi is called a forget node; and
(4) if Xi is a leaf node or the root, then Xi = ∅.

A polynomial-time approximation scheme (PTAS) for a
minimization problem Q is an algorithm that takes as input
an instance I of Q and ε > 0, and outputs a solution to I
whose value is at most (1 + ε) · opt(I), where opt(I) is the
value of an optimal solution for I, and such that the running
time of the algorithm is polynomial for every fixed ε > 0. A
fully polynomial-time approximation scheme (FPTAS) is a
PTAS whose running time is polynomial in both the input
size and 1/ε.

For two sets A,B, A	B = (A \ B) ∪ (B \ A) denotes
the symmetric difference of A and B. For � ≥ 1 ∈ N, we
write [�] for the set {1, . . . , �}.

Problem Modeling

We model the terrain coverage problem in two phases.

10362

Meshing the terrain. In the first phase, we generate a
polygonal 2-D mesh for the 3-D terrain, which is assumed
to be a simply-connected surface (i.e., contains no holes or
obstructions, such as lakes or other inaccessible areas). For
our simulations, we opted for triangular meshes instead of
other polygonal meshes, where the former also benefit from
faster mesh generating algorithms. However, our results hold
for any polygonal meshes.

Geographical terrains are essentially 3-D surfaces, where
each point of the terrain can be described by its coordinates
x, y, z denoting the latitude, longitude, and elevation, respec-
tively. To capture the complex terrain features in a mesh
approximation, it is critical to have uniformly-distributed ver-
tices on the surface of the terrain. A planar triangulation can
easily be generated by using the terrain footprint. However, a
planar meshing solution on a projected planar area of the ter-
rain can result in a large variety of triangle sizes when lifted
back to the Cartesian system, which, in turn, would result in
poor terrain approximation where there are non-flat geologi-
cal features. To circumvent this issue, one has to account for
terrain slopes (the surface gradient) and adjust the triangu-
lation such that the spatial triangulation has bounded edge-
lengths variation. We applied distmesh2d (Persson 2004) with
a nonuniform edge-length function to triangulate the terrains.
This function is derived as follows. First, the 2-D gradient
of the terrain map is computed. Then, the resulting matrix
is used to generate the lengths of the edges (higher gradient
implies shorter edge lengths). The vertex coordinates of the
triangulation are then used to interpolate the elevation from
the original terrain map matrix. Due to the uniform distribu-
tion of vertices, this results in triangular meshes of similar
triangle sizes in which the minimum-maximum edge-length
ratio for all triangles is bounded.

Graph formulation. Once we have generated the 2-D
mesh as above, in the second phase we define a plane graph
as follows. For every cell in the mesh, we associate a vertex
in the graph located at the center of (gravity of) the cell. Two
vertices are adjacent if and only if their corresponding cells
are adjacent (i.e., share an edge). The weight of an edge is
the Euclidean distance between the 3-D points in the terrain
that correspond to the 3-D images of the cell centers. Since
the mesh is assumed to be a triangular mesh, the graph ob-
tained has bounded maximum degree. Moreover, based on
the meshing process (i.e., similarities between the triangles
in the mesh), the length of any edge in the mesh is both lower
bounded and upper bounded by some constants; that is, the
weights of the edges of the plane graph are between 1 (unit)
and some constant λ ≥ 1. Since the camera has some fixed
range based on its specification, if the camera is located at a
certain vertex v, then the camera will be able to cover a subset
of vertices γ(v), each of distance at most some integer con-
stant ρ (depending on the camera range) to v, and such that
the subgraph induced by γ(v) is connected (we assumed that
the robot can travel between any two points that are visible
from each other). Next, we define these concepts formally.

Let G be an edge-weighted bounded-degree plane graph
of maximum degree Δ, with weight function wt : E(G) −→

Q. For a rational constant λ ≥ 1, we say that G is λ-
proportionally weighted, or λ-weighted for a shorthand, if
the weight of the maximum-weight edge in G is at most λ
times the weight of the minimum-weight edge in G; or equiv-
alently, assuming that the edge weights are normalized so that
the minimum weight is 1, for any edge e ∈ E(G), we have
1 ≤ wt(e) ≤ λ. Each vertex v ∈ V (G) is associated with
a set of vertices γ(v) ⊇ {v}, where the subgraph G[γ(v)]
induced by γ(v) is connected, and its radius w.r.t. v is at most
ρ, where ρ ≥ 1 is an integer constant. In the context of the
TERRAIN COVERAGE application, λ is a parameter deter-
mined by the meshing process, ρ is a parameter determined
by the robot’s camera specifications, and the sets γ(v), for
v ∈ V (G), are determined by both the camera specifications
and the topography of the terrain, as discussed in the previous
subsection. Without loss of generality, we assume that, for
any two vertices u, v ∈ V (G), if u ∈ γ(v) then it holds that
v ∈ γ(u). For S ⊆ V (G), we define γ(S) =

⋃
v∈S γ(v).

A subset S ⊆ V (G) covers a subset S′ ⊆ V (G), or is a
covering set for S′, if for each u ∈ S′, there exists v ∈ S
such that u ∈ γ(v). S covers G if it covers V (G). A tour is a
walk in G. The weight of the tour is the sum of the weights of
all edges in it, including multiplicities of edges. The subset
of vertices covered by a tour τ is the subset of vertices in G
covered by the vertices that appear in τ .

From the above, we can formulate the 3-D terrain coverage
problem as the following graph optimization problem:
TERRAIN COVERAGE
Given: A λ-weighted plane graph G (λ ≥ 1) of bounded
degree Δ, in which each vertex v is associated with a con-
nected set of vertices γ(v) of radius at most ρ; and a vertex
s ∈ V (G).
Goal: Compute a tour τ of minimum weight that starts at s
and visits a covering set for G.

Complexity and Approximation

In this section, we study the complexity and approximation
of TERRAIN COVERAGE. We start with the following result:
Theorem 1. The TERRAIN COVERAGE problem is NP-hard
in the strong sense, even when λ = ρ = 1 and Δ = 4.

The proof of Theorem 1 is via a reduction from the HAMIL-
TONIAN PATH problem on planar cubic graphs, and results
in instances of TERRAIN COVERAGE in which the maximum
edge weight is 1. This shows that the problem is NP-hard in
the strong sense (Garey and Johnson 1979), which (assuming
P= NP) rules out the existence of fully polynomial time
approximation schemes (FPTAS) for the problem (Garey and
Johnson 1979). Given the above, we now switch our attention
to designing PTAS for TERRAIN COVERAGE.

Let G be a plane graph with layer decomposition
(L1, . . . , Lr). Baker (Baker 1994) used the layer decomposi-
tion of a plane graph to design PTAS for many graph prob-
lems based on a planar separator approach. The idea is to se-
lect a separator, consisting of a group of layers, that contains
a small fraction (depending on the desired approximation er-
ror) of the optimal solution, whose removal breaks the graph
into chunks, each with bounded outerplanarity. More specif-
ically, for a given approximation error ε, a number k ∈ N

10363

that depends on ε is chosen properly. Then the layers are
partitioned into k groups, each consisting of all layers whose
indices are congruent to the same number modulo k. Using an
averaging argument, one of these groups has weight at most
a “small” fraction of that of an optimal solution, and hence,
by discarding all vertices in the group we do not “lose much”.
Discarding all layers in a group results in separating the graph
into chunks, each of outerplanarity at most k, and hence of
treewidth at most 3k − 1 (Robertson and Seymour 1991;
Biedl 2015). A dynamic programming approach then com-
putes an optimal solution of each chunk in polynomial time,
based on which an approximate solution is returned.

While this approach works for many graph problems, it
does not work for TERRAIN COVERAGE. An approach of
similar flavor was proposed by Klein (Klein 2008) for pla-
nar TSP. In this approach, instead of removing the layers
in the chosen separator group, the edges in these layers are
contracted. This still yields a graph of bounded treewidth
(≤ 3k + 2), enabling dynamic programming on the con-
tracted graph. An optimal solution for the contracted graph is
then lifted to an approximate solution of the original graph.

As noted before, the TERRAIN COVERAGE problem is
more complex than the TSP, in the sense that the sought tour
is required to only cover all the vertices, not visit all of them.
This poses several complications in multiple stages of this
approach. We show how to circumvent these complications
to make this approach work for TERRAIN COVERAGE.

First, we refine a result in (Klein 2008), which is a primary
ingredient in our approach. Let (G, λ,Δ, γ, ρ, s) be an in-
stance of TERRAIN COVERAGE, where each γ(v) has radius
at most ρ. In (Klein 2008) (implied from Corollary 7.2), they
showed that for a weighted plane graph G with layer decom-
position (L1, . . . , Lr), where r ≥ 1, there is a linear time
algorithm that, for any integer k ≥ 1, computes a set of layers
Sk with edge set E(Sk) such that wt(E(Sk)) ≤ wt(G)/k
and tw(G/E(Sk)) ≤ 3(k+2). We refine the set Sk of layers
as follows. First, we remove from Sk every layer (if any) that
is among the first or last ρ+ 1 layers in G (i.e., we remove
every Li where 1 ≤ i ≤ ρ+ 1 or r − ρ ≤ i ≤ r). Second, if
there are three layers in Sk such that the number of layers be-
tween two of them is ≤ 2ρ, then we remove the intermediate
layer among the three from Sk (i.e., the one whose index is
comprised between the two indices of the others). It is easy
to see that by doing so, we may have increased the outerpla-
narity of each chunk of the graph resulting from removing
the layers in Sk by at most 2ρ+1. Using the same arguments
as in (Klein 2008), the above discussion yields the following
modification of the result in (Klein 2008):

Lemma 2. Let G be a weighted plane graph with layer
decomposition (L1, . . . , Lr), where r ≥ 1. There is a linear
time algorithm that, for any integer k ≥ 1, computes a set
of layers Sk with edge set E(Sk) such that wt(E(Sk)) ≤
wt(G)/k and tw(G/E(Sk)) ≤ 3(k+2ρ+3). Moreover, Sk

does not contain any of the first ρ+ 1 or last ρ+ 1 layers in
G, and between any two “consecutive” layers Li and Lj in
Sk (i.e., there is no layer Lq in Sk with i < q < j), we have
j − i > 2ρ+ 1; that is, any two consecutive layers in Sk are
separated (in G) by at least 2ρ+ 1 layers.

Let (G, λ,Δ, γ, ρ, s) be an instance of TERRAIN COVER-
AGE, k ≥ 1 be an integer, and let Sk be the set of layers
stipulated by Lemma 2. We first explain how to obtain the
graph resulting from contracting an edge in E(Sk). We al-
ready explained in the preliminaries section how weights
are assigned to the edges resulting from an edge contraction.
Therefore, what remains to be explained is how the γ() sets
are defined for the new vertex resulting from a contraction.
Basically, whenever we contract an edge e = uv to obtain
a new vertex w, we set γ(w) := γ(v) ∪ γ(u). Note that the
resulting graph may no longer satisfy the requirements of an
instance of TERRAIN COVERAGE. In particular, the maxi-
mum degree of the resulting graph may exceed Δ. Notice,
however, that the only vertices in the resulting contracted
graph that may have degree more than Δ are the new vertices
resulting from the contractions. Notice also that the radius of
each γ() set remains upper bounded by ρ.

We start with the following two simple results:

Observation 3. For any covering tour τ of G, we can assume
that any edge in τ appears at most twice.

The next lemma lower bounds the weight of an optimal
solution by a constant fraction of the weight of the graph, and
follows since the degree and the covering radius are upper
bounded by constants:

Lemma 4. Let (G, λ,Δ, γ, ρ, s) be an instance of TERRAIN
COVERAGE, and denote by opt(G) the weight of an optimal
solution of G. Then opt(G) ≥ c0 ·wt(G), where c0 = 1/(3λ·
Δρ).

Lemma 5. Let (G, λ,Δ, γ, ρ, s) be an instance of TERRAIN
COVERAGE, k ≥ 1 be an integer, and let Sk be the set of
layers stipulated by Lemma 2. Let G′ be the graph obtained
from G by contracting the edges in E(Sk), and let C be the
set of vertices in G′ resulting from contracting the edges in
E(Sk). Suppose that τ ′ is an optimal solution for G′ subject
to the condition that it contains all vertices in C. Given τ ′, in
linear time we can compute a covering tour for G of weight
at most opt(G) + 2wt(G)/k.

Proof. Let τ be an optimal solution for G, and τ ′ be a cover-
ing tour for G′ with minimum weight subject to the condition
that it contains all vertices in C. First, note that τ must visit
at least one vertex in each layer of Sk. This follows from the
properties of Sk, namely that (1) each layer Li is a separator
in G, (2) Sk does not contain any of the first or last ρ + 1
layers of G, and (3) any two consecutive layers in Sk are
separated by at least 2ρ+1 layers in G. This implies that if τ
does not visit a layer in Sk, then it cannot be a covering tour.

Now let τ ′′ be the tour in G′ obtained by updating τ accord-
ing to the contractions; that is, all contracted edges in E(Sk)
are removed from τ , contracted vertices are replaced with the
corresponding new vertices and their incident edges are modi-
fied accordingly, and adjacent duplicate vertices are removed.
Based on how we contract edges, it is clear that τ ′′ covers G′
and that wt(τ ′′) ≤ wt(τ). Moreover, since τ must contain at
least one vertex from each layer in Sk, it follows that τ ′′ must
contain all vertices in C. Since τ ′ is a covering tour for G′
with minimum weight subject to the constraint of containing
all vertices in C, we have wt(τ ′) ≤ wt(τ ′′) ≤ wt(τ).

10364

We define a covering tour τapx for G from τ ′ as follows.
First, we decontract the edges in E(Sk) and double these
edges. The tour τapx follows τ ′, and for each decontracted
component Q that corresponds to a vertex, say w, in C, when
the tour τ ′ visits w for the first time, we perform in τapx
a depth-first traversal of Q to ensure that all vertices in Q
are visited, and hence covered by τapx. Then, whenever τ ′
uses an edge wv, where w is a new vertex resulting from
the contraction of edges in E(Sk), we replace the edge with
the corresponding path in the component whose contraction
results in w. (For instance, if xw is an edge in τ ′, where w
results from contracting Q, let wy be the edge after xw in τ ,
and replace xw,wy by the path (xu, uz1, z1z2, . . . , zqv, vy),
where uz1, z1z2, . . . , zqv is a path in Q. The case is treated
in a similar fashion if xw is the last edge in τ ′, or if the
edge is wx and it is the first edge in τ ′.) Afterwards, we
apply Observation 3 to the resulting tour; w.l.o.g., call τapx
the final tour obtained. Notice that τapx is a covering tour
for G. This follows since τapx visits all vertices in C, and
since τ ′ is a covering tour for G′. Since each edge in E(Sk)
appears at most twice, it is easy to see that wt(τapx) ≤
wt(τ ′) + 2wt(E(Sk)) ≤ wt(τ) + 2wt(G)/k.

The final piece of our solution is to show the following.
Given a weighted planar graph of treewidth bounded by
3(k + 2ρ+ 3), in which every vertex has bounded degree Δ,
except those belonging to the set of vertices C resulting from
contracting E(Sk), we can compute in polynomial time an
optimal covering tour for the graph subject to the condition
that the tour visits all vertices in C. We define the problem
formally below. (For convenience and ease of terminology,
in what follows we refer to the instance graph as G.)
BOUNDED-TW-TERRAIN COVERAGE
Given: A λ-weighted plane graph G (λ ≥ 1) of treewidth at
most θ in which each vertex v is associated with a (connected)
set of vertices γ(v) each with radius at most ρ; and a starting
vertex s ∈ V (G) and a terminal vertex t ∈ V (G).
Goal: Compute a tour τ of minimum weight that starts at s,
visits all vertices of degree at least Δ+ 1 and a covering set
for G, and finishes at t.

The above problem formulation assumes that the destina-
tion vertex t is given. This assumption can easily be lifted by
trying each vertex as the destination t, and selecting the tour
of minimum cost over all possible destination vertices, which
adds an O(|V (G)|) factor to the running time.

Lemma 6. Let (G, λ,Δ, γ, ρ, θ, s, t) be an instance of
BOUNDED-TW-TERRAIN COVERAGE. Let G′ be the graph
obtained from G by doubling every edge. Let F ⊆ E(G′)
such that G′[F] is connected, s and t are both incident to an
odd number of edges in F , and every vertex in V (G′)\{s, t}
is incident to an even (possibly 0) number of edges in F . Then
in linear time we can compute a tour τ of weight wt(F) that
visits all vertices incident to an edge in F .

Proof. The graph induced by E(F) has precisely two ver-
tices of odd degree, s and t, and hence has an Eulerian trail
between s and t. Therefore, we can compute the Eulerian
s-t-tour τ of weight wt(F) in linear time (Diestel 2012).

Lemma 7. Given an instance (G, λ,Δ, γ, ρ, θ, s, t) of
BOUNDED-TW-TERRAIN COVERAGE, there is an algo-
rithm that outputs an optimal tour τ for the instance in time
2O(g·θ·log θ) · nO(1), where g is the maximum of |γ(v)| over
all vertices v of degree at most Δ and n = |V (G)|.

Proof. Let G′ be the graph obtained from G by doubling
every edge. Herein, we assume that each edge has its unique
identifier so that we can distinguish multiple edges between
the same pair of vertices. From Observation 3 and Lemma 6,
it suffices to find a set of edges F ⊆ E(G′) of minimum
weight such that G′[F] is connected, the vertices incident on
F are a covering set for G, s and t are both incident with an
odd number of edges in F , and every vertex in V (G′)\{s, t}
is incident with an even (possibly 0) number of edges in F .
(The aforementioned statement is true because any covering
tour of G corresponds to such a set of edges F and vice versa.)
Note that the treewidth of G′ is the same as that of G, as every
tree decomposition of G is also tree decomposition of G′ and
vice versa. Now let (V, T) be a nice tree decomposition of
G′. We note that there exists a polynomial-time algorithm
that computes a tree decomposition of a graph of bounded
treewidth (Biedl 2015; Bodlaender 1996), which can then be
converted in linear time into a nice tree-decomposition of the
same width (Kloks 1994). For convenience, let us add s and
t to every bag in V .

Given a bag Xi, we define a configuration w.r.t. Xi to be
a tuple (A, Ā,P, B, σ), where A ⊂ Xi such that A contains
s, t, and all vertices of degree at least Δ + 1 in Xi, Ā is a
subset of A, P is a partition of Ā, B is a subset of γ(Xi \A)
and σ : Ā → {0, 1}. Note that, since A contains all vertices
of degree at least Δ+ 1 and |Xi| ≤ θ + 1, it is not difficult
to verify that the number of configurations w.r.t. Xi is upper
bounded by 2O(g·θ·log θ).

For a bag Xi ∈ V , denote by G′
i the subgraph of G′

induced by the vertices in the bags of the subtree of T rooted
at Xi. We will use dynamic programming along the nice tree
decomposition (V, T) of G′ to compute a table Γi for each
bag Xi, such that for each configuration C = (A, Ā,P, B, σ)
w.r.t. Xi, the entry Γi[C] contains a minimum-weight set of
edges F ⊆ E(G′

i) satisfying that:

• no vertex in Xi \ Ā is incident to an edge in F ;
• for each vertex v ∈ Ā, the number of edges in F incident

to v modulo 2 is σ[v];
• every vertex in Ā is incident to an edge in F ;
• if u ∈ A such that all edges incident to u are in E(G′

i),
then u ∈ Ā;

• the vertices incident to F together with the set A cover the
set V (G′

i)	B; and
• u, v ∈ Ā are in the same connected component of G′[F]

if and only if there exists P ∈ P such that {u, v} ⊆ P .

Clearly, every feasible solution satisfies the above con-
ditions with respect to the configuration Csol =
({s, t}, {s, t}, {{s, t}}, ∅, {s → 1, t → 1}) at the root node
of the tree decomposition. Hence, if we correctly compute the
table Γr for the root node Xr of T , then we can compute an
optimal tour τ from Γr[Csol] using Lemma 6. Therefore, to

10365

prove the lemma, it remains to show that we can compute, for
each bag Xi ∈ V , the table Γi, based on the tables stored at
the children bags of Xi. For simplicity, if for a configuration
C w.r.t. Xi there does not exist a set of edges respecting C as
discussed above, then we write Γi[C] = ∞. We extend the
weight function by letting wt(∞) = ∞.

Claim 1. If Xi is a leaf, an insert or a forget node, then Γi

can be computed in 2O(g·θ·log θ) · nO(1) time.

Claim 2. If Xi is a join node with children Xj and Xj′ , then
Γi can be computed in 2O(g·θ·log θ) · nO(1) time.

Proof. The main idea is that if we have an optimal set of
edges F for a configuration C = (A, Ā,P, B, σ), then we
can split it into the disjoint union of two edge sets, F1 and F2,
such that F1 and F2 are feasible solutions for configurations
C1 and C2 w.r.t. Xj and Xj′ , respectively. This follows since
Xi separates V (G′

j′) from V (G′
j), and hence, any vertex in

V (G′
j′) (resp. V (G′

j)) that is covered by a vertex in V (G′
j)

(resp. V (G′
j′)) must be covered by a vertex in Xi. (Note

that if a vertex u ∈ γ(v) then v ∈ γ(u); see the “Graph
formulation” subsection.) Since the two sets of edges are
disjoint, it follows that Γi[C] = Γj [C1] ∪ Γj′ [C2]. Now we
just need to go through all possible pairs of configurations in
Xj and Xj′ that could be combined to yield C.

Let C1 = (A1, Ā1,P1, B1, σ1) and
C2 = (A2, Ā2,P2, B2, σ2) be two configurations w.r.t. Xj

and Xj′ , respectively. The necessary and sufficient conditions
for C1 and C2 to combine into C are:

• A = A1 = A2 (as A represents the subset of Xi = Xj =
Xj′ which will be adjacent to an edge in the final solution).

• Ā = Ā1 ∪ Ā2 (if a vertex is adjacent to an edge in Γi[C],
then it should be adjacent to an edge in either Γj [C1] or
Γj′ [C2]).

• P is a join of partitions P1 and P2; that is, for all u, v ∈ Ā
and P ∈ P , it holds that {u, v} ⊆ P if and only if
there exit vertices u = u0, u1, . . . , uk−1, uk = v such
that for all � ∈ [k], there exists P ∈ P1 ∪ P2 with
{u�−1, u�} ⊆ P . Observe that if u, v are in the same
component of G′[Γi[C]], then there has to be a path from
u to v such that every two consecutive vertices of the path
are either in the same component of G′[Γj [C1]] or in the
same component of G′[Γj′ [C2]].

• V (Gi)	B ⊆ (V (Gj)	B1)∪ (V (Gj′)	B2) since a ver-
tex that is covered by A ∪ Γi[C] has to be also covered in
one of the children bags.

• σ[u] = (σ1[u] + σ2[u]) mod 2 where σk[u] = 0 for
k ∈ {1, 2}, if u /∈ Āk. That is, the parity of the edges
incident to u in Γi[C] is the sum of the parities of edges
incident to u in the children bags.

It follows that we can compute Γi[C] by going through all
pairs of C1 and C2 satisfying the above conditions and choos-
ing the pair with the minimum sum of weights, which can be
done in 2O(g·θ·log θ) · nO(1) time.

This completes the proof of Lemma 7.

Table 1: Grid-based heuristic algorithm.
terrain
type

camera
range

dominators
vertices

tour wt
total wt

tour wt
MST wt

max edge wt
min edge wt

10 4 0.3774 0.6317 0.9735 2.3893
10 12 0.1242 0.3267 0.5034 2.3893
40 4 0.3750 0.6257 0.9678 2.6736
40 12 0.1263 0.3269 0.5056 2.6736
80 4 0.4246 0.6878 1.0904 3.8749
80 12 0.1417 0.3518 0.5576 3.8749

Table 2: Global heuristic algorithm.
terrain
type

camera
range

dominators
vertices

tour wt
total wt

tour wt
MST wt

max edge wt
min edge wt

10 4 0.3445 0.6079 0.9368 2.3893
10 12 0.1033 0.3077 0.4742 2.3893
40 4 0.3413 0.6031 0.9328 2.6736
40 12 0.1058 0.3093 0.4783 2.6736
80 4 0.3944 0.6662 1.0559 3.8749
80 12 0.1211 0.3336 0.5289 3.8749

Theorem 8. TERRAIN COVERAGE admits a PTAS.

Proof. Let (G, λ,Δ, γ, ρ, s) be an instance of TERRAIN
COVERAGE and ε > 0. By Lemma 4, opt(G) ≥ c0 · wt(G)
for some constant c0 ≤ 1. Choose k ∈ N such that k >
2/(c0ε). Let G = (L1, . . . , Lr) be a layer decomposition of
G, where r ≥ 1, and apply Lemma 2 to find in linear time
a set Sk of layers satisfying: (1) wt(E(Sk)) ≤ wt(G)/k;
(2) tw(G/E(Sk)) ≤ 3(k + 2ρ + 3); (3) Sk does not con-
tain any of the first ρ + 1 or last ρ + 1 layers in G; and
(4) any two consecutive layers in Sk are separated (in G)
by at least 2ρ+ 1 layers. Now let G′ be the graph obtained
from G by contracting the edges in E(Sk), and let C be the
set of vertices in G′ resulting from contracting the edges in
E(Sk). From the above, we have tw(G′) ≤ 3(k + 2ρ+ 3).
By Lemma 7, and since both k and ρ are constants, in poly-
nomial time, we can compute an optimal covering tour τ ′
for G′ that contains all vertices in C. By Lemma 5, in lin-
ear time we can compute a tour τapx from τ ′ satisfying that
wt(τapx) ≤ opt(G)+2wt(G)/k. Since opt(G) ≥ c0·wt(G),
it follows that wt(τapx) ≤ opt(G) + 2opt(G)/(c0k) ≤
opt(G) + ε · opt(G) = (1 + ε)opt(G). Therefore, for any
given ε > 0, we have a polynomial time algorithm that com-
putes a solution for a given instance of TERRAIN COVERAGE
whose weight is within ratio 1 + ε from that of an optimal
solution of the instance. The theorem follows.

Heuristics and Empirical Results

We report on the implementation of two heuristic approxima-
tion algorithms for TERRAIN COVERAGE.

Heuristic algorithms. While the PTAS developed in the
previous section settles the approximation properties of TER-
RAIN COVERAGE (given that no FPTAS exists), it is im-
practical to implement due to its technicality and complexity
(resulting in a high-degree polynomial). Therefore, we imple-
mented two constant-ratio approximation algorithms for that

10366

Figure 1: Left: A 256m× 256m random terrain considered in this study with 80m elevation range; middle: the path generated
using a grid; and right: the path generated without using a grid. The red arrow shows the starting point.

are similar to the folklore greedy algorithm for the DOMINAT-
ING SET, whose greedy step chooses a vertex that dominates
the maximum number of vertices.

The first algorithm we implemented starts by superimpos-
ing a grid on the plane graph G, whose cell-size is large
enough so that each cell is guaranteed to contain at least one
vertex from any covering set; the cell size is a constant that is
determined based on the camera range. Then a greedy algo-
rithm is applied to each grid cell to chose a covering set of the
cell; this greedy algorithm is similar to the folklore greedy
algorithm for DOMINATING SET. For a given cell C, until all
vertices in C are covered, the algorithm repeats the following
greedy step: choose a vertex v in C that (among all unchosen
vertices in C) covers the maximum number of vertices in C
that have not been covered yet; mark v as chosen, and mark
all vertices covered by v in G as covered. The algorithm then
proceeds to a new cell, taking into account that some vertices
in the new cell are already covered. When a covering set for
each cell has been computed, denote by κ their union. The
algorithm computes a minimum spanning tree T of the sub-
graph of E (the complete graph whose vertex-set is V (G))
induced by the vertices in κ. Then a tour τ is computed based
on a depth-first traversal of T , similarly to how the ratio-2 ap-
proximation algorithm for the metric TSP is obtained, albeit
without the need to return to the starting vertex in the tour.
Finally, for each two consecutive vertices u, v on the tour, the
direct edge uv in E is replaced by the path in G formed by
the vertices whose corresponding triangles in the mesh are
intersected by the straight-line segment between u and v.

The second algorithm is similar to the first, but instead of
superimposing a grid and computing a covering set for each
grid-cell, a covering set κ for the whole graph is computed
by applying the same greedy algorithm to G. The rest is the
same: a minimum spanning tree T of κ is computed and a
tour based on a traversal of T is obtained.

Since G is a bounded-degree λ-weighted plane graph, and
since ρ is a constant, one can easily show that both algorithms
are constant-ratio approximation algorithms. This mainly fol-
lows from the observation that an optimal solution contains
Ω(n) vertices and edges, and hence its weight is a constant
fraction of the weight of G. Next, we evaluate the perfor-

mance of both algorithms.

Experimental evaluation. To test the two heuristic algo-
rithms, we generated random landscapes using the fractal
landscape generation function in (Kaya 2013). The func-
tion takes three arguments: an argument that defines the size
of the terrain (edge length), an argument that defines the
smoothing parameter, and an argument that defines the ele-
vation range. We generated 10 random landscapes for each
range between 10 and 80, in multiples of 10. Tables 1 and 2
show the simulation results reported only for the three ter-
rain ranges 10, 40, 80 and two camera ranges 4, 12, where
the data was aggregated over the 10 terrains for each range.
Table 1 shows the results for the heuristic algorithm based on
a superimposed grid, and Table 2 shows the results for the
other algorithm. The first column in the tables is the terrain
range (difference between maximum and minimum eleva-
tion). The second column shows the camera range. The third
column shows the ratio of the number of covering vertices to
the total number of vertices. The fourth column is the ratio
between the weight of the solution to the total weight of the
edges in the graph. The fifth column is the ratio between the
weight of the solution and that of a minimum spanning tree of
the graph. The last column shows the ratio of the maximum
weight edge to that of the minimum weight edge.

For Table 1, we notice that the ratio between the num-
ber of covering vertices and the total number of vertices is
roughly 3/8 for camera range 4 and elevation range 10, and
it decreases to roughly 1/8 for camera range 12. The ratio
is slightly worse for higher elevation range. The ratio of the
weight of the solution to the total edge weight of the graph
for camera range 4 and elevation 10 is roughly 2/3, and it
improves to roughly 1/3 for camera range 12. This ratio gets
slightly worse as the elevation range increases. Note that this
ratio is very conservative, as it is computed based on the total
edge weight of the graph. The results in Table 2 are slightly
better. This is justifiable as the tour was computed based on
a minimum spanning tree (MST) for the whole graph, rather
than for the individual grid cells.

Figure 1 shows a randomly-generated terrain and the paths

10367

generated by the two algorithms when applied to this terrain.

Conclusion

In this paper, we studied the complexity of the TERRAIN
COVERAGE problem, and designed a PTAS and heuristic
algorithms for it. The PTAS we designed relies heavily on
the connectivity assumption about the γ() sets, which results
from the assumption that the terrain is simply connected;
this is a property that may be violated if the terrain contains
topographical barriers (e.g., holes). An interesting problem
that ensues from our work is to investigate if we can still
obtain PTAS without the connectivity assumption about the
γ() sets, as this would enable modeling terrains with more
versatile topographical properties.

References

Acar, E.; Choset, H.; Rizzi, A.; Atkar, P.; and Hull, D. 2002.
Morse decompositions for coverage tasks. I. J. Robotics Res.
21(4):331–344.
Arkin, E., and Hassin, R. 1994. Approximation algorithms
for the geometric covering salesman problem. Discrete Ap-
plied Mathematics 55(3):197–218.
Arkin, E.; Bender, M.; Demaine, E.; Fekete, S.; Mitchell, J.;
and Sethia, S. 2005. Optimal covering tours with turn costs.
SIAM J. Comput. 35(3):531–566.
Arkin, E.; Bender, M.; Mitchell, J.; and Polishchuk, V. 2011.
The snowblower problem. Comput. Geom. 44(8):370–384.
Arkin, E.; Fekete, S.; and Mitchell, J. 2000. Approximation
algorithms for lawn mowing and milling. Comput. Geom.
17(1-2):25–50.
Arora, S. 1998. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems.
J. ACM 45(5):753–782.
Atkar, P.; Greenfield, A.; Conner, D.; Choset, H.; and Rizzi,
A. 2005. Uniform coverage of automotive surface patches. I.
J. Robotics Res. 24(11):883–898.
Baker, B. 1994. Approximation algorithms for NP-complete
problems on planar graphs. J. ACM 41(1):153–180.
Biedl, T. 2015. On triangulating k-outerplanar graphs. Dis-
crete Applied Mathematics 181:275 – 279.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Cao, Z.; Huang, Y.; and Hall, E. 1988. Region filling opera-
tions with random obstacle avoidance for mobile robots. J.
Field Robotics 5(2):87–102.
Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard,
W.; Kavraki, L.; and Thrun, S. 2005. Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT
Press.
Choset, H. 2001. Coverage for robotics – a survey of recent
results. Annals of Mathematics and Artificial Intelligence
31(1):113–126.
Diestel, R. 2012. Graph Theory, 4th Edition. Springer.

Englot, B., and Hover, F. 2012. Sampling-based coverage
path planning for inspection of complex structures. In ICAPS.
AAAI.
Fekete, S.; Mitchell, J.; and Schmidt, C. 2012. Minimum
covering with travel cost. J. Comb. Optim. 24(1):32–51.
Gabriele, Y., and Rimon, E. 2002. Spiral-STC: An on-line
coverage algorithm of grid environments by a mobile robot.
In ICRA, 954–960. IEEE.
Gage, D. 1994. Randomized search strategies with imperfect
sensors. In Proc. SPIE, volume 2058, 270–279.
Galceran, E., and Carreras, M. 2013. A survey on coverage
path planning for robotics. Robot. Auton. Syst. 61(12):1258–
1276.
Garey, M., and Johnson, D. 1979. Computers and Intractabil-
ity. W.H. Freeman.
Hert, S.; Tiwari, S.; and Lumelsky, V. 1996. A terrain-
covering algorithm for an AUV. Autonomous Robots 3(2):91–
119.
Kaya, H. 2013. Fractal landscape generation
with diamond-square algorithm. Available at:
https://www.mathworks.com/matlabcentral/.
Klein, P. 2008. A linear-time approximation scheme for
TSP in undirected planar graphs with edge-weights. SIAM J.
Comput. 37(6):1926–1952.
Kloks, T. 1994. Treewidth, Computations and Approxima-
tions, volume 842 of LNCS. Springer.
Latombe, J. C. 1991. Robot Motion Planning. Norwell, MA,
USA: Kluwer Academic Publishers.
Lee, T.-S.; Choi, J.-S.; Lee, J.-H.; and Lee, B.-H. 2009. 3-D
terrain covering and map building algorithm for an auv. In
IEEE/RSJ, 4420–4425.
Lee, T.; Baek, S.; Choi, Y.; and Oh, S. 2011. Smooth cov-
erage path planning and control of mobile robots based on
high-resolution grid map representation. Robotics and Au-
tonomous Systems 59(10):801–812.
Li, F., and Klette, R. 2008. An approximate algorithm for
solving the watchman route problem. In RobVis, volume
4931 of LNCS, 189–206. Springer.
Mitchell, J. 1999. Guillotine subdivisions approximate polyg-
onal subdivisions: A simple polynomial-time approximation
scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput. 28(4):1298–1309.
Ntafos, S. 1991. Watchman routes under limited visibility.
Comput. Geom. 1:149–170.
Persson, P. O. 2004. DISTMESH-a simple mesh generator
in matlab. http://persson.berkeley.edu/distmesh/.
Robertson, N., and Seymour, P. 1991. Graph minors. X.
obstructions to tree-decomposition. Journal of Combinatorial
Theory, Series B 52(2):153 – 190.
Xu, A.; Viriyasuthee, C.; and Rekleitis, I. 2011. Optimal
complete terrain coverage using an unmanned aerial vehicle.
In ICRA, 2513–2519. IEEE.
Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; and Xia, Y. 2016.
Survey of robot 3D path planning algorithms. Journal of
Control Science and Engineering 2016(5):1–22.

10368

