
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Modular Robot Design Synthesis with Deep Reinforcement Learning

Julian Whitman,1 Raunaq Bhirangi,2 Matthew Travers,2 Howie Choset2

1Department of Mechanical Engineering, Carnegie Mellon University
2The Robotics Institute, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, Pennsylvania 15213

jwhitman@cmu.edu

Abstract

Modular robots hold the promise of versatility in that their
components can be re-arranged to adapt the robot design to
a task at deployment time. Even for the simplest designs, de-
termining the optimal design is exponentially complex due
to the number of permutations of ways the modules can be
connected. Further, when selecting the design for a given
task, there is an additional computational burden in evaluat-
ing the capability of each robot, e.g., whether it can reach
certain points in the workspace. This work uses deep rein-
forcement learning to create a search heuristic that allows us
to efficiently search the space of modular serial manipulator
designs. We show that our algorithm is more computation-
ally efficient in determining robot designs for given tasks in
comparison to the current state-of-the-art.

1 Introduction

Modular robots offer the potential to create customized
robots that can be readily deployed to perform a variety
of tasks. Synthesizing the design of a modular robot for
a given task involves a number of challenges, one being
that the space of possible module arrangements (ordered se-
quences of discrete robotic modules) grows exponentially in
the number of types of modules and ways they can be con-
nected. When searching this exponentially large space, we
have to evaluate whether each candidate robot can complete
the task. This evaluation requires planning for and compar-
ing the relative costs of motions for each candidate, which
is computationally intractable at scale. We address this in-
tractability by learning a search heuristic which implicitly
encodes robot performance under the evaluation metric. The
main contribution of this work is an algorithm which uses
deep reinforcement learning to create this heuristic, enabling
us to efficiently search the space of arrangements in the con-
text of each robot’s inherent capabilities for a given task. We
limit the scope of the problem to synthesizing the arrange-
ments of modular serial manipulators, for tasks in which the
manipulator must reach a set of quasi-static workspace po-
sitions and orientations.

We build on prior modular design synthesis methods (De-
sai, Yuan, and Coros 2017; Ha et al. 2018) which incre-
mentally construct and search a tree of different modular

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Our approach searches for modular manipulator
designs by viewing the space of arrangements as a tree,
where modules are sequentially added to the end of the
robot. The arrangement at the root of the tree is a base
mounting location. Solid arrows represent module additions,
and dashed arrows indicate that the tree continues but is not
shown. We use deep reinforcement learning to create a data-
driven search heuristic which guides search on this tree. We
apply our algorithm to modular components produced by
Hebi Robotics (Hebi Robotics 2019).

arrangements. Specifically, each node added as a child to
a current leaf node represents adding a module to the distal
end of the manipulator, as shown in Figure 1. We view the
construction of this tree as a series of states (arrangements)
and actions (adding modules), and treat assembly of an ar-
rangement as a Markov Decision Process (Sutton 1988). Un-
der this formulation, we learn a state-action value function
which approximates the benefit of adding each module type
to an arrangement given the task. We train a deep Q-network

10418

(DQN) to approximate this value function using reinforce-
ment learning (Mnih et al. 2015). The DQN is used within
a search heuristic for a best-first graph search (Bhardwaj,
Choudhury, and Scherer 2017). The heuristic estimates the
potential for a branch of the search tree to contain a low-cost
robot which completes the task.

We compare our approach to two related methods which
search for modular arrangements: a best-first search (Ha et
al. 2018) and an evolutionary search (Icer et al. 2017). After
training the DQN, our algorithm finds lower-cost solutions
more efficiently than these related methods.

The rest of this paper is organized as follows: Section
2 discusses related work on robot design synthesis, work
that motivated our approach, and a brief review of deep Q-
learning. Section 3 describes our methodology for training
the DQN and searching the space of modular arrangements.
Section 4 presents our results and benchmarks them against
existing approaches. Sections 5 and 6 discuss the limitations
of our approach, future work, and concluding remarks.

2 Background

Our approach draws inspiration both from recent discrete
modular design search work and from literature on the use
of deep reinforcement learning for design and search.

2.1 Related Work

The most closely related methods for manipulator arrange-
ment synthesis are best-first graph searches (Desai, Yuan,
and Coros 2017; Desai et al. 2018; Ha et al. 2018). In these
works, a heuristic was crafted that estimated the ability of
each partially complete arrangement in fulfilling the task,
and was used to guide a search over a tree of different ar-
rangements. The evaluation of their heuristics involved solv-
ing an optimization subproblem, which becomes computa-
tionally burdensome as the number of possible module types
and connections grows. Further, the heuristics did not con-
sider obstacles, self-collisions, or torque constraints.

Another arrangement search method is a pruned exhaus-
tive search. Althoff et al. (2019) performed increasingly
computationally expensive checks on arrangements, elimi-
nating candidates based on criteria such as total length or
static torques. This method requires the evaluation criteria be
manually specified for each task and module set, and could
become computationally expensive en masse given an expo-
nentially large search space.

Evolutionary algorithms have been used for design syn-
thesis (Chen 1996; Leger 2012; Icer et al. 2017), searching
the design space by randomly varying arrangements while
selecting for those with high fitness. These methods allow
the evaluation of many candidates in parallel, and work with
discrete spaces. But, any domain-specific knowledge must
be encoded by the user, the results of these algorithms vary
substantially between runs, and they are computationally ex-
pensive because many candidate robots must be evaluated.

Deep RL has recently been used for robot design (Schaff
et al. 2018; Ha 2018) to simultaneously learn a design and a
control policy. Deep RL requires only a sparse reward func-
tion be formulated for each task. RL has also been used to

design a deep neural network for image recognition (Baker
et al. 2016). We similarly learn the value of each sequential
discrete choice. These works use RL as the optimizer for a
single task; that is, they fix the task and environment then
use RL to search for a design. They suffer from the time it
takes to optimize each design, thereby limiting their true po-
tential, especially when rapidly prototyping designs or when
the task may change frequently.

Our work is also inspired by recent work on learning-
based motion planning. Chen, Murali, and Gupta (2018)
learned a single control policy to control multiple robot de-
signs, by training with a variety of manipulator designs on
reaching and inserting a peg into a hole. As in our work, their
policy was conditioned on both the workspace target and
the robot design. Bhardwaj, Choudhury, and Scherer (2017)
learned a search heuristic for a best-first search, used as a
path planner in a grid world; we also learn a best-first search
heuristic, but in the context of design rather than planning.

2.2 Deep Q-learning for Modular Robot Design

We formulate the robot design problem as a finite Markov
Decision Process, in which we construct a robot by adding
one module at a time. We define a complete arrangement as
one that ends with an end-effector module, and a partial ar-
rangement as one that does not. At each time step t, the agent
selects an action at that adds a module to a partial robot. The
state st contains the arrangement, so the next state depends
deterministically on only the previous state and the mod-
ule added. This results in a new robot, st+1, and a reward,
rt, from the environment. In this context the set of all robot
modules defines the action space A, while the set of partial
and complete robots defines the state space, S .

We define the return at time t, Rt =
∑T

t′=t γ
t−t′rt′ , with

a discount factor 0 ≤ γ ≤ 1. The state-action value function
Qπ : S×A �→ R is then defined as the expected return given
the action at is taken in state st following policy π : S �→ A.
Our approach uses reinforcement learning to estimate the
optimal state-action value function Q∗, which can be defined
in terms of the Bellman equation,

Q∗(st, at) = max
π

E

[
rt + γmax

a′∈A
Q∗(st+1, a

′)
]
. (1)

Tabular Q-learning (Watkins 1989), a temporal difference
learning method (Sutton 1988), can be used to compute an
estimate of the state-action value (“Q-value”) correspond-
ing to every possible state-action pair. This approach be-
comes intractable for large state and action spaces, so Deep
Q-networks (DQN) use a deep neural network as a func-
tion approximator Q(s, a; θ) with network parameters θ to
approximate Q∗(s, a) (Mnih et al. 2015). We train this net-
work with experience replay (Riedmiller 2005) and a target
network (Van Hasselt, Guez, and Silver 2016).

Our method also uses additions to the original
DQN framework. Universal value function approximators
(UVFA) are learned value functions conditioned on the task
goal (Schaul et al. 2015). We use a UVFA to enable our
DQN to apply to a range of goals. Hindsight experience re-
play (HER) is a data augmentation technique employed for

10419

RL problems with sparse reward signals (Andrychowicz et
al. 2017). In HER, episodes are replayed with a different
goal than the one used during the original episode.

3 Methods

In contrast to recent work (Ha 2018; Schaff et al. 2018) that
used RL to solve an optimization problem to build a robot
for each task, we use RL to learn a UVFA for a class of
tasks (Schaul et al. 2015). Specifically we use a DQN as
a UVFA to learn the expected state-action value of adding
each module type to an arrangement given the goal of reach-
ing a workspace target. The modules are chosen from a set
of Nm types with indices m ∈ 1, 2, ...Nm. Each module
could include any number of actuators and links, and may be
able only to connect to some subset of other module types.
The modular design synthesis problem is then to select a se-
quence of modules which form an arrangement A that can
complete a given task.

In this work we limit the space of tasks to a set of NT

workspace targets which a serial manipulator should reach.
A workspace target T = [p, n̂] consists of a position in space
p ∈ R

3 and tip axis orientation n̂ ∈ R
3, ||n̂|| = 1. This rep-

resentation can include manipulation tasks including peg-in-
hole-insertion, positioning a camera, or screw insertion.

Let NJ(A) represent the number of actuated joints in a
given arrangement A. The forward kinematics (FK) of A
with joint angles ϑ ∈ R

NJ (A)

[pEE , n̂EE] = FK(A, ϑ), (2)

outputs pEE , the end-effector tip position, and n̂EE , the tip
axis. To evaluate whether an arrangement can reach a target,
we define the inverse kinematics (IK) of an arrangement as
the joint angles that minimize the difference between the FK
and a target,

ϑ = IK(A, p, n̂)

= argmin
ϑ

||p− pEE ||+ (1− n̂ · n̂EE)

s.t. f(A, ϑ) ≤ 0

(3)

where f represents a set of constraints including self-
collision avoidance, obstacle-collision avoidance, and joint
limits. We use the interpenetration distance between collid-
ing rigid bodies as the collision constraint metric. We solve
IK numerically using gradient descent with multiple random
initial seed restarts. In a slight abuse of notation, we will use
pEE(A, p, n̂) and n̂EE(A, p, n̂) to denote the forward kine-
matics output of the inverse kinematics solution for a given
target. To evaluate whether an arrangement can reach a given
target, we set tolerances εp and εn, and define a “reachabil-
ity” function for the arrangement as

reach(A, T) =

⎧⎨
⎩
1 ||p− pEE(A, p, n̂)|| ≤ εp and

1− n̂ · n̂EE(A, p, n̂) ≤ εn
0 otherwise.

(4)

Our goal is to find an arrangement of modules that is
capable of reaching the targets. At the same time, we de-
sire robots with fewer actuators (lower complexity) and

lower mass. However, we must recognize that for arbitrary
environments and module type sets, not every target may
be reachable. Therefore, we pose this problem as a multi-
objective optimization to maximize the number of targets
reached while minimizing the complexity and mass of the
robot, which gives us an objective function F ,

F (A, T) = −wJNJ(A)− wMM(A) + reach(A, T) (5)

where we use M(A) to represent the total mass in arrange-
ment A, and wJ and wM are user-set weighting factor to
trade off between the multiple objectives. We seek an ar-
rangement that maximizes this function,

A∗ = argmax
A

NT∑
i=1

F (A, Ti). (6)

Next we will learn a neural network which approximates the
benefit of adding each module to an arrangement to maxi-
mize (5) for a single target. Section 3.3 will describe how
this function is used to maximize over multiple targets.

3.1 DQN for module selection

Our algorithm assembles a serial-chain manipulator one
module at a time, as illustrated in Figure 2. We use the out-
put of a trained DQN to form a search heuristic. To use RL,
we must first define the state, actions, and reward signals.

We encode the arrangement A as a list of one-hot vectors,
where each index in a single vector indicates a type of mod-
ule selected, with a user-set maximum number of modules
allowed in the arrangement Nmax. At each time step an ac-
tion selects a module type m from the set of Nm module
types. Each episode is a series of steps where one module
is added until either the arrangement is complete (an end-
effector is added) or the maximum number of modules in an
arrangement has been reached.

We append a single workspace target T = [p, n̂] to
the state. This conditions the Q-values on the target, form-
ing a UVFA that can apply to a range of targets (Schaul
et al. 2015). We also condition the learned Q-value func-
tion on the locations of obstacles in the environment. To
make a tractable parameterization of environment obsta-
cles, we voxelize the space into a coarse “grid” and as-
sign a binary occupied/unoccupied value to each voxel, so
O ∈ {0, 1}(nO×nO×nO), where nO is the number of vox-
els on each edge of the grid. The size of the voxels and the
range of space over which they span were set by hand; we
used nO = 5 with voxel edge length 0.25 m; see Figure 3
for an illustration. The inputs to the DQN are the partial ar-
rangement, the target, and the obstacle grid. Figure 4 depicts
the structure of the neural network.

We use a reward signal such that the sum of rewards over
an episode matches (5) because we aim to select an arrange-
ment that maximizes that function in (6). The non-terminal
rewards are penalties assigned for the mass and complexity
of each module m added to the arrangement,

r(m) = −wjNJ(m)− wMM(m). (7)

If the module added is an end-effector (EE), this is consid-
ered a terminal action, and the terminal reward is returned.

10420

Target

Obstacles

Add
joint

Add
link

Obstacles

(empty)
DQN

Partial robot Partial robot

Complete
robot

Evaluate robot

and target

Partial
robot DQN DQN

Base

(Multiple steps)

Figure 2: During training, the DQN is used repeatedly to evaluate the contribution each module type would have toward reaching
a target. The arrangement is assembled sequentially (top) with modules selections made by the DQN (bottom)

The reachability function (4) is evaluated and added to the
reward. If the maximum number of modules is reached with-
out any end-effector added, a penalty of −1 is returned,

rterminal =

⎧⎨
⎩
−1 length(A′) == Nmax

and m is not an EE
reach(A′, T) m is an EE,

(8)

where we define A′ as the arrangement resulting from the
addition of m to the existing arrangement A. The elements
of the Q-value vector Q ∈ R output by a forward pass of the
DQN represent the expected value of a module type m that
could be added to the tip of the arrangement A given a target
T and grid O,

Q(A, T,O,m) = E
[
r +max

m′
Q(A′, T, O,m′)

]
≈ DQNm(A, T,O),

(9)

where DQNm is the mth component of the output of the
DQN, as shown in Fig. 4.

3.2 Training the DQN

The DQN is trained to approximate the Q-values of each
module type for a given arrangement, target, and grid. At
the start of each episode during training we randomize the
target and grid. Each element of p and n̂ is selected from a
[−1, 1] range, and n̂ is normalized. When we randomize the
target and environment occupancy, we ensure that any points
that must be occupied by the robot (e.g. the base and target)
are unoccupied.

During training we build up an arrangement by sequen-
tially selecting modules. At each step in the episode, the net-
work outputs Q-values for each module type. In our module
set, each type of module can connect to only a subset of the
other module types. We mask out invalid module connec-
tion actions, and only learn Q-values for valid actions. An
episode ends when an EE module is chosen or the maximum
number of allowable modules has been added. The episodes
have a maximum length, enabling us to use a discount fac-
tor γ = 1. We use a Boltzmann exploration strategy (Barto,
Bradtke, and Singh 1995), as there are multiple similar mod-
ule choices with similar values that should be explored, such

that we avoid exploiting a single robot arrangement for all
tasks. We use curriculum learning (Bengio et al. 2009) on
the obstacle grid, mass penalty, and complexity penalty. We
begin training with no obstacles or penalties, and periodi-
cally increase the maximum number of randomly selected
obstacles and the penalty value during the early stages of
training.

To learn from the sparse reward signal, we use HER
(Andrychowicz et al. 2017). Each time a complete arrange-
ment is found which does not reach the target, the episode is
replayed with the point that was reached set as the target. We
introduce additional data augmentation by randomly sam-
pling joint angles and occupancy grid for the robot found,
calculating FK, removing any samples that are in collision,
and replaying the episode with the pose reached by each
sample’s FK set as the target. We found this results in higher
quality solutions to our full graph search procedure by train-
ing the network to better predict the potential value of lower
mass/complexity arrangements. While training, we periodi-
cally test the DQN on a small set of randomly generated test
points. The performance of the graph search procedure on
these test sets is used as an evalution metric to decide when
to end training.

3.3 Using the DQN as a search heuristic

To search for task-specific arrangements, we use the DQN
module value approximator to guide a best-first search. The
forward pass of the DQN outputs the Q-value for each mod-
ule type conditioned on a single target and grid. This Q-value
encodes the expected future value of the objective function
F defined in (5).

Different tasks may involve reaching different numbers of
targets; as per (6), we seek to maximize return over multiple
targets. But, for a single neural network to operate on multi-
ple points at once, the value function would need to be con-
ditioned on all permutations of those points, and would be
constrained to a fixed maximum number of points. It would
be significantly more computationally expensive to train if
each arrangement selection were to be conditioned on a set
of targets than if it were conditioned on one target. To ad-
dress this challenge, we create a search heuristic from the
output of one forward pass for each target.

10421

Figure 3: Top: An arrangement of modules (dark grey
and red) with base located at the origin reaches a single
workspace target position and tip axis (green point with
arrow) without colliding with voxelized obstacles (grey
cubes). Bottom: The physical modular robot matches the ar-
rangement and environment.

First we observe that at terminal actions, the state-action
value summed over all targets matches the desired maxi-
mization in (6). That is, for actions that result in terminal
states (when the selected action m is an end-effector),

NT∑
i=1

Q(A, Ti, O,m) =

NT∑
i=1

F (A′, Ti). (10)

Even though this equation is not exact for non-terminal ac-
tions, we find that the summation over Q-values is a good
search heuristic to maximize objective F . Therefore we
form the search heuristic h ∈ R from a summation of for-
ward passes of the DQN for each target,

h(A, T1...TNT
, O,m) =

NT∑
i=1

DQNm(A, Ti, O). (11)

This search heuristic prioritizes modules selected based on

Figure 4: The neural network architecture we used for our
DQN consists of fully connected (FC) layers with recti-
fied linear unit (ReLU) activation, and a 3D convolution
(Conv3D) over the grid of obstacles. The inputs to the DQN
are the current arrangement A, target T = [p, n̂], and ob-
stacle grid O. The outputs are the state-action values Q for
each type of module.

Algorithm 1: Manipulator arrangement search, a best-
first search guided by the output of a DQN.

Input: A set of NT targets and an occupancy grid O
Result: Arrangement A
openset = [Empty arrangement]
while time < time limit do

Pop node with highest h value from openset;
Expand the node;
if node contains complete robot then

Evaluate IK at all targets;
if all targets reached then

Store return for the arrangement
end

else
Forward pass of DQN and sum output for each

target as in (11);
Add each child A′ to the openset with value h

end

end
Return arrangement with highest return (lowest cost)

their potential to reach the targets with fewer additional
modules.

Our DQN-best-first search algorithm is outlined in Algo-
rithm 1. At each iteration, the arrangement with the highest
heuristic value is popped from the open set. If it is a com-
plete robot, it is evaluated. Otherwise it is expanded, passed
through the DQN to create new h values for its children, and
those children are added to the open set.

The Q-value is the expected return from the current ar-
rangement onward. We penalize the addition of modules,
so the DQN outputs from arrangements with more modules
are usually higher than the outputs from arrangements with
fewer modules. As a result, the search tends to act more like
a depth-first search than a breadth-first search. A neural net-
work forward pass is computationally inexpensive, so com-
putation of this heuristic scales linearly with the number of
targets, keeping computation for each node expansion low.

10422

3.4 Comparisons to related work

We implemented two methods from prior work, a genetic
and a best-first search, as bases of comparison. Here we de-
scribe these implementations and the experiments we ran.

Genetic algorithm Each individual A in the population
was represented with a gene g ∈ [0, 1)Nmax . To convert each
gene to an arrangement, each element was interpreted se-
quentially as the next valid module to attach. For example, if
there are two possible children module types for the module
at j − 1, and element j of the gene is 0 ≤ gj < 0.5, then the
first of the two types would be selected, but if 0.5 ≤ gj < 1
then the second of the two types would be selected. Each in-
dividual in the population was evaluated with a score com-
bining their IK error, weighted complexity and mass, and
whether they are complete. The population was resampled
with elite selection, crossover, and mutation.

Best-first search algorithm We implemented the algo-
rithm of Ha et al. (2018), in which the tree of possible de-
signs is explored with a best-first search. At each step, partial
robots are evaluated with a heuristic function based on an
IK-like subproblem. The candidate with the lowest heuristic
cost is expanded, and any complete robots are evaluated for
the specified task. We removed velocity constraints from the
IK and heuristic subproblem evaluations, which speeds up
these functions which are evaluated many times.

Comparison tests We conducted a comparison test be-
tween the different methods: a genetic algorithm, best-first
search, and our DQN-best-first search. We used modular
components produced by Hebi Robotics (Hebi Robotics
2019) with a set of 11 types of modules: three base mount
orientations, one actuated joint, six different links/brackets,
and one end-effector. We limit the maximum number of
modules in an arrangement to Nmax = 16, a sufficient
length for complete robots with a maximum of seven ac-
tuated joints given these modules. During training and all
tests, we set the objective weights wJ = 0.025, wM = 0.1.
In the comparison tests, we generated 50 sets of 10 random
targets, each set with a randomized obstacle grid with up to
10 obstacles. For each method, we measured:
• the time until the first feasible arrangement (one which

reaches all targets) was found for each set,
• the standard deviation of the time until the first feasible

robot was found was found for each set,
• the penalty wJNJ(A) + wMM(A) from the complexity

and mass of the first feasible robot,
• the number of complete arrangements evaluated before a

feasible robot was found,
• the feasible arrangement with the lowest cost found after

five minutes, and
• the number of target sets for which no feasible arrange-

ment was found after five minutes.
When no feasible arrangement was found for a given method
and set within the time limit, that set was not included in
the averages or times for that method. We selected these
criteria because we are interested in rapid prototyping and

field applications, where we may need to trade off between
speed and solution quality. As such both the first arrange-
ment found (fastest solution) and the solution found after a
fixed amount of time are relevant. The IK evaluation of com-
plete robots is the most computationally expensive step. We
trained the DQN and conducted all tests on a desktop com-
puter with Ubuntu 16.04, Intel i5 four-core processor at 3.5
GHz, and an NVIDIA GTX 1050 graphics card. We trained
the DQN for 450,000 episodes (about 33 hours) before using
it within our algorithm.

Searching with torque constraints In addition to the
DQN network above, we trained a network for a more dif-
ficult variant of the problem, with more module types and a
constraint on the actuator torque limits. We added five more
module types (four links and one rotary actuator), for 16 to-
tal module types. One actuator module type had lower mass
and lower maximum torque, and the other had higher mass
and higher maximum torque. When evaluating the reachabil-
ity function, if any actuator torque limit was exceeded, then
a terminal reward of 0 was returned. As a basis of compari-
son, we modified the genetic algorithm to include a penalty
on arrangements that overload the actuator torques. We were
unable to compare this extension to the method of (Ha et al.
2018) as their method does not consider torques. The test set
used in this test was the same as those described above. We
trained this DQN for 700,000 episodes (about 57 hours).

4 Results

The results of the comparison tests are shown in Table 1.
We found that our method produces the best results in all
categories. For one of the tests, none of the three algorithms
were able to find a feasible robot within five minutes.

The genetic algorithm finds costly feasible arrangements
in few iterations by randomly sampling arrangements, and
then refines those results over further iterations to less costly
arrangements. Qualitatively we found it tends to do well
when there are many feasible robots for the task, for exam-
ple when there are few targets and few obstacles, because
the initial sampling may include costly arrangements that
complete the task. However, the genetic algorithm requires
many complete robot planning evaluations. If the computa-
tional cost of evaluating planning for complete robots were
to increase, we expect this method to correspondingly be-
come more expensive.

The best-first search does not include obstacles in its
search heuristic, so its performance tends to degrade in the
presence of many obstacles. It evaluates robots in order of
increasing complexity, but must solve an nonlinear program
to evaluate each node. Due to this computationally expensive
subproblem, this algorithm was not able to find solutions for
a third of the test cases within the five minute time limit. In
the cases where it did find a solution, it was not usually able
to improve upon that solution within the remaining time.

We observed that our method acts depth-first initially,
evaluating a complete robot after only a few DQN for-
ward passes. The reward structure during training guides the
search toward less costly arrangements. In contrast to the
heuristic of (Ha et al. 2018), our heuristic considers obstacle

10423

Table 1: Results of the comparison tests described in Section 3.4 (lower values are better for all metrics).
11 modules 16 modules, torque constraint

Method DQN Best-first Genetic DQN Genetic
Avg. runtime to first (min.) 0.26 3.04 0.64 0.20 3.08

Std. dev. runtime to first (min.) 0.14 1.00 0.69 0.38 1.69
Avg. num. complete robot evaluations to find first 10.31 29.03 138.12 39.76 311.41

Avg. cost for first found 0.57 0.59 0.62 0.63 0.64
Avg. best cost after five min. 0.52 0.58 0.53 0.60 0.63

Num. trials none found after five min. 1/50 16/50 1/50 1/50 28/50

locations. We found this improves average solution quality
and run time over an ablated variant that did not condition
the heuristic on obstacles.

In the variant with a torque constraint and additional mod-
ule types, our method still searched the space of arrange-
ments efficiently, and output feasible designs quickly, albeit
after a longer training time. The higher-mass actuator mod-
ule was frequently needed to create arrangements capable
of extending to the farthest targets without exceeding the
maximum torques, resulting in solutions with higher cost
than in the previous experiments. Even with the larger set
of modules and additional constraint, a feasible design was
still consistently returned within one minute. In contrast, the
genetic algorithm was unable to find a feasible arrangement
within five minutes in the majority of the test cases.

In the most directly related work (Ha et al. 2018) the
search suffers from the curse of dimensionality at runtime.
When the branching factor (from number of types of mod-
ules available) increases, the number of heuristic function
evaluations increases exponentially. In contrast, when more
modules are added, we must train the DQN for additional
time, but still use DQN forward passes to assign a heuris-
tic to all children of the expanded node at once. Where our
method is strongest, compared to related methods, is the low
computation needed before finding a feasible arrangement,
arising both from the computational efficiency with which
the search heuristic is computed (forward passes from the
DQN) and in the lower number of complete robot evalua-
tions. As the task becomes more complex, we expect that
the number of complete robot motion planning evaluations
will dominate the search time, resulting in decreased perfor-
mance of related methods, but only increasing training time
for our method.

We have included the code to train the network, pre-
trained network weights, and the code and results for our
experiments in the supplementary material.

5 Limitations and future work

One limitation of our work is the need to retrain the neural
network if the set of module types changes; future work will
consider using a trained network to warm-start training with
small differences in module set. Another limitation is that
our formulation does not include costs on velocity/motion
smoothness. In future work we will to move toward dynamic
motion plans rather than quasi-static IK. Further, rather than
rely on conventional motion planning algorithms for evalu-
ation of each arrangement at the task, future work will in-

volve learning control policies conditioned on the robot de-
sign, task, and environment (Chen, Murali, and Gupta 2018)
end-to-end with the module selection policy.

The module arrangement input representation in this work
is a list of one-hot vectors, each vector representing a mod-
ule in the sequence, and padded with zeros up to the max-
imum number of allowed modules in the arrangement. A
limitation of this encoding, which we will address in future
work, is that it limits the arrangement to serial topologies.
Similarly, we restricted the design to be composed of dis-
crete selection of components. A more general, but more
complex, case of robot designs composed of both contin-
uous design parameters and discrete components is an area
of ongoing research (Whitman and Choset 2018).

6 Conclusions

In this paper we presented an algorithm that uses a data-
driven graph search heuristic to synthesize task-specific
modular robot designs. We showed that our method returned
lower-cost solutions more computationally efficiently than
similar state-of-the-art methods. In the arrangement search,
the “curse of dimensionality” appears from the high branch-
ing factor in the series of discrete module selection choices.
Search efficiency is needed to mitigate the computational
burden of creating a motion plan for each candidate arrange-
ment. Our method addresses these challenge by using a deep
neural network forward pass to approximate the value of all
options at once, moving the vast majority of the computa-
tion into off-line training. Although we limit our focus to
serial manipulators, a similar method could be applied to
more complex body designs. We envision our method could
be used in applications where there is a finite mass or mon-
etary budget for parts, and a need to apply the same mod-
ules to applications that change frequently, but where the set
of module types remains fixed, for instance, in space, low-
volume manufacturing, or military applications. As modular
robots become less expensive to produce, we hope that auto-
mated design tools like ours will allow non-experts to easily
create customized robots.

Acknowledgments

This work was supported by NASA Space Technology Re-
search Fellowship NNX16AM81H.

10424

References

Althoff, M.; Giusti, A.; Liu, S.; and Pereira, A. 2019.
Effortless creation of safe robots from modules through
self-programming and self-verification. Science Robotics
4(31):eaaw1924.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and
Zaremba, W. 2017. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems, 5048–
5058.
Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2016. Design-
ing neural network architectures using reinforcement learn-
ing. arXiv preprint arXiv:1611.02167.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
intelligence 72(1-2):81–138.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41–48.
ACM.
Bhardwaj, M.; Choudhury, S.; and Scherer, S. 2017. Learn-
ing heuristic search via imitation. In Conference on Robot
Learning, 271–280.
Chen, T.; Murali, A.; and Gupta, A. 2018. Hardware con-
ditioned policies for multi-robot transfer learning. In Ad-
vances in Neural Information Processing Systems, 9333–
9344.
Chen, I. M. 1996. On optimal configuration of modular re-
configurable robots. In Proceedings of the 4th International
Conference on Control, Automation, Robotics, and Vision.
Desai, R.; Safonova, M.; Muelling, K.; and Coros, S. 2018.
Automatic design of task-specific robotic arms. arXiv
preprint arXiv:1806.07419.
Desai, R.; Yuan, Y.; and Coros, S. 2017. Computational ab-
stractions for interactive design of robotic devices. In 2017
IEEE International Conference on Robotics and Automation
(ICRA), 1196–1203. IEEE.
Ha, S.; Coros, S.; Alspach, A.; Bern, J. M.; Kim, J.; and
Yamane, K. 2018. Computational design of robotic devices
from high-level motion specifications. IEEE Transactions
on Robotics 34(5):1240–1251.
Ha, D. 2018. Reinforcement learning for improving agent
design. arXiv preprint arXiv:1810.03779.
Hebi Robotics. 2019. [Online]. www.hebirobotics.com.
Accessed Aug. 8, 2019.
Icer, E.; Hassan, H. A.; El-Ayat, K.; and Althoff, M. 2017.
Evolutionary cost-optimal composition synthesis of modular
robots considering a given task. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3562–3568. IEEE.
Leger, C. 2012. Darwin2K: An evolutionary approach to
automated design for robotics, volume 574. Springer Sci-
ence & Business Media.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;

Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Riedmiller, M. 2005. Neural fitted q iteration–first expe-
riences with a data efficient neural reinforcement learning
method. In European Conference on Machine Learning,
317–328. Springer.
Schaff, C.; Yunis, D.; Chakrabarti, A.; and Walter, M. R.
2018. Jointly learning to construct and control agents
using deep reinforcement learning. arXiv preprint
arXiv:1801.01432.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015.
Universal value function approximators. In Proceedings of
the 1st Annual Conference on Robot Learning, 1312–1320.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning 3(1):9–44.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep re-
inforcement learning with double q-learning. In Thirtieth
AAAI conference on artificial intelligence.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Ph.D. Dissertation, King’s College, Cambridge.
Whitman, J., and Choset, H. 2018. Task-specific manip-
ulator design and trajectory synthesis. IEEE Robotics and
Automation Letters 4(2):301–308.

10425

